Merge SPIF & QSPIF components test to general block device tests

The SPIF and QPIF components tests are fully merged into general block device tests and were deleted
pull/9858/head
Amir Cohen 2019-02-26 16:26:55 +02:00 committed by Deepika
parent 915424acca
commit 5c7f6cb755
6 changed files with 60 additions and 601 deletions

View File

@ -1,296 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "QSPIFBlockDevice.h"
#include "mbed_trace.h"
#include "rtos/Thread.h"
#include <stdlib.h>
using namespace utest::v1;
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
#define QSPIF_TEST_NUM_OF_THREADS 5
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
static SingletonPtr<PlatformMutex> _mutex;
// Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(QSPIFBlockDevice &blockD, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
{
int err = 0;
_mutex->lock();
static unsigned block_seed = 1;
srand(block_seed++);
// Find a random block
bd_addr_t block = (rand() * block_size) % blockD.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock();
err = blockD.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
// Check that the data was unmodified
srand(seed);
int val_rand;
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
val_rand = rand();
if ((0xff & val_rand) != read_block[i_ind]) {
utest_printf("\n Assert Failed Buf Read - block:size: %llx:%llu \n", block, block_size);
utest_printf("\n pos: %llu, exp: %02x, act: %02x, wrt: %02x \n", i_ind, (0xff & val_rand), read_block[i_ind],
write_block[i_ind]);
}
TEST_ASSERT_EQUAL(0xff & val_rand, read_block[i_ind]);
}
_mutex->unlock();
}
void test_qspif_random_program_read_erase()
{
utest_printf("\nTest Random Program Read Erase Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = blockD.get_erase_size();
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(blockD, block_size, write_block, read_block, addrwidth);
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
}
void test_qspif_unaligned_erase()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_addr_t addr = 0;
bd_size_t sector_erase_size = blockD.get_erase_size(addr);
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
err = blockD.erase(addr, sector_erase_size - 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//unaligned end address
addr = 0;
err = blockD.erase(addr, 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, sector_erase_size + 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//erase size exceeds flash device size
err = blockD.erase(addr, blockD.size() + 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Valid erase
err = blockD.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_OK, err);
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
static void test_qspif_thread_job(void *vBlockD/*, int thread_num*/)
{
static int thread_num = 0;
thread_num++;
QSPIFBlockDevice *blockD = (QSPIFBlockDevice *)vBlockD;
utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = blockD->get_erase_size();
unsigned addrwidth = ceil(log(float(blockD->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*blockD), block_size, write_block, read_block, addrwidth);
}
end:
delete[] write_block;
delete[] read_block;
}
void test_qspif_multi_threads()
{
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
rtos::Thread qspif_bd_thread[QSPIF_TEST_NUM_OF_THREADS];
osStatus threadStatus;
int i_ind;
for (i_ind = 0; i_ind < QSPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = qspif_bd_thread[i_ind].start(test_qspif_thread_job, (void *)&blockD);
if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1);
}
}
for (i_ind = 0; i_ind < QSPIF_TEST_NUM_OF_THREADS; i_ind++) {
qspif_bd_thread[i_ind].join();
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing unaligned erase blocks", test_qspif_unaligned_erase),
Case("Testing read write random blocks", test_qspif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_qspif_multi_threads)
};
Specification specification(test_setup, cases);
int main()
{
mbed_trace_init();
utest_printf("MAIN STARTS\n");
return !Harness::run(specification);
}

View File

@ -1,291 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "SPIFBlockDevice.h"
#include "mbed_trace.h"
#include "rtos/Thread.h"
#include <stdlib.h>
using namespace utest::v1;
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
#define SPIF_TEST_NUM_OF_THREADS 5
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
static SingletonPtr<PlatformMutex> _mutex;
// Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(SPIFBlockDevice &block_device, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
{
int err = 0;
_mutex->lock();
// Make sure block address per each test is unique
static unsigned block_seed = 1;
srand(block_seed++);
// Find a random block
bd_addr_t block = (rand() * block_size) % block_device.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock();
err = block_device.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = block_device.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = block_device.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
// Check that the data was unmodified
srand(seed);
int val_rand;
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
val_rand = rand();
if ((0xff & val_rand) != read_block[i_ind]) {
utest_printf("\n Assert Failed Buf Read - block:size: %llx:%llu \n", block, block_size);
utest_printf("\n pos: %llu, exp: %02x, act: %02x, wrt: %02x \n", i_ind, (0xff & val_rand), read_block[i_ind],
write_block[i_ind]);
}
TEST_ASSERT_EQUAL(0xff & val_rand, read_block[i_ind]);
}
_mutex->unlock();
}
void test_spif_random_program_read_erase()
{
utest_printf("\nTest Random Program Read Erase Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = block_device.get_erase_size();
unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth);
}
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_unaligned_erase()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_addr_t addr = 0;
bd_size_t sector_erase_size = block_device.get_erase_size(addr);
unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
err = block_device.erase(addr, sector_erase_size - 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//unaligned end address
addr = 0;
err = block_device.erase(addr, 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, sector_erase_size + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//erase size exceeds flash device size
err = block_device.erase(addr, block_device.size() + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Valid erase
err = block_device.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_OK, err);
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
}
static void test_spif_thread_job(void *block_device_ptr/*, int thread_num*/)
{
static int thread_num = 0;
thread_num++;
SPIFBlockDevice *block_device = (SPIFBlockDevice *)block_device_ptr;
utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = block_device->get_erase_size();
unsigned addrwidth = ceil(log(float(block_device->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*block_device), block_size, write_block, read_block, addrwidth);
}
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_multi_threads()
{
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
rtos::Thread spif_bd_thread[SPIF_TEST_NUM_OF_THREADS];
osStatus threadStatus;
int i_ind;
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = spif_bd_thread[i_ind].start(test_spif_thread_job, (void *)&block_device);
if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1);
}
}
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
spif_bd_thread[i_ind].join();
}
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing unaligned erase blocks", test_spif_unaligned_erase),
Case("Testing read write random blocks", test_spif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_spif_multi_threads)
};
Specification specification(test_setup, cases);
int main()
{
mbed_trace_init();
utest_printf("MAIN STARTS\n");
return !Harness::run(specification);
}

View File

@ -647,6 +647,65 @@ void test_program_read_small_data_sizes()
delete buff_block_device;
}
void test_unaligned_erase_blocks()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
TEST_SKIP_UNLESS_MESSAGE(block_device->get_erase_value() != -1, "block device has no erase functionality.");
bd_addr_t addr = 0;
bd_size_t sector_erase_size = block_device->get_erase_size(addr);
unsigned addrwidth = ceil(log(float(block_device->size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
int err = block_device->erase(addr, sector_erase_size - 1);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, sector_erase_size);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, 1);
TEST_ASSERT_NOT_EQUAL(0, err);
//unaligned end address
addr = 0;
err = block_device->erase(addr, 1);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, sector_erase_size + 1);
TEST_ASSERT_NOT_EQUAL(0, err);
//erase size exceeds flash device size
err = block_device->erase(addr, block_device->size() + 1);
TEST_ASSERT_NOT_EQUAL(0, err);
// Valid erase
err = block_device->erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(0, err);
}
void test_deinit_bd()
{
utest_printf("\nTest deinit block device.\n");
test_iteration++;
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
int err = block_device->deinit();
TEST_ASSERT_EQUAL(0, err);
block_device = NULL;
}
void test_get_type_functionality()
{
utest_printf("\nTest get blockdevice type..\n");
@ -670,20 +729,6 @@ void test_get_type_functionality()
#endif
}
void test_deinit_bd()
{
utest_printf("\nTest deinit block device.\n");
test_iteration++;
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
int err = block_device->deinit();
TEST_ASSERT_EQUAL(0, err);
block_device = NULL;
}
utest::v1::status_t greentea_failure_handler(const Case *const source, const failure_t reason)
{
greentea_case_failure_abort_handler(source, reason);
@ -703,6 +748,7 @@ template_case_t template_cases[] = {
{"Testing contiguous erase, write and read", test_contiguous_erase_write_read, greentea_failure_handler},
{"Testing BlockDevice erase functionality", test_erase_functionality, greentea_failure_handler},
{"Testing program read small data sizes", test_program_read_small_data_sizes, greentea_failure_handler},
{"Testing unaligned erase blocks", test_unaligned_erase_blocks, greentea_failure_handler},
{"Testing Deinit block device", test_deinit_bd, greentea_failure_handler},
};