mirror of https://github.com/ARMmbed/mbed-os.git
Increase RPi Pico PWM range and resolution to the max supported by HW (#203)
* Attempt to increase RPi Pico PWM range and resolution to the max supported * Fix copyright for pwmout_api.c * Fix ADC implementation so it works! Fixes incorrect return type, adds +1 to top_count, fixes missing pwm_config_set_wrap() call. * Revert printf change in this PRpull/15494/head
parent
699437ecf9
commit
73b0306230
|
@ -22,9 +22,8 @@
|
|||
#include "pinmap.h"
|
||||
#include "PeripheralPins.h"
|
||||
|
||||
static float const ADC_VREF_VOLTAGE = 3.3f; /* 3.3V */
|
||||
static uint16_t const ADC_RESOLUTION_BITS = 12;
|
||||
static float const ADC_CONVERSION_FACTOR = ADC_VREF_VOLTAGE / (1 << 16);
|
||||
static float const ADC_CONVERSION_FACTOR = 1.0f / (1 << 16);
|
||||
|
||||
void analogin_init(analogin_t *obj, PinName pin)
|
||||
{
|
||||
|
|
|
@ -114,12 +114,31 @@ struct spi_s {
|
|||
spi_inst_t * dev;
|
||||
};
|
||||
|
||||
struct pwmout_s {
|
||||
struct pwmout_s
|
||||
{
|
||||
/// Pin that the PWM is being sent out on
|
||||
PinName pin;
|
||||
|
||||
/// Slice number of this PWM (0-7). Each slice contains two channels.
|
||||
/// Each slice must have the same period but can have an independent duty cycle.
|
||||
uint8_t slice;
|
||||
|
||||
/// Channel of this PWM output on the slice (0 or 1)
|
||||
uint8_t channel;
|
||||
uint16_t period;
|
||||
|
||||
/// Value after which this PWM channel will reset to 0. This plus the clock divider controls the PWM period.
|
||||
uint16_t top_count;
|
||||
|
||||
/// Current clock divider value that the channel is set to (hardware accepts 1-255.9375)
|
||||
float clock_divider;
|
||||
|
||||
/// Current duty cycle percent
|
||||
float percent;
|
||||
|
||||
/// Current period setting in floating point seconds
|
||||
float period;
|
||||
|
||||
/// Pico HAL config structure
|
||||
pwm_config cfg;
|
||||
};
|
||||
|
||||
|
|
|
@ -1,41 +1,21 @@
|
|||
/*
|
||||
* Copyright (c) 2018 Nordic Semiconductor ASA
|
||||
* All rights reserved.
|
||||
/* mbed Microcontroller Library
|
||||
* Copyright (c) 2024, Arm Limited and affiliates.
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this list
|
||||
* of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
|
||||
* integrated circuit in a product or a software update for such product, must reproduce
|
||||
* the above copyright notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software without specific prior
|
||||
* written permission.
|
||||
*
|
||||
* 4. This software, with or without modification, must only be used with a
|
||||
* Nordic Semiconductor ASA integrated circuit.
|
||||
*
|
||||
* 5. Any software provided in binary or object form under this license must not be reverse
|
||||
* engineered, decompiled, modified and/or disassembled.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
#if DEVICE_PWMOUT
|
||||
|
||||
#include "hal/pwmout_api.h"
|
||||
|
@ -45,7 +25,77 @@
|
|||
#include "hardware/clocks.h"
|
||||
#include "mbed_assert.h"
|
||||
|
||||
const uint count_top = 1000;
|
||||
#include <math.h>
|
||||
|
||||
// Change to 1 to enable debug prints of what's being calculated.
|
||||
// Must comment out the critical section calls in PwmOut to use.
|
||||
#define RP2040_PWMOUT_DEBUG 0
|
||||
|
||||
#if RP2040_PWMOUT_DEBUG
|
||||
#include <stdio.h>
|
||||
#include <inttypes.h>
|
||||
#endif
|
||||
|
||||
/// Largest top count value supported by hardware. Using this value will provide the highest duty cycle resolution,
|
||||
/// but will limit the period to a maximum of (1 / (125 MHz / (65534 + 1)) =) 524 us
|
||||
const uint16_t MAX_TOP_COUNT = 65534;
|
||||
|
||||
/// Value for PWM_CHn_DIV register that produces a division of 1
|
||||
const uint16_t PWM_CHn_DIV_1 = 0x010;
|
||||
|
||||
/// Calculate the effective PWM period (in floating point seconds) based on a divider and top_count value
|
||||
static float calc_effective_pwm_period(float divider, uint16_t top_count)
|
||||
{
|
||||
// Note: The hardware counts to top_count *inclusively*, so we have to add 1
|
||||
// to get the number of clock cycles that a given top_count value will produce
|
||||
return 1.0f / ((clock_get_hz(clk_sys) / divider) / (top_count + 1));
|
||||
}
|
||||
|
||||
/// Calculate the best possible top_count value (rounding up) for a divider and a desired pwm period
|
||||
static uint16_t calc_top_count_for_period(float divider, float desired_pwm_period)
|
||||
{
|
||||
// Derivation:
|
||||
// desired_pwm_period = 1.0f / ((clock_get_hz(clk_sys) / divider) / (top_count + 1))
|
||||
// desired_pwm_period = (top_count + 1) / (clock_get_hz(clk_sys) / divider)
|
||||
// desired_pwm_period * (clock_get_hz(clk_sys) / divider) - 1 = top_count
|
||||
|
||||
long top_count_float = lroundf(desired_pwm_period * (clock_get_hz(clk_sys) / divider) - 1);
|
||||
MBED_ASSERT(top_count_float <= MAX_TOP_COUNT);
|
||||
return (uint16_t)top_count_float;
|
||||
}
|
||||
|
||||
/// Calculate the best possible floating point divider value for a desired pwm period.
|
||||
/// This function assumes that top_count is set to MAX_TOP_COUNT.
|
||||
static float calc_divider_for_period(float desired_pwm_period)
|
||||
{
|
||||
// Derivation:
|
||||
// (desired_pwm_period * clock_get_hz(clk_sys)) / divider - 1 = top_count
|
||||
// (desired_pwm_period * clock_get_hz(clk_sys)) / divider = top_count + 1
|
||||
// divider = (desired_pwm_period * clock_get_hz(clk_sys)) / (top_count + 1)
|
||||
|
||||
return (desired_pwm_period * clock_get_hz(clk_sys)) / (MAX_TOP_COUNT + 1);
|
||||
}
|
||||
|
||||
/// Convert PWM divider from floating point to a fixed point number (rounding up).
|
||||
/// The divider is returned as an 8.4 bit fixed point number, which is what the Pico registers use.
|
||||
static uint16_t pwm_divider_float_to_fixed(float divider_float)
|
||||
{
|
||||
// To convert to a fixed point number, multiply by 16 and then round up
|
||||
uint16_t divider_exact = ceil(divider_float * 16);
|
||||
|
||||
// Largest supported divider is 255 and 15/16
|
||||
if(divider_exact > 0xFFF)
|
||||
{
|
||||
divider_exact = 0xFFF;
|
||||
}
|
||||
return divider_exact;
|
||||
}
|
||||
|
||||
/// Convert PWM divider from the fixed point hardware value (8.4 bits) to a float.
|
||||
static float pwm_divider_fixed_to_float(uint16_t divider_fixed)
|
||||
{
|
||||
return divider_fixed / 16.0f;
|
||||
}
|
||||
|
||||
/** Initialize the pwm out peripheral and configure the pin
|
||||
*
|
||||
|
@ -60,11 +110,10 @@ void pwmout_init(pwmout_t *obj, PinName pin)
|
|||
obj->slice = pwm_gpio_to_slice_num(pin);
|
||||
obj->channel = pwm_gpio_to_channel(pin);
|
||||
obj->pin = pin;
|
||||
obj->period = 0;
|
||||
obj->top_count = MAX_TOP_COUNT;
|
||||
obj->percent = 0.5f;
|
||||
|
||||
obj->cfg = pwm_get_default_config();
|
||||
pwm_config_set_wrap(&(obj->cfg), count_top);
|
||||
pwm_config_set_wrap(&(obj->cfg), obj->top_count);
|
||||
|
||||
pwm_init(obj->slice, &(obj->cfg), false);
|
||||
gpio_set_function(pin, GPIO_FUNC_PWM);
|
||||
|
@ -89,7 +138,25 @@ void pwmout_free(pwmout_t *obj)
|
|||
void pwmout_write(pwmout_t *obj, float percent)
|
||||
{
|
||||
obj->percent = percent;
|
||||
pwm_set_gpio_level(obj->pin, percent * (count_top + 1));
|
||||
|
||||
// Per datasheet section 4.5.2.2, a period value of top_count + 1 produces 100% duty cycle
|
||||
int32_t new_reset_counts = lroundf((obj->top_count + 1) * percent);
|
||||
|
||||
// Clamp to valid values
|
||||
if(new_reset_counts > obj->top_count + 1)
|
||||
{
|
||||
new_reset_counts = obj->top_count + 1;
|
||||
}
|
||||
else if(new_reset_counts < 0)
|
||||
{
|
||||
new_reset_counts = 0;
|
||||
}
|
||||
|
||||
#if RP2040_PWMOUT_DEBUG
|
||||
printf("new_reset_counts: %" PRIu32 "\n", new_reset_counts);
|
||||
#endif
|
||||
|
||||
pwm_set_chan_level(obj->slice, obj->channel, new_reset_counts);
|
||||
pwm_set_enabled(obj->slice, true);
|
||||
}
|
||||
|
||||
|
@ -114,8 +181,61 @@ float pwmout_read(pwmout_t *obj)
|
|||
*/
|
||||
void pwmout_period(pwmout_t *obj, float period)
|
||||
{
|
||||
/* Set new period. */
|
||||
pwmout_period_us(obj, period * 1000000);
|
||||
// Two possibilities here:
|
||||
// - If the period is relatively short (< about 524 us), we want to keep the clock divider at 1
|
||||
// and reduce top_count to match the period
|
||||
// - If the period is larger than what we can achieve with a clock divider of 1, we need to
|
||||
// use a higher clock divider, then recalculate the top_count to match
|
||||
|
||||
// Note: For math this complex, I wasn't able to avoid using floating point values.
|
||||
// This function won't be too efficient, but for now I just want something that works and
|
||||
// can access the full PWM range.
|
||||
|
||||
if(period <= calc_effective_pwm_period(1, MAX_TOP_COUNT))
|
||||
{
|
||||
// Short period. Leave divider at 1 and reduce top_count to match the expected period
|
||||
obj->clock_divider = 1.0f;
|
||||
obj->cfg.div = PWM_CHn_DIV_1;
|
||||
obj->top_count = calc_top_count_for_period(obj->clock_divider, period);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Long period, need to use divider.
|
||||
|
||||
// Step 1: Calculate exact desired divider such that top_count would equal MAX_TOP_COUNT
|
||||
float desired_divider = calc_divider_for_period(period);
|
||||
|
||||
// Step 2: Round desired divider upwards to the next value the hardware can do.
|
||||
// We go upwards so that the top_count value can be trimmed downwards for the best period accuracy.
|
||||
uint16_t divider_fixed_point = pwm_divider_float_to_fixed(desired_divider);
|
||||
obj->cfg.div = divider_fixed_point;
|
||||
|
||||
// Step 3: Get the divider we'll actually be using as a float
|
||||
obj->clock_divider = pwm_divider_fixed_to_float(divider_fixed_point);
|
||||
|
||||
// Step 4: For best accuracy, recalculate the top_count value using the divider.
|
||||
obj->top_count = calc_top_count_for_period(obj->clock_divider, period);
|
||||
|
||||
#if RP2040_PWMOUT_DEBUG
|
||||
printf("period = %f, desired_divider = %f\n",
|
||||
period,
|
||||
desired_divider);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Save period for later
|
||||
obj->period = period;
|
||||
|
||||
#if RP2040_PWMOUT_DEBUG
|
||||
printf("obj->clock_divider = %f, obj->cfg.div = %" PRIu32 ", obj->top_count = %" PRIu16 "\n",
|
||||
obj->clock_divider,
|
||||
obj->cfg.div,
|
||||
obj->top_count);
|
||||
#endif
|
||||
|
||||
// Set the new divider and top_count values.
|
||||
pwm_config_set_wrap(&(obj->cfg), obj->top_count);
|
||||
pwm_init(obj->slice, &(obj->cfg), false);
|
||||
}
|
||||
|
||||
/** Set the PWM period specified in miliseconds, keeping the duty cycle the same
|
||||
|
@ -126,7 +246,7 @@ void pwmout_period(pwmout_t *obj, float period)
|
|||
void pwmout_period_ms(pwmout_t *obj, int period)
|
||||
{
|
||||
/* Set new period. */
|
||||
pwmout_period_us(obj, period * 1000);
|
||||
pwmout_period(obj, period / 1000.0f);
|
||||
}
|
||||
|
||||
/** Set the PWM period specified in microseconds, keeping the duty cycle the same
|
||||
|
@ -136,18 +256,18 @@ void pwmout_period_ms(pwmout_t *obj, int period)
|
|||
*/
|
||||
void pwmout_period_us(pwmout_t *obj, int period)
|
||||
{
|
||||
obj->period = period;
|
||||
|
||||
// min_period should be 8us
|
||||
uint32_t min_period = 1000000 * count_top / clock_get_hz(clk_sys);
|
||||
|
||||
pwm_config_set_clkdiv(&(obj->cfg), (float)period / (float)min_period);
|
||||
pwm_init(obj->slice, &(obj->cfg), false);
|
||||
/* Set new period. */
|
||||
pwmout_period(obj, period / 1000000.0f);
|
||||
}
|
||||
|
||||
/** Read the PWM period specified in microseconds
|
||||
*
|
||||
* @param obj The pwmout object
|
||||
* @return A int output period
|
||||
*/
|
||||
int pwmout_read_period_us(pwmout_t *obj)
|
||||
{
|
||||
return obj->period;
|
||||
return lroundf(1000000 * calc_effective_pwm_period(obj->clock_divider, obj->top_count));
|
||||
}
|
||||
|
||||
/** Set the PWM pulsewidth specified in seconds, keeping the period the same.
|
||||
|
@ -157,7 +277,7 @@ int pwmout_read_period_us(pwmout_t *obj)
|
|||
*/
|
||||
void pwmout_pulsewidth(pwmout_t *obj, float pulse)
|
||||
{
|
||||
pwmout_pulsewidth_us(obj, pulse * 1000000);
|
||||
pwmout_write(obj, pulse / obj->period);
|
||||
}
|
||||
|
||||
/** Set the PWM pulsewidth specified in miliseconds, keeping the period the same.
|
||||
|
@ -167,7 +287,7 @@ void pwmout_pulsewidth(pwmout_t *obj, float pulse)
|
|||
*/
|
||||
void pwmout_pulsewidth_ms(pwmout_t *obj, int pulse)
|
||||
{
|
||||
pwmout_pulsewidth_us(obj, pulse * 1000);
|
||||
pwmout_write(obj, (pulse * .001f) / obj->period);
|
||||
}
|
||||
|
||||
/** Set the PWM pulsewidth specified in microseconds, keeping the period the same.
|
||||
|
@ -177,19 +297,11 @@ void pwmout_pulsewidth_ms(pwmout_t *obj, int pulse)
|
|||
*/
|
||||
void pwmout_pulsewidth_us(pwmout_t *obj, int pulse)
|
||||
{
|
||||
/* Cap pulsewidth to period. */
|
||||
if (pulse > obj->period) {
|
||||
pulse = obj->period;
|
||||
}
|
||||
|
||||
obj->percent = (float) pulse / (float) obj->period;
|
||||
|
||||
/* Restart instance with new values. */
|
||||
pwmout_write(obj, obj->percent);
|
||||
pwmout_write(obj, (pulse * .000001f) / obj->period);
|
||||
}
|
||||
|
||||
int pwmout_read_pulsewidth_us(pwmout_t *obj) {
|
||||
return (obj->period) * (obj->percent);
|
||||
return lroundf(obj->period * obj->percent * 1000000);
|
||||
}
|
||||
|
||||
const PinMap *pwmout_pinmap()
|
||||
|
|
|
@ -4876,7 +4876,12 @@
|
|||
"device_name": "STM32U575ZITx",
|
||||
"detect_code": [
|
||||
"886"
|
||||
]
|
||||
],
|
||||
"overrides": {
|
||||
// As shipped, this nucleo board connects VREFP to VDD_MCU, and connects VDD_MCU to 3.3V.
|
||||
// Jumper JP4 can be used to switch VDD_MCU to 1.8V in which case you should override this setting to 1.8.
|
||||
"default-adc-vref": 3.3
|
||||
}
|
||||
},
|
||||
"MCU_STM32U585xI": {
|
||||
"inherits": [
|
||||
|
@ -9758,7 +9763,7 @@
|
|||
"RTC"
|
||||
]
|
||||
},
|
||||
"RASPBERRY_PI_PICO_SWD": {
|
||||
"RASPBERRY_PI_PICO": {
|
||||
"inherits": ["RP2040"],
|
||||
"macros_add": [
|
||||
"PICO_RP2040_USB_DEVICE_ENUMERATION_FIX=1",
|
||||
|
@ -9766,13 +9771,24 @@
|
|||
"PICO_TIME_DEFAULT_ALARM_POOL_DISABLED",
|
||||
"PICO_ON_DEVICE=1",
|
||||
"PICO_UART_ENABLE_CRLF_SUPPORT=0"
|
||||
]
|
||||
},
|
||||
"RASPBERRY_PI_PICO": {
|
||||
"inherits": ["RASPBERRY_PI_PICO_SWD"],
|
||||
],
|
||||
"overrides": {
|
||||
"console-usb": true,
|
||||
"console-uart": false
|
||||
"console-uart": false,
|
||||
|
||||
// ADC_VDD sets the ADC reference voltage on this chip.
|
||||
// Most RP2040 boards set this pin to 3.3V.
|
||||
// Note that if the I/O voltage is set to less than the ADC reference voltage,
|
||||
// voltages higher than the I/O voltage are illegal for the analog pins
|
||||
// (so the ADC can never read 100%).
|
||||
"default-adc-vref": 3.3
|
||||
}
|
||||
},
|
||||
"RASPBERRY_PI_PICO_SWD": {
|
||||
"inherits": ["RASPBERRY_PI_PICO"],
|
||||
"overrides": {
|
||||
"console-usb": false,
|
||||
"console-uart": true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue