Initial commit of the mbed libraries and tools

pull/1/head
Emilio Monti 2013-02-18 15:32:11 +00:00
parent 083a956eb1
commit 5c20760685
932 changed files with 270822 additions and 0 deletions

View File

@ -0,0 +1,618 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBAudio.h"
#include "USBAudio_Types.h"
USBAudio::USBAudio(uint32_t frequency_in, uint8_t channel_nb_in, uint32_t frequency_out, uint8_t channel_nb_out, uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
mute = 0;
volCur = 0x0080;
volMin = 0x0000;
volMax = 0x0100;
volRes = 0x0004;
available = false;
FREQ_IN = frequency_in;
FREQ_OUT = frequency_out;
this->channel_nb_in = channel_nb_in;
this->channel_nb_out = channel_nb_out;
// stereo -> *2, mono -> *1
PACKET_SIZE_ISO_IN = (FREQ_IN / 500) * channel_nb_in;
PACKET_SIZE_ISO_OUT = (FREQ_OUT / 500) * channel_nb_out;
// STEREO -> left and right
channel_config_in = (channel_nb_in == 1) ? CHANNEL_M : CHANNEL_L + CHANNEL_R;
channel_config_out = (channel_nb_out == 1) ? CHANNEL_M : CHANNEL_L + CHANNEL_R;
SOF_handler = false;
buf_stream_out = NULL;
buf_stream_in = NULL;
interruptOUT = false;
writeIN = false;
interruptIN = false;
available = false;
volume = 0;
// connect the device
USBDevice::connect();
}
bool USBAudio::read(uint8_t * buf) {
buf_stream_in = buf;
SOF_handler = false;
while (!available || !SOF_handler);
available = false;
return true;
}
bool USBAudio::readNB(uint8_t * buf) {
buf_stream_in = buf;
SOF_handler = false;
while (!SOF_handler);
if (available) {
available = false;
buf_stream_in = NULL;
return true;
}
return false;
}
bool USBAudio::readWrite(uint8_t * buf_read, uint8_t * buf_write) {
buf_stream_in = buf_read;
SOF_handler = false;
writeIN = false;
if (interruptIN) {
USBDevice::writeNB(EP3IN, buf_write, PACKET_SIZE_ISO_OUT, PACKET_SIZE_ISO_OUT);
} else {
buf_stream_out = buf_write;
}
while (!available);
if (interruptIN) {
while (!writeIN);
}
while (!SOF_handler);
return true;
}
bool USBAudio::write(uint8_t * buf) {
writeIN = false;
SOF_handler = false;
if (interruptIN) {
USBDevice::writeNB(EP3IN, buf, PACKET_SIZE_ISO_OUT, PACKET_SIZE_ISO_OUT);
} else {
buf_stream_out = buf;
}
while (!SOF_handler);
if (interruptIN) {
while (!writeIN);
}
return true;
}
float USBAudio::getVolume() {
return (mute) ? 0.0 : volume;
}
bool USBAudio::EP3_OUT_callback() {
uint32_t size = 0;
interruptOUT = true;
if (buf_stream_in != NULL) {
readEP(EP3OUT, (uint8_t *)buf_stream_in, &size, PACKET_SIZE_ISO_IN);
available = true;
buf_stream_in = NULL;
}
readStart(EP3OUT, PACKET_SIZE_ISO_IN);
return false;
}
bool USBAudio::EP3_IN_callback() {
interruptIN = true;
writeIN = true;
return true;
}
// Called in ISR context on each start of frame
void USBAudio::SOF(int frameNumber) {
uint32_t size = 0;
if (!interruptOUT) {
// read the isochronous endpoint
if (buf_stream_in != NULL) {
if (USBDevice::readEP_NB(EP3OUT, (uint8_t *)buf_stream_in, &size, PACKET_SIZE_ISO_IN)) {
if (size) {
available = true;
readStart(EP3OUT, PACKET_SIZE_ISO_IN);
buf_stream_in = NULL;
}
}
}
}
if (!interruptIN) {
// write if needed
if (buf_stream_out != NULL) {
USBDevice::writeNB(EP3IN, (uint8_t *)buf_stream_out, PACKET_SIZE_ISO_OUT, PACKET_SIZE_ISO_OUT);
buf_stream_out = NULL;
}
}
SOF_handler = true;
}
// Called in ISR context
// Set configuration. Return false if the configuration is not supported.
bool USBAudio::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure isochronous endpoint
realiseEndpoint(EP3OUT, PACKET_SIZE_ISO_IN, ISOCHRONOUS);
realiseEndpoint(EP3IN, PACKET_SIZE_ISO_OUT, ISOCHRONOUS);
// activate readings on this endpoint
readStart(EP3OUT, PACKET_SIZE_ISO_IN);
return true;
}
// Called in ISR context
// Set alternate setting. Return false if the alternate setting is not supported
bool USBAudio::USBCallback_setInterface(uint16_t interface, uint8_t alternate) {
if (interface == 0 && alternate == 0) {
return true;
}
if (interface == 1 && (alternate == 0 || alternate == 1)) {
return true;
}
if (interface == 2 && (alternate == 0 || alternate == 1)) {
return true;
}
return false;
}
// Called in ISR context
// Called by USBDevice on Endpoint0 request
// This is used to handle extensions to standard requests and class specific requests.
// Return true if class handles this request
bool USBAudio::USBCallback_request() {
bool success = false;
CONTROL_TRANSFER * transfer = getTransferPtr();
// Process class-specific requests
if (transfer->setup.bmRequestType.Type == CLASS_TYPE) {
// Feature Unit: Interface = 0, ID = 2
if (transfer->setup.wIndex == 0x0200) {
// Master Channel
if ((transfer->setup.wValue & 0xff) == 0) {
switch (transfer->setup.wValue >> 8) {
case MUTE_CONTROL:
switch (transfer->setup.bRequest) {
case REQUEST_GET_CUR:
transfer->remaining = 1;
transfer->ptr = &mute;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case REQUEST_SET_CUR:
transfer->remaining = 1;
transfer->notify = true;
transfer->direction = HOST_TO_DEVICE;
success = true;
break;
default:
break;
}
break;
case VOLUME_CONTROL:
switch (transfer->setup.bRequest) {
case REQUEST_GET_CUR:
transfer->remaining = 2;
transfer->ptr = (uint8_t *)&volCur;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case REQUEST_GET_MIN:
transfer->remaining = 2;
transfer->ptr = (uint8_t *)&volMin;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case REQUEST_GET_MAX:
transfer->remaining = 2;
transfer->ptr = (uint8_t *)&volMax;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case REQUEST_GET_RES:
transfer->remaining = 2;
transfer->ptr = (uint8_t *)&volRes;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case REQUEST_SET_CUR:
transfer->remaining = 2;
transfer->notify = true;
transfer->direction = HOST_TO_DEVICE;
success = true;
break;
case REQUEST_SET_MIN:
transfer->remaining = 2;
transfer->notify = true;
transfer->direction = HOST_TO_DEVICE;
success = true;
break;
case REQUEST_SET_MAX:
transfer->remaining = 2;
transfer->notify = true;
transfer->direction = HOST_TO_DEVICE;
success = true;
break;
case REQUEST_SET_RES:
transfer->remaining = 2;
transfer->notify = true;
transfer->direction = HOST_TO_DEVICE;
success = true;
break;
}
break;
default:
break;
}
}
}
}
return success;
}
// Called in ISR context when a data OUT stage has been performed
void USBAudio::USBCallback_requestCompleted(uint8_t * buf, uint32_t length) {
if ((length == 1) || (length == 2)) {
uint16_t data = (length == 1) ? *buf : *((uint16_t *)buf);
CONTROL_TRANSFER * transfer = getTransferPtr();
switch (transfer->setup.wValue >> 8) {
case MUTE_CONTROL:
switch (transfer->setup.bRequest) {
case REQUEST_SET_CUR:
mute = data & 0xff;
updateVol.call();
break;
default:
break;
}
break;
case VOLUME_CONTROL:
switch (transfer->setup.bRequest) {
case REQUEST_SET_CUR:
volCur = data;
volume = (float)volCur/(float)volMax;
updateVol.call();
break;
default:
break;
}
break;
default:
break;
}
}
}
#define TOTAL_DESCRIPTOR_LENGTH ((1 * CONFIGURATION_DESCRIPTOR_LENGTH) \
+ (5 * INTERFACE_DESCRIPTOR_LENGTH) \
+ (1 * CONTROL_INTERFACE_DESCRIPTOR_LENGTH + 1) \
+ (2 * INPUT_TERMINAL_DESCRIPTOR_LENGTH) \
+ (1 * FEATURE_UNIT_DESCRIPTOR_LENGTH) \
+ (2 * OUTPUT_TERMINAL_DESCRIPTOR_LENGTH) \
+ (2 * STREAMING_INTERFACE_DESCRIPTOR_LENGTH) \
+ (2 * FORMAT_TYPE_I_DESCRIPTOR_LENGTH) \
+ (2 * (ENDPOINT_DESCRIPTOR_LENGTH + 2)) \
+ (2 * STREAMING_ENDPOINT_DESCRIPTOR_LENGTH) )
#define TOTAL_CONTROL_INTF_LENGTH (CONTROL_INTERFACE_DESCRIPTOR_LENGTH + 1 + \
2*INPUT_TERMINAL_DESCRIPTOR_LENGTH + \
FEATURE_UNIT_DESCRIPTOR_LENGTH + \
2*OUTPUT_TERMINAL_DESCRIPTOR_LENGTH)
uint8_t * USBAudio::configurationDesc() {
static uint8_t configDescriptor[] = {
// Configuration 1
CONFIGURATION_DESCRIPTOR_LENGTH, // bLength
CONFIGURATION_DESCRIPTOR, // bDescriptorType
LSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (LSB)
MSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (MSB)
0x03, // bNumInterfaces
DEFAULT_CONFIGURATION, // bConfigurationValue
0x00, // iConfiguration
0x80, // bmAttributes
50, // bMaxPower
// Interface 0, Alternate Setting 0, Audio Control
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x00, // bNumEndpoints
AUDIO_CLASS, // bInterfaceClass
SUBCLASS_AUDIOCONTROL, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0x00, // iInterface
// Audio Control Interface
CONTROL_INTERFACE_DESCRIPTOR_LENGTH + 1,// bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_HEADER, // bDescriptorSubtype
LSB(0x0100), // bcdADC (LSB)
MSB(0x0100), // bcdADC (MSB)
LSB(TOTAL_CONTROL_INTF_LENGTH), // wTotalLength
MSB(TOTAL_CONTROL_INTF_LENGTH), // wTotalLength
0x02, // bInCollection
0x01, // baInterfaceNr
0x02, // baInterfaceNr
// Audio Input Terminal (Speaker)
INPUT_TERMINAL_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_INPUT_TERMINAL, // bDescriptorSubtype
0x01, // bTerminalID
LSB(TERMINAL_USB_STREAMING), // wTerminalType
MSB(TERMINAL_USB_STREAMING), // wTerminalType
0x00, // bAssocTerminal
channel_nb_in, // bNrChannels
LSB(channel_config_in), // wChannelConfig
MSB(channel_config_in), // wChannelConfig
0x00, // iChannelNames
0x00, // iTerminal
// Audio Feature Unit (Speaker)
FEATURE_UNIT_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_FEATURE_UNIT, // bDescriptorSubtype
0x02, // bUnitID
0x01, // bSourceID
0x01, // bControlSize
CONTROL_MUTE |
CONTROL_VOLUME, // bmaControls(0)
0x00, // bmaControls(1)
0x00, // iTerminal
// Audio Output Terminal (Speaker)
OUTPUT_TERMINAL_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_OUTPUT_TERMINAL, // bDescriptorSubtype
0x03, // bTerminalID
LSB(TERMINAL_SPEAKER), // wTerminalType
MSB(TERMINAL_SPEAKER), // wTerminalType
0x00, // bAssocTerminal
0x02, // bSourceID
0x00, // iTerminal
// Audio Input Terminal (Microphone)
INPUT_TERMINAL_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_INPUT_TERMINAL, // bDescriptorSubtype
0x04, // bTerminalID
LSB(TERMINAL_MICROPHONE), // wTerminalType
MSB(TERMINAL_MICROPHONE), // wTerminalType
0x00, // bAssocTerminal
channel_nb_out, // bNrChannels
LSB(channel_config_out), // wChannelConfig
MSB(channel_config_out), // wChannelConfig
0x00, // iChannelNames
0x00, // iTerminal
// Audio Output Terminal (Microphone)
OUTPUT_TERMINAL_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
CONTROL_OUTPUT_TERMINAL, // bDescriptorSubtype
0x05, // bTerminalID
LSB(TERMINAL_USB_STREAMING), // wTerminalType
MSB(TERMINAL_USB_STREAMING), // wTerminalType
0x00, // bAssocTerminal
0x04, // bSourceID
0x00, // iTerminal
// Interface 1, Alternate Setting 0, Audio Streaming - Zero Bandwith
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x01, // bInterfaceNumber
0x00, // bAlternateSetting
0x00, // bNumEndpoints
AUDIO_CLASS, // bInterfaceClass
SUBCLASS_AUDIOSTREAMING, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0x00, // iInterface
// Interface 1, Alternate Setting 1, Audio Streaming - Operational
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x01, // bInterfaceNumber
0x01, // bAlternateSetting
0x01, // bNumEndpoints
AUDIO_CLASS, // bInterfaceClass
SUBCLASS_AUDIOSTREAMING, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0x00, // iInterface
// Audio Streaming Interface
STREAMING_INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
STREAMING_GENERAL, // bDescriptorSubtype
0x01, // bTerminalLink
0x00, // bDelay
LSB(FORMAT_PCM), // wFormatTag
MSB(FORMAT_PCM), // wFormatTag
// Audio Type I Format
FORMAT_TYPE_I_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
STREAMING_FORMAT_TYPE, // bDescriptorSubtype
FORMAT_TYPE_I, // bFormatType
channel_nb_in, // bNrChannels
0x02, // bSubFrameSize
16, // bBitResolution
0x01, // bSamFreqType
LSB(FREQ_IN), // tSamFreq
(FREQ_IN >> 8) & 0xff, // tSamFreq
(FREQ_IN >> 16) & 0xff, // tSamFreq
// Endpoint - Standard Descriptor
ENDPOINT_DESCRIPTOR_LENGTH + 2, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPISO_OUT), // bEndpointAddress
E_ISOCHRONOUS, // bmAttributes
LSB(PACKET_SIZE_ISO_IN), // wMaxPacketSize
MSB(PACKET_SIZE_ISO_IN), // wMaxPacketSize
0x01, // bInterval
0x00, // bRefresh
0x00, // bSynchAddress
// Endpoint - Audio Streaming
STREAMING_ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR_TYPE, // bDescriptorType
ENDPOINT_GENERAL, // bDescriptor
0x00, // bmAttributes
0x00, // bLockDelayUnits
LSB(0x0000), // wLockDelay
MSB(0x0000), // wLockDelay
// Interface 1, Alternate Setting 0, Audio Streaming - Zero Bandwith
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x02, // bInterfaceNumber
0x00, // bAlternateSetting
0x00, // bNumEndpoints
AUDIO_CLASS, // bInterfaceClass
SUBCLASS_AUDIOSTREAMING, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0x00, // iInterface
// Interface 1, Alternate Setting 1, Audio Streaming - Operational
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x02, // bInterfaceNumber
0x01, // bAlternateSetting
0x01, // bNumEndpoints
AUDIO_CLASS, // bInterfaceClass
SUBCLASS_AUDIOSTREAMING, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0x00, // iInterface
// Audio Streaming Interface
STREAMING_INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
SUBCLASS_AUDIOCONTROL, // bDescriptorSubtype
0x05, // bTerminalLink (output terminal microphone)
0x01, // bDelay
0x01, // wFormatTag
0x00, // wFormatTag
// Audio Type I Format
FORMAT_TYPE_I_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
SUBCLASS_AUDIOSTREAMING, // bDescriptorSubtype
FORMAT_TYPE_I, // bFormatType
channel_nb_out, // bNrChannels
0x02, // bSubFrameSize
0x10, // bBitResolution
0x01, // bSamFreqType
LSB(FREQ_OUT), // tSamFreq
(FREQ_OUT >> 8) & 0xff, // tSamFreq
(FREQ_OUT >> 16) & 0xff, // tSamFreq
// Endpoint - Standard Descriptor
ENDPOINT_DESCRIPTOR_LENGTH + 2, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPISO_IN), // bEndpointAddress
E_ISOCHRONOUS, // bmAttributes
LSB(PACKET_SIZE_ISO_OUT), // wMaxPacketSize
MSB(PACKET_SIZE_ISO_OUT), // wMaxPacketSize
0x01, // bInterval
0x00, // bRefresh
0x00, // bSynchAddress
// Endpoint - Audio Streaming
STREAMING_ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR_TYPE, // bDescriptorType
ENDPOINT_GENERAL, // bDescriptor
0x00, // bmAttributes
0x00, // bLockDelayUnits
LSB(0x0000), // wLockDelay
MSB(0x0000), // wLockDelay
// Terminator
0 // bLength
};
return configDescriptor;
}
uint8_t * USBAudio::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x0c, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'A',0,'u',0,'d',0,'i',0,'o',0 //bString iInterface - Audio
};
return stringIinterfaceDescriptor;
}
uint8_t * USBAudio::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x16, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'b',0,'e',0,'d',0,' ',0,'A',0,'u',0,'d',0,'i',0,'o',0 //bString iProduct - Mbed Audio
};
return stringIproductDescriptor;
}

View File

@ -0,0 +1,287 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBAudio_H
#define USBAudio_H
/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"
#include "USBDevice.h"
/**
* USBAudio example
*
* @code
* #include "mbed.h"
* #include "USBAudio.h"
*
* Serial pc(USBTX, USBRX);
*
* // frequency: 48 kHz
* #define FREQ 48000
*
* // 1 channel: mono
* #define NB_CHA 1
*
* // length of an audio packet: each ms, we receive 48 * 16bits ->48 * 2 bytes. as there is one channel, the length will be 48 * 2 * 1
* #define AUDIO_LENGTH_PACKET 48 * 2 * 1
*
* // USBAudio
* USBAudio audio(FREQ, NB_CHA);
*
* int main() {
* int16_t buf[AUDIO_LENGTH_PACKET/2];
*
* while (1) {
* // read an audio packet
* audio.read((uint8_t *)buf);
*
*
* // print packet received
* pc.printf("recv: ");
* for(int i = 0; i < AUDIO_LENGTH_PACKET/2; i++) {
* pc.printf("%d ", buf[i]);
* }
* pc.printf("\r\n");
* }
* }
* @endcode
*/
class USBAudio: public USBDevice {
public:
/**
* Constructor
*
* @param frequency_in frequency in Hz (default: 48000)
* @param channel_nb_in channel number (1 or 2) (default: 1)
* @param frequency_out frequency in Hz (default: 8000)
* @param channel_nb_out_in channel number (1 or 2) (default: 1)
* @param vendor_id Your vendor_id
* @param product_id Your product_id
* @param product_release Your preoduct_release
*/
USBAudio(uint32_t frequency_in = 48000, uint8_t channel_nb_in = 1, uint32_t frequency_out = 8000, uint8_t channel_nb_out = 1, uint16_t vendor_id = 0x7bb8, uint16_t product_id = 0x1111, uint16_t product_release = 0x0100);
/**
* Get current volume between 0.0 and 1.0
*
* @returns volume
*/
float getVolume();
/**
* Read an audio packet. During a frame, only a single reading (you can't write and read an audio packet during the same frame)can be done using this method. Warning: Blocking
*
* @param buf pointer on a buffer which will be filled with an audio packet
*
* @returns true if successfull
*/
bool read(uint8_t * buf);
/**
* Try to read an audio packet. During a frame, only a single reading (you can't write and read an audio packet during the same frame)can be done using this method. Warning: Non Blocking
*
* @param buf pointer on a buffer which will be filled if an audio packet is available
*
* @returns true if successfull
*/
bool readNB(uint8_t * buf);
/**
* Write an audio packet. During a frame, only a single writing (you can't write and read an audio packet during the same frame)can be done using this method.
*
* @param buf pointer on the audio packet which will be sent
* @returns true if successful
*/
bool write(uint8_t * buf);
/**
* Write and read an audio packet at the same time (on the same frame)
*
* @param buf_read pointer on a buffer which will be filled with an audio packet
* @param buf_write pointer on the audio packet which will be sent
* @returns true if successful
*/
bool readWrite(uint8_t * buf_read, uint8_t * buf_write);
/** attach a handler to update the volume
*
* @param function Function to attach
*
*/
void attach(void(*fptr)(void)) {
updateVol.attach(fptr);
}
/** Attach a nonstatic void/void member function to update the volume
*
* @param tptr Object pointer
* @param mptr Member function pointer
*
*/
template<typename T>
void attach(T *tptr, void(T::*mptr)(void)) {
updateVol.attach(tptr, mptr);
}
protected:
/*
* Called by USBDevice layer. Set configuration of the device.
* For instance, you can add all endpoints that you need on this function.
*
* @param configuration Number of the configuration
* @returns true if class handles this request
*/
virtual bool USBCallback_setConfiguration(uint8_t configuration);
/*
* Called by USBDevice on Endpoint0 request. Warning: Called in ISR context
* This is used to handle extensions to standard requests
* and class specific requests
*
* @returns true if class handles this request
*/
virtual bool USBCallback_request();
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
/*
* Called by USBDevice layer. Set interface/alternate of the device.
*
* @param interface Number of the interface to be configured
* @param alternate Number of the alternate to be configured
* @returns true if class handles this request
*/
virtual bool USBCallback_setInterface(uint16_t interface, uint8_t alternate);
/*
* Called by USBDevice on Endpoint0 request completion
* if the 'notify' flag has been set to true. Warning: Called in ISR context
*
* In this case it is used to indicate that a HID report has
* been received from the host on endpoint 0
*
* @param buf buffer received on endpoint 0
* @param length length of this buffer
*/
virtual void USBCallback_requestCompleted(uint8_t * buf, uint32_t length);
/*
* Callback called on each Start of Frame event
*/
virtual void SOF(int frameNumber);
/*
* Callback called when a packet is received
*/
virtual bool EP3_OUT_callback();
/*
* Callback called when a packet has been sent
*/
virtual bool EP3_IN_callback();
private:
// stream available ?
volatile bool available;
// interrupt OUT has been received
volatile bool interruptOUT;
// interrupt IN has been received
volatile bool interruptIN;
// audio packet has been written
volatile bool writeIN;
// FREQ
uint32_t FREQ_OUT;
uint32_t FREQ_IN;
// size of the maximum packet for the isochronous endpoint
uint32_t PACKET_SIZE_ISO_IN;
uint32_t PACKET_SIZE_ISO_OUT;
// mono, stereo,...
uint8_t channel_nb_in;
uint8_t channel_nb_out;
// channel config: master, left, right
uint8_t channel_config_in;
uint8_t channel_config_out;
// mute state
uint8_t mute;
// Volume Current Value
uint16_t volCur;
// Volume Minimum Value
uint16_t volMin;
// Volume Maximum Value
uint16_t volMax;
// Volume Resolution
uint16_t volRes;
// Buffer containing one audio packet (to be read)
volatile uint8_t * buf_stream_in;
// Buffer containing one audio packet (to be written)
volatile uint8_t * buf_stream_out;
// callback to update volume
FunctionPointer updateVol;
// boolean showing that the SOF handler has been called. Useful for readNB.
volatile bool SOF_handler;
volatile float volume;
};
#endif

View File

@ -0,0 +1,97 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBAUDIO_TYPES_H
#define USBAUDIO_TYPES_H
#define DEFAULT_CONFIGURATION (1)
// Audio Request Codes
#define REQUEST_SET_CUR 0x01
#define REQUEST_GET_CUR 0x81
#define REQUEST_SET_MIN 0x02
#define REQUEST_GET_MIN 0x82
#define REQUEST_SET_MAX 0x03
#define REQUEST_GET_MAX 0x83
#define REQUEST_SET_RES 0x04
#define REQUEST_GET_RES 0x84
#define MUTE_CONTROL 0x01
#define VOLUME_CONTROL 0x02
// Audio Descriptor Sizes
#define CONTROL_INTERFACE_DESCRIPTOR_LENGTH 0x09
#define STREAMING_INTERFACE_DESCRIPTOR_LENGTH 0x07
#define INPUT_TERMINAL_DESCRIPTOR_LENGTH 0x0C
#define OUTPUT_TERMINAL_DESCRIPTOR_LENGTH 0x09
#define FEATURE_UNIT_DESCRIPTOR_LENGTH 0x09
#define STREAMING_ENDPOINT_DESCRIPTOR_LENGTH 0x07
// Audio Format Type Descriptor Sizes
#define FORMAT_TYPE_I_DESCRIPTOR_LENGTH 0x0b
#define AUDIO_CLASS 0x01
#define SUBCLASS_AUDIOCONTROL 0x01
#define SUBCLASS_AUDIOSTREAMING 0x02
// Audio Descriptor Types
#define INTERFACE_DESCRIPTOR_TYPE 0x24
#define ENDPOINT_DESCRIPTOR_TYPE 0x25
// Audio Control Interface Descriptor Subtypes
#define CONTROL_HEADER 0x01
#define CONTROL_INPUT_TERMINAL 0x02
#define CONTROL_OUTPUT_TERMINAL 0x03
#define CONTROL_FEATURE_UNIT 0x06
// USB Terminal Types
#define TERMINAL_USB_STREAMING 0x0101
// Predefined Audio Channel Configuration Bits
// Mono
#define CHANNEL_M 0x0000
#define CHANNEL_L 0x0001 /* Left Front */
#define CHANNEL_R 0x0002 /* Right Front */
// Feature Unit Control Bits
#define CONTROL_MUTE 0x0001
#define CONTROL_VOLUME 0x0002
// Input Terminal Types
#define TERMINAL_MICROPHONE 0x0201
// Output Terminal Types
#define TERMINAL_SPEAKER 0x0301
#define TERMINAL_HEADPHONES 0x0302
// Audio Streaming Interface Descriptor Subtypes
#define STREAMING_GENERAL 0x01
#define STREAMING_FORMAT_TYPE 0x02
// Audio Data Format Type I Codes
#define FORMAT_PCM 0x0001
// Audio Format Types
#define FORMAT_TYPE_I 0x01
// Audio Endpoint Descriptor Subtypes
#define ENDPOINT_GENERAL 0x01
#endif

View File

@ -0,0 +1,74 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Standard descriptor types */
#define DEVICE_DESCRIPTOR (1)
#define CONFIGURATION_DESCRIPTOR (2)
#define STRING_DESCRIPTOR (3)
#define INTERFACE_DESCRIPTOR (4)
#define ENDPOINT_DESCRIPTOR (5)
#define QUALIFIER_DESCRIPTOR (6)
/* Standard descriptor lengths */
#define DEVICE_DESCRIPTOR_LENGTH (0x12)
#define CONFIGURATION_DESCRIPTOR_LENGTH (0x09)
#define INTERFACE_DESCRIPTOR_LENGTH (0x09)
#define ENDPOINT_DESCRIPTOR_LENGTH (0x07)
/*string offset*/
#define STRING_OFFSET_LANGID (0)
#define STRING_OFFSET_IMANUFACTURER (1)
#define STRING_OFFSET_IPRODUCT (2)
#define STRING_OFFSET_ISERIAL (3)
#define STRING_OFFSET_ICONFIGURATION (4)
#define STRING_OFFSET_IINTERFACE (5)
/* USB Specification Release Number */
#define USB_VERSION_2_0 (0x0200)
/* Least/Most significant byte of short integer */
#define LSB(n) ((n)&0xff)
#define MSB(n) (((n)&0xff00)>>8)
/* Convert physical endpoint number to descriptor endpoint number */
#define PHY_TO_DESC(endpoint) (((endpoint)>>1) | (((endpoint) & 1) ? 0x80:0))
/* bmAttributes in configuration descriptor */
/* C_RESERVED must always be set */
#define C_RESERVED (1U<<7)
#define C_SELF_POWERED (1U<<6)
#define C_REMOTE_WAKEUP (1U<<5)
/* bMaxPower in configuration descriptor */
#define C_POWER(mA) ((mA)/2)
/* bmAttributes in endpoint descriptor */
#define E_CONTROL (0x00)
#define E_ISOCHRONOUS (0x01)
#define E_BULK (0x02)
#define E_INTERRUPT (0x03)
/* For isochronous endpoints only: */
#define E_NO_SYNCHRONIZATION (0x00)
#define E_ASYNCHRONOUS (0x04)
#define E_ADAPTIVE (0x08)
#define E_SYNCHRONOUS (0x0C)
#define E_DATA (0x00)
#define E_FEEDBACK (0x10)
#define E_IMPLICIT_FEEDBACK (0x20)

View File

@ -0,0 +1,977 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBEndpoints.h"
#include "USBDevice.h"
#include "USBDescriptor.h"
//#define DEBUG
/* Device status */
#define DEVICE_STATUS_SELF_POWERED (1U<<0)
#define DEVICE_STATUS_REMOTE_WAKEUP (1U<<1)
/* Endpoint status */
#define ENDPOINT_STATUS_HALT (1U<<0)
/* Standard feature selectors */
#define DEVICE_REMOTE_WAKEUP (1)
#define ENDPOINT_HALT (0)
/* Macro to convert wIndex endpoint number to physical endpoint number */
#define WINDEX_TO_PHYSICAL(endpoint) (((endpoint & 0x0f) << 1) + \
((endpoint & 0x80) ? 1 : 0))
bool USBDevice::requestGetDescriptor(void)
{
bool success = false;
#ifdef DEBUG
printf("get descr: type: %d\r\n", DESCRIPTOR_TYPE(transfer.setup.wValue));
#endif
switch (DESCRIPTOR_TYPE(transfer.setup.wValue))
{
case DEVICE_DESCRIPTOR:
if (deviceDesc() != NULL)
{
if ((deviceDesc()[0] == DEVICE_DESCRIPTOR_LENGTH) \
&& (deviceDesc()[1] == DEVICE_DESCRIPTOR))
{
#ifdef DEBUG
printf("device descr\r\n");
#endif
transfer.remaining = DEVICE_DESCRIPTOR_LENGTH;
transfer.ptr = deviceDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
}
}
break;
case CONFIGURATION_DESCRIPTOR:
if (configurationDesc() != NULL)
{
if ((configurationDesc()[0] == CONFIGURATION_DESCRIPTOR_LENGTH) \
&& (configurationDesc()[1] == CONFIGURATION_DESCRIPTOR))
{
#ifdef DEBUG
printf("conf descr request\r\n");
#endif
/* Get wTotalLength */
transfer.remaining = configurationDesc()[2] \
| (configurationDesc()[3] << 8);
transfer.ptr = configurationDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
}
}
break;
case STRING_DESCRIPTOR:
#ifdef DEBUG
printf("str descriptor\r\n");
#endif
switch (DESCRIPTOR_INDEX(transfer.setup.wValue))
{
case STRING_OFFSET_LANGID:
#ifdef DEBUG
printf("1\r\n");
#endif
transfer.remaining = stringLangidDesc()[0];
transfer.ptr = stringLangidDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
case STRING_OFFSET_IMANUFACTURER:
#ifdef DEBUG
printf("2\r\n");
#endif
transfer.remaining = stringImanufacturerDesc()[0];
transfer.ptr = stringImanufacturerDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
case STRING_OFFSET_IPRODUCT:
#ifdef DEBUG
printf("3\r\n");
#endif
transfer.remaining = stringIproductDesc()[0];
transfer.ptr = stringIproductDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
case STRING_OFFSET_ISERIAL:
#ifdef DEBUG
printf("4\r\n");
#endif
transfer.remaining = stringIserialDesc()[0];
transfer.ptr = stringIserialDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
case STRING_OFFSET_ICONFIGURATION:
#ifdef DEBUG
printf("5\r\n");
#endif
transfer.remaining = stringIConfigurationDesc()[0];
transfer.ptr = stringIConfigurationDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
case STRING_OFFSET_IINTERFACE:
#ifdef DEBUG
printf("6\r\n");
#endif
transfer.remaining = stringIinterfaceDesc()[0];
transfer.ptr = stringIinterfaceDesc();
transfer.direction = DEVICE_TO_HOST;
success = true;
break;
}
break;
case INTERFACE_DESCRIPTOR:
#ifdef DEBUG
printf("interface descr\r\n");
#endif
case ENDPOINT_DESCRIPTOR:
#ifdef DEBUG
printf("endpoint descr\r\n");
#endif
/* TODO: Support is optional, not implemented here */
break;
default:
#ifdef DEBUG
printf("ERROR\r\n");
#endif
break;
}
return success;
}
void USBDevice::decodeSetupPacket(uint8_t *data, SETUP_PACKET *packet)
{
/* Fill in the elements of a SETUP_PACKET structure from raw data */
packet->bmRequestType.dataTransferDirection = (data[0] & 0x80) >> 7;
packet->bmRequestType.Type = (data[0] & 0x60) >> 5;
packet->bmRequestType.Recipient = data[0] & 0x1f;
packet->bRequest = data[1];
packet->wValue = (data[2] | (uint16_t)data[3] << 8);
packet->wIndex = (data[4] | (uint16_t)data[5] << 8);
packet->wLength = (data[6] | (uint16_t)data[7] << 8);
}
bool USBDevice::controlOut(void)
{
/* Control transfer data OUT stage */
uint8_t buffer[MAX_PACKET_SIZE_EP0];
uint32_t packetSize;
/* Check we should be transferring data OUT */
if (transfer.direction != HOST_TO_DEVICE)
{
return false;
}
/* Read from endpoint */
packetSize = EP0getReadResult(buffer);
/* Check if transfer size is valid */
if (packetSize > transfer.remaining)
{
/* Too big */
return false;
}
/* Update transfer */
transfer.ptr += packetSize;
transfer.remaining -= packetSize;
/* Check if transfer has completed */
if (transfer.remaining == 0)
{
/* Transfer completed */
if (transfer.notify)
{
/* Notify class layer. */
USBCallback_requestCompleted(buffer, packetSize);
transfer.notify = false;
}
/* Status stage */
EP0write(NULL, 0);
}
else
{
EP0read();
}
return true;
}
bool USBDevice::controlIn(void)
{
/* Control transfer data IN stage */
uint32_t packetSize;
/* Check if transfer has completed (status stage transactions */
/* also have transfer.remaining == 0) */
if (transfer.remaining == 0)
{
if (transfer.zlp)
{
/* Send zero length packet */
EP0write(NULL, 0);
transfer.zlp = false;
}
/* Transfer completed */
if (transfer.notify)
{
/* Notify class layer. */
USBCallback_requestCompleted(NULL, 0);
transfer.notify = false;
}
EP0read();
EP0readStage();
/* Completed */
return true;
}
/* Check we should be transferring data IN */
if (transfer.direction != DEVICE_TO_HOST)
{
return false;
}
packetSize = transfer.remaining;
if (packetSize > MAX_PACKET_SIZE_EP0)
{
packetSize = MAX_PACKET_SIZE_EP0;
}
/* Write to endpoint */
EP0write(transfer.ptr, packetSize);
/* Update transfer */
transfer.ptr += packetSize;
transfer.remaining -= packetSize;
return true;
}
bool USBDevice::requestSetAddress(void)
{
/* Set the device address */
setAddress(transfer.setup.wValue);
if (transfer.setup.wValue == 0)
{
device.state = DEFAULT;
}
else
{
device.state = ADDRESS;
}
return true;
}
bool USBDevice::requestSetConfiguration(void)
{
device.configuration = transfer.setup.wValue;
/* Set the device configuration */
if (device.configuration == 0)
{
/* Not configured */
unconfigureDevice();
device.state = ADDRESS;
}
else
{
if (USBCallback_setConfiguration(device.configuration))
{
/* Valid configuration */
configureDevice();
device.state = CONFIGURED;
}
else
{
return false;
}
}
return true;
}
bool USBDevice::requestGetConfiguration(void)
{
/* Send the device configuration */
transfer.ptr = &device.configuration;
transfer.remaining = sizeof(device.configuration);
transfer.direction = DEVICE_TO_HOST;
return true;
}
bool USBDevice::requestGetInterface(void)
{
/* Return the selected alternate setting for an interface */
if (device.state != CONFIGURED)
{
return false;
}
/* Send the alternate setting */
transfer.setup.wIndex = currentInterface;
transfer.ptr = &currentAlternate;
transfer.remaining = sizeof(currentAlternate);
transfer.direction = DEVICE_TO_HOST;
return true;
}
bool USBDevice::requestSetInterface(void)
{
bool success = false;
if(USBCallback_setInterface(transfer.setup.wIndex, transfer.setup.wValue))
{
success = true;
currentInterface = transfer.setup.wIndex;
currentAlternate = transfer.setup.wValue;
}
return success;
}
bool USBDevice::requestSetFeature()
{
bool success = false;
if (device.state != CONFIGURED)
{
/* Endpoint or interface must be zero */
if (transfer.setup.wIndex != 0)
{
return false;
}
}
switch (transfer.setup.bmRequestType.Recipient)
{
case DEVICE_RECIPIENT:
/* TODO: Remote wakeup feature not supported */
break;
case ENDPOINT_RECIPIENT:
if (transfer.setup.wValue == ENDPOINT_HALT)
{
/* TODO: We should check that the endpoint number is valid */
stallEndpoint(
WINDEX_TO_PHYSICAL(transfer.setup.wIndex));
success = true;
}
break;
default:
break;
}
return success;
}
bool USBDevice::requestClearFeature()
{
bool success = false;
if (device.state != CONFIGURED)
{
/* Endpoint or interface must be zero */
if (transfer.setup.wIndex != 0)
{
return false;
}
}
switch (transfer.setup.bmRequestType.Recipient)
{
case DEVICE_RECIPIENT:
/* TODO: Remote wakeup feature not supported */
break;
case ENDPOINT_RECIPIENT:
/* TODO: We should check that the endpoint number is valid */
if (transfer.setup.wValue == ENDPOINT_HALT)
{
unstallEndpoint( WINDEX_TO_PHYSICAL(transfer.setup.wIndex));
success = true;
}
break;
default:
break;
}
return success;
}
bool USBDevice::requestGetStatus(void)
{
static uint16_t status;
bool success = false;
if (device.state != CONFIGURED)
{
/* Endpoint or interface must be zero */
if (transfer.setup.wIndex != 0)
{
return false;
}
}
switch (transfer.setup.bmRequestType.Recipient)
{
case DEVICE_RECIPIENT:
/* TODO: Currently only supports self powered devices */
status = DEVICE_STATUS_SELF_POWERED;
success = true;
break;
case INTERFACE_RECIPIENT:
status = 0;
success = true;
break;
case ENDPOINT_RECIPIENT:
/* TODO: We should check that the endpoint number is valid */
if (getEndpointStallState(
WINDEX_TO_PHYSICAL(transfer.setup.wIndex)))
{
status = ENDPOINT_STATUS_HALT;
}
else
{
status = 0;
}
success = true;
break;
default:
break;
}
if (success)
{
/* Send the status */
transfer.ptr = (uint8_t *)&status; /* Assumes little endian */
transfer.remaining = sizeof(status);
transfer.direction = DEVICE_TO_HOST;
}
return success;
}
bool USBDevice::requestSetup(void)
{
bool success = false;
/* Process standard requests */
if ((transfer.setup.bmRequestType.Type == STANDARD_TYPE))
{
switch (transfer.setup.bRequest)
{
case GET_STATUS:
success = requestGetStatus();
break;
case CLEAR_FEATURE:
success = requestClearFeature();
break;
case SET_FEATURE:
success = requestSetFeature();
break;
case SET_ADDRESS:
success = requestSetAddress();
break;
case GET_DESCRIPTOR:
success = requestGetDescriptor();
break;
case SET_DESCRIPTOR:
/* TODO: Support is optional, not implemented here */
success = false;
break;
case GET_CONFIGURATION:
success = requestGetConfiguration();
break;
case SET_CONFIGURATION:
success = requestSetConfiguration();
break;
case GET_INTERFACE:
success = requestGetInterface();
break;
case SET_INTERFACE:
success = requestSetInterface();
break;
default:
break;
}
}
return success;
}
bool USBDevice::controlSetup(void)
{
bool success = false;
/* Control transfer setup stage */
uint8_t buffer[MAX_PACKET_SIZE_EP0];
EP0setup(buffer);
/* Initialise control transfer state */
decodeSetupPacket(buffer, &transfer.setup);
transfer.ptr = NULL;
transfer.remaining = 0;
transfer.direction = 0;
transfer.zlp = false;
transfer.notify = false;
#ifdef DEBUG
printf("dataTransferDirection: %d\r\nType: %d\r\nRecipient: %d\r\nbRequest: %d\r\nwValue: %d\r\nwIndex: %d\r\nwLength: %d\r\n",transfer.setup.bmRequestType.dataTransferDirection,
transfer.setup.bmRequestType.Type,
transfer.setup.bmRequestType.Recipient,
transfer.setup.bRequest,
transfer.setup.wValue,
transfer.setup.wIndex,
transfer.setup.wLength);
#endif
/* Class / vendor specific */
success = USBCallback_request();
if (!success)
{
/* Standard requests */
if (!requestSetup())
{
#ifdef DEBUG
printf("fail!!!!\r\n");
#endif
return false;
}
}
/* Check transfer size and direction */
if (transfer.setup.wLength>0)
{
if (transfer.setup.bmRequestType.dataTransferDirection \
== DEVICE_TO_HOST)
{
/* IN data stage is required */
if (transfer.direction != DEVICE_TO_HOST)
{
return false;
}
/* Transfer must be less than or equal to the size */
/* requested by the host */
if (transfer.remaining > transfer.setup.wLength)
{
transfer.remaining = transfer.setup.wLength;
}
}
else
{
/* OUT data stage is required */
if (transfer.direction != HOST_TO_DEVICE)
{
return false;
}
/* Transfer must be equal to the size requested by the host */
if (transfer.remaining != transfer.setup.wLength)
{
return false;
}
}
}
else
{
/* No data stage; transfer size must be zero */
if (transfer.remaining != 0)
{
return false;
}
}
/* Data or status stage if applicable */
if (transfer.setup.wLength>0)
{
if (transfer.setup.bmRequestType.dataTransferDirection \
== DEVICE_TO_HOST)
{
/* Check if we'll need to send a zero length packet at */
/* the end of this transfer */
if (transfer.setup.wLength > transfer.remaining)
{
/* Device wishes to transfer less than host requested */
if ((transfer.remaining % MAX_PACKET_SIZE_EP0) == 0)
{
/* Transfer is a multiple of EP0 max packet size */
transfer.zlp = true;
}
}
/* IN stage */
controlIn();
}
else
{
/* OUT stage */
EP0read();
}
}
else
{
/* Status stage */
EP0write(NULL, 0);
}
return true;
}
void USBDevice::busReset(void)
{
device.state = DEFAULT;
device.configuration = 0;
device.suspended = false;
/* Call class / vendor specific busReset function */
USBCallback_busReset();
}
void USBDevice::EP0setupCallback(void)
{
/* Endpoint 0 setup event */
if (!controlSetup())
{
/* Protocol stall */
EP0stall();
}
/* Return true if an OUT data stage is expected */
}
void USBDevice::EP0out(void)
{
/* Endpoint 0 OUT data event */
if (!controlOut())
{
/* Protocol stall; this will stall both endpoints */
EP0stall();
}
}
void USBDevice::EP0in(void)
{
#ifdef DEBUG
printf("EP0IN\r\n");
#endif
/* Endpoint 0 IN data event */
if (!controlIn())
{
/* Protocol stall; this will stall both endpoints */
EP0stall();
}
}
bool USBDevice::configured(void)
{
/* Returns true if device is in the CONFIGURED state */
return (device.state == CONFIGURED);
}
void USBDevice::connect(void)
{
/* Connect device */
USBHAL::connect();
/* Block if not configured */
while (!configured());
}
void USBDevice::disconnect(void)
{
/* Disconnect device */
USBHAL::disconnect();
}
CONTROL_TRANSFER * USBDevice::getTransferPtr(void)
{
return &transfer;
}
bool USBDevice::addEndpoint(uint8_t endpoint, uint32_t maxPacket)
{
return realiseEndpoint(endpoint, maxPacket, 0);
}
bool USBDevice::addRateFeedbackEndpoint(uint8_t endpoint, uint32_t maxPacket)
{
/* For interrupt endpoints only */
return realiseEndpoint(endpoint, maxPacket, RATE_FEEDBACK_MODE);
}
uint8_t * USBDevice::findDescriptor(uint8_t descriptorType)
{
/* Find a descriptor within the list of descriptors */
/* following a configuration descriptor. */
uint16_t wTotalLength;
uint8_t *ptr;
if (configurationDesc() == NULL)
{
return NULL;
}
/* Check this is a configuration descriptor */
if ((configurationDesc()[0] != CONFIGURATION_DESCRIPTOR_LENGTH) \
|| (configurationDesc()[1] != CONFIGURATION_DESCRIPTOR))
{
return NULL;
}
wTotalLength = configurationDesc()[2] | (configurationDesc()[3] << 8);
/* Check there are some more descriptors to follow */
if (wTotalLength <= (CONFIGURATION_DESCRIPTOR_LENGTH+2))
/* +2 is for bLength and bDescriptorType of next descriptor */
{
return false;
}
/* Start at first descriptor after the configuration descriptor */
ptr = &(configurationDesc()[CONFIGURATION_DESCRIPTOR_LENGTH]);
do {
if (ptr[1] /* bDescriptorType */ == descriptorType)
{
/* Found */
return ptr;
}
/* Skip to next descriptor */
ptr += ptr[0]; /* bLength */
} while (ptr < (configurationDesc() + wTotalLength));
/* Reached end of the descriptors - not found */
return NULL;
}
void USBDevice::connectStateChanged(unsigned int connected)
{
}
void USBDevice::suspendStateChanged(unsigned int suspended)
{
}
USBDevice::USBDevice(uint16_t vendor_id, uint16_t product_id, uint16_t product_release){
VENDOR_ID = vendor_id;
PRODUCT_ID = product_id;
PRODUCT_RELEASE = product_release;
/* Set initial device state */
device.state = POWERED;
device.configuration = 0;
device.suspended = false;
};
bool USBDevice::readStart(uint8_t endpoint, uint32_t maxSize)
{
return endpointRead(endpoint, maxSize) == EP_PENDING;
}
bool USBDevice::write(uint8_t endpoint, uint8_t * buffer, uint32_t size, uint32_t maxSize)
{
EP_STATUS result;
if (size > maxSize)
{
return false;
}
if(!configured()) {
return false;
}
/* Send report */
result = endpointWrite(endpoint, buffer, size);
if (result != EP_PENDING)
{
return false;
}
/* Wait for completion */
do {
result = endpointWriteResult(endpoint);
} while ((result == EP_PENDING) && configured());
return (result == EP_COMPLETED);
}
bool USBDevice::writeNB(uint8_t endpoint, uint8_t * buffer, uint32_t size, uint32_t maxSize)
{
EP_STATUS result;
if (size > maxSize)
{
return false;
}
if(!configured()) {
return false;
}
/* Send report */
result = endpointWrite(endpoint, buffer, size);
if (result != EP_PENDING)
{
return false;
}
result = endpointWriteResult(endpoint);
return (result == EP_COMPLETED);
}
bool USBDevice::readEP(uint8_t endpoint, uint8_t * buffer, uint32_t * size, uint32_t maxSize)
{
EP_STATUS result;
if(!configured()) {
return false;
}
/* Wait for completion */
do {
result = endpointReadResult(endpoint, buffer, size);
} while ((result == EP_PENDING) && configured());
return (result == EP_COMPLETED);
}
bool USBDevice::readEP_NB(uint8_t endpoint, uint8_t * buffer, uint32_t * size, uint32_t maxSize)
{
EP_STATUS result;
if(!configured()) {
return false;
}
result = endpointReadResult(endpoint, buffer, size);
return (result == EP_COMPLETED);
}
uint8_t * USBDevice::deviceDesc() {
static uint8_t deviceDescriptor[] = {
DEVICE_DESCRIPTOR_LENGTH, /* bLength */
DEVICE_DESCRIPTOR, /* bDescriptorType */
LSB(USB_VERSION_2_0), /* bcdUSB (LSB) */
MSB(USB_VERSION_2_0), /* bcdUSB (MSB) */
0x00, /* bDeviceClass */
0x00, /* bDeviceSubClass */
0x00, /* bDeviceprotocol */
MAX_PACKET_SIZE_EP0, /* bMaxPacketSize0 */
LSB(VENDOR_ID), /* idVendor (LSB) */
MSB(VENDOR_ID), /* idVendor (MSB) */
LSB(PRODUCT_ID), /* idProduct (LSB) */
MSB(PRODUCT_ID), /* idProduct (MSB) */
LSB(PRODUCT_RELEASE), /* bcdDevice (LSB) */
MSB(PRODUCT_RELEASE), /* bcdDevice (MSB) */
STRING_OFFSET_IMANUFACTURER, /* iManufacturer */
STRING_OFFSET_IPRODUCT, /* iProduct */
STRING_OFFSET_ISERIAL, /* iSerialNumber */
0x01 /* bNumConfigurations */
};
return deviceDescriptor;
}
uint8_t * USBDevice::stringLangidDesc() {
static uint8_t stringLangidDescriptor[] = {
0x04, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
0x09,0x00, /*bString Lang ID - 0x009 - English*/
};
return stringLangidDescriptor;
}
uint8_t * USBDevice::stringImanufacturerDesc() {
static uint8_t stringImanufacturerDescriptor[] = {
0x12, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
'm',0,'b',0,'e',0,'d',0,'.',0,'o',0,'r',0,'g',0, /*bString iManufacturer - mbed.org*/
};
return stringImanufacturerDescriptor;
}
uint8_t * USBDevice::stringIserialDesc() {
static uint8_t stringIserialDescriptor[] = {
0x16, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
'0',0,'1',0,'2',0,'3',0,'4',0,'5',0,'6',0,'7',0,'8',0,'9',0, /*bString iSerial - 0123456789*/
};
return stringIserialDescriptor;
}
uint8_t * USBDevice::stringIConfigurationDesc() {
static uint8_t stringIconfigurationDescriptor[] = {
0x06, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
'0',0,'1',0, /*bString iConfiguration - 01*/
};
return stringIconfigurationDescriptor;
}
uint8_t * USBDevice::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x08, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
'U',0,'S',0,'B',0, /*bString iInterface - USB*/
};
return stringIinterfaceDescriptor;
}
uint8_t * USBDevice::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x16, /*bLength*/
STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
'U',0,'S',0,'B',0,' ',0,'D',0,'E',0,'V',0,'I',0,'C',0,'E',0 /*bString iProduct - USB DEVICE*/
};
return stringIproductDescriptor;
}

View File

@ -0,0 +1,269 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBDEVICE_H
#define USBDEVICE_H
#include "mbed.h"
#include "USBDevice_Types.h"
#include "USBHAL.h"
class USBDevice: public USBHAL
{
public:
USBDevice(uint16_t vendor_id, uint16_t product_id, uint16_t product_release);
/*
* Check if the device is configured
*
* @returns true if configured, false otherwise
*/
bool configured(void);
/*
* Connect a device
*/
void connect(void);
/*
* Disconnect a device
*/
void disconnect(void);
/*
* Add an endpoint
*
* @param endpoint endpoint which will be added
* @param maxPacket Maximum size of a packet which can be sent for this endpoint
* @returns true if successful, false otherwise
*/
bool addEndpoint(uint8_t endpoint, uint32_t maxPacket);
/*
* Start a reading on a certain endpoint.
* You can access the result of the reading by USBDevice_read
*
* @param endpoint endpoint which will be read
* @param maxSize the maximum length that can be read
* @return true if successful
*/
bool readStart(uint8_t endpoint, uint32_t maxSize);
/*
* Read a certain endpoint. Before calling this function, USBUSBDevice_readStart
* must be called.
*
* Warning: blocking
*
* @param endpoint endpoint which will be read
* @param buffer buffer will be filled with the data received
* @param size the number of bytes read will be stored in *size
* @param maxSize the maximum length that can be read
* @returns true if successful
*/
bool readEP(uint8_t endpoint, uint8_t * buffer, uint32_t * size, uint32_t maxSize);
/*
* Read a certain endpoint.
*
* Warning: non blocking
*
* @param endpoint endpoint which will be read
* @param buffer buffer will be filled with the data received (if data are available)
* @param size the number of bytes read will be stored in *size
* @param maxSize the maximum length that can be read
* @returns true if successful
*/
bool readEP_NB(uint8_t endpoint, uint8_t * buffer, uint32_t * size, uint32_t maxSize);
/*
* Write a certain endpoint.
*
* Warning: blocking
*
* @param endpoint endpoint to write
* @param buffer data contained in buffer will be write
* @param size the number of bytes to write
* @param maxSize the maximum length that can be written on this endpoint
*/
bool write(uint8_t endpoint, uint8_t * buffer, uint32_t size, uint32_t maxSize);
/*
* Write a certain endpoint.
*
* Warning: non blocking
*
* @param endpoint endpoint to write
* @param buffer data contained in buffer will be write
* @param size the number of bytes to write
* @param maxSize the maximum length that can be written on this endpoint
*/
bool writeNB(uint8_t endpoint, uint8_t * buffer, uint32_t size, uint32_t maxSize);
/*
* Called by USBDevice layer on bus reset. Warning: Called in ISR context
*
* May be used to reset state
*/
virtual void USBCallback_busReset(void) {};
/*
* Called by USBDevice on Endpoint0 request. Warning: Called in ISR context
* This is used to handle extensions to standard requests
* and class specific requests
*
* @returns true if class handles this request
*/
virtual bool USBCallback_request() { return false; };
/*
* Called by USBDevice on Endpoint0 request completion
* if the 'notify' flag has been set to true. Warning: Called in ISR context
*
* In this case it is used to indicate that a HID report has
* been received from the host on endpoint 0
*
* @param buf buffer received on endpoint 0
* @param length length of this buffer
*/
virtual void USBCallback_requestCompleted(uint8_t * buf, uint32_t length) {};
/*
* Called by USBDevice layer. Set configuration of the device.
* For instance, you can add all endpoints that you need on this function.
*
* @param configuration Number of the configuration
*/
virtual bool USBCallback_setConfiguration(uint8_t configuration) { return false; };
/*
* Called by USBDevice layer. Set interface/alternate of the device.
*
* @param interface Number of the interface to be configured
* @param alternate Number of the alternate to be configured
* @returns true if class handles this request
*/
virtual bool USBCallback_setInterface(uint16_t interface, uint8_t alternate) { return false; };
/*
* Get device descriptor. Warning: this method has to store the length of the report descriptor in reportLength.
*
* @returns pointer to the device descriptor
*/
virtual uint8_t * deviceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc(){return NULL;};
/*
* Get string lang id descriptor
*
* @return pointer to the string lang id descriptor
*/
virtual uint8_t * stringLangidDesc();
/*
* Get string manufacturer descriptor
*
* @returns pointer to the string manufacturer descriptor
*/
virtual uint8_t * stringImanufacturerDesc();
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string serial descriptor
*
* @returns pointer to the string serial descriptor
*/
virtual uint8_t * stringIserialDesc();
/*
* Get string configuration descriptor
*
* @returns pointer to the string configuration descriptor
*/
virtual uint8_t * stringIConfigurationDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get the length of the report descriptor
*
* @returns length of the report descriptor
*/
virtual uint16_t reportDescLength() { return 0; };
protected:
virtual void busReset(void);
virtual void EP0setupCallback(void);
virtual void EP0out(void);
virtual void EP0in(void);
virtual void connectStateChanged(unsigned int connected);
virtual void suspendStateChanged(unsigned int suspended);
uint8_t * findDescriptor(uint8_t descriptorType);
CONTROL_TRANSFER * getTransferPtr(void);
uint16_t VENDOR_ID;
uint16_t PRODUCT_ID;
uint16_t PRODUCT_RELEASE;
private:
bool addRateFeedbackEndpoint(uint8_t endpoint, uint32_t maxPacket);
bool requestGetDescriptor(void);
bool controlOut(void);
bool controlIn(void);
bool requestSetAddress(void);
bool requestSetConfiguration(void);
bool requestSetFeature(void);
bool requestClearFeature(void);
bool requestGetStatus(void);
bool requestSetup(void);
bool controlSetup(void);
void decodeSetupPacket(uint8_t *data, SETUP_PACKET *packet);
bool requestGetConfiguration(void);
bool requestGetInterface(void);
bool requestSetInterface(void);
CONTROL_TRANSFER transfer;
USB_DEVICE device;
uint16_t currentInterface;
uint8_t currentAlternate;
};
#endif

View File

@ -0,0 +1,83 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBDEVICE_TYPES_H
#define USBDEVICE_TYPES_H
/* Standard requests */
#define GET_STATUS (0)
#define CLEAR_FEATURE (1)
#define SET_FEATURE (3)
#define SET_ADDRESS (5)
#define GET_DESCRIPTOR (6)
#define SET_DESCRIPTOR (7)
#define GET_CONFIGURATION (8)
#define SET_CONFIGURATION (9)
#define GET_INTERFACE (10)
#define SET_INTERFACE (11)
/* bmRequestType.dataTransferDirection */
#define HOST_TO_DEVICE (0)
#define DEVICE_TO_HOST (1)
/* bmRequestType.Type*/
#define STANDARD_TYPE (0)
#define CLASS_TYPE (1)
#define VENDOR_TYPE (2)
#define RESERVED_TYPE (3)
/* bmRequestType.Recipient */
#define DEVICE_RECIPIENT (0)
#define INTERFACE_RECIPIENT (1)
#define ENDPOINT_RECIPIENT (2)
#define OTHER_RECIPIENT (3)
/* Descriptors */
#define DESCRIPTOR_TYPE(wValue) (wValue >> 8)
#define DESCRIPTOR_INDEX(wValue) (wValue & 0xf)
typedef struct {
struct {
uint8_t dataTransferDirection;
uint8_t Type;
uint8_t Recipient;
} bmRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
} SETUP_PACKET;
typedef struct {
SETUP_PACKET setup;
uint8_t *ptr;
uint32_t remaining;
uint8_t direction;
bool zlp;
bool notify;
} CONTROL_TRANSFER;
typedef enum {ATTACHED, POWERED, DEFAULT, ADDRESS, CONFIGURED} DEVICE_STATE;
typedef struct {
volatile DEVICE_STATE state;
uint8_t configuration;
bool suspended;
} USB_DEVICE;
#endif

View File

@ -0,0 +1,48 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBENDPOINTS_H
#define USBENDPOINTS_H
/* SETUP packet size */
#define SETUP_PACKET_SIZE (8)
/* Options flags for configuring endpoints */
#define DEFAULT_OPTIONS (0)
#define SINGLE_BUFFERED (1U << 0)
#define ISOCHRONOUS (1U << 1)
#define RATE_FEEDBACK_MODE (1U << 2) /* Interrupt endpoints only */
/* Endpoint transfer status, for endpoints > 0 */
typedef enum {
EP_COMPLETED, /* Transfer completed */
EP_PENDING, /* Transfer in progress */
EP_INVALID, /* Invalid parameter */
EP_STALLED, /* Endpoint stalled */
} EP_STATUS;
/* Include configuration for specific target */
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
#include "USBEndpoints_LPC17_LPC23.h"
#elif defined(TARGET_LPC11U24)
#include "USBEndpoints_LPC11U.h"
#else
#error "Unknown target type"
#endif
#endif

View File

@ -0,0 +1,65 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#define NUMBER_OF_LOGICAL_ENDPOINTS (5)
#define NUMBER_OF_PHYSICAL_ENDPOINTS (NUMBER_OF_LOGICAL_ENDPOINTS * 2)
/* Define physical endpoint numbers */
/* Endpoint No. Type(s) MaxPacket DoubleBuffer */
/* ---------------- ------------ ---------- --- */
#define EP0OUT (0) /* Control 64 No */
#define EP0IN (1) /* Control 64 No */
#define EP1OUT (2) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP1IN (3) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP2OUT (4) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP2IN (5) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP3OUT (6) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP3IN (7) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP4OUT (8) /* Int/Bulk/Iso 64/64/1023 Yes */
#define EP4IN (9) /* Int/Bulk/Iso 64/64/1023 Yes */
/* Maximum Packet sizes */
#define MAX_PACKET_SIZE_EP0 (64)
#define MAX_PACKET_SIZE_EP1 (64) /* Int/Bulk */
#define MAX_PACKET_SIZE_EP2 (64) /* Int/Bulk */
#define MAX_PACKET_SIZE_EP3 (64) /* Int/Bulk */
#define MAX_PACKET_SIZE_EP4 (64) /* Int/Bulk */
#define MAX_PACKET_SIZE_EP1_ISO (1023) /* Isochronous */
#define MAX_PACKET_SIZE_EP2_ISO (1023) /* Isochronous */
#define MAX_PACKET_SIZE_EP3_ISO (1023) /* Isochronous */
#define MAX_PACKET_SIZE_EP4_ISO (1023) /* Isochronous */
/* Generic endpoints - intended to be portable accross devices */
/* and be suitable for simple USB devices. */
/* Bulk endpoint */
#define EPBULK_OUT (EP2OUT)
#define EPBULK_IN (EP2IN)
/* Interrupt endpoint */
#define EPINT_OUT (EP1OUT)
#define EPINT_IN (EP1IN)
/* Isochronous endpoint */
#define EPISO_OUT (EP3OUT)
#define EPISO_IN (EP3IN)
#define MAX_PACKET_SIZE_EPBULK (MAX_PACKET_SIZE_EP2)
#define MAX_PACKET_SIZE_EPINT (MAX_PACKET_SIZE_EP1)
#define MAX_PACKET_SIZE_EPISO (MAX_PACKET_SIZE_EP3_ISO)

View File

@ -0,0 +1,93 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#define NUMBER_OF_LOGICAL_ENDPOINTS (16)
#define NUMBER_OF_PHYSICAL_ENDPOINTS (NUMBER_OF_LOGICAL_ENDPOINTS * 2)
/* Define physical endpoint numbers */
/* Endpoint No. Type(s) MaxPacket DoubleBuffer */
/* ---------------- ------------ ---------- --- */
#define EP0OUT (0) /* Control 64 No */
#define EP0IN (1) /* Control 64 No */
#define EP1OUT (2) /* Interrupt 64 No */
#define EP1IN (3) /* Interrupt 64 No */
#define EP2OUT (4) /* Bulk 64 Yes */
#define EP2IN (5) /* Bulk 64 Yes */
#define EP3OUT (6) /* Isochronous 1023 Yes */
#define EP3IN (7) /* Isochronous 1023 Yes */
#define EP4OUT (8) /* Interrupt 64 No */
#define EP4IN (9) /* Interrupt 64 No */
#define EP5OUT (10) /* Bulk 64 Yes */
#define EP5IN (11) /* Bulk 64 Yes */
#define EP6OUT (12) /* Isochronous 1023 Yes */
#define EP6IN (13) /* Isochronous 1023 Yes */
#define EP7OUT (14) /* Interrupt 64 No */
#define EP7IN (15) /* Interrupt 64 No */
#define EP8OUT (16) /* Bulk 64 Yes */
#define EP8IN (17) /* Bulk 64 Yes */
#define EP9OUT (18) /* Isochronous 1023 Yes */
#define EP9IN (19) /* Isochronous 1023 Yes */
#define EP10OUT (20) /* Interrupt 64 No */
#define EP10IN (21) /* Interrupt 64 No */
#define EP11OUT (22) /* Bulk 64 Yes */
#define EP11IN (23) /* Bulk 64 Yes */
#define EP12OUT (24) /* Isochronous 1023 Yes */
#define EP12IN (25) /* Isochronous 1023 Yes */
#define EP13OUT (26) /* Interrupt 64 No */
#define EP13IN (27) /* Interrupt 64 No */
#define EP14OUT (28) /* Bulk 64 Yes */
#define EP14IN (29) /* Bulk 64 Yes */
#define EP15OUT (30) /* Bulk 64 Yes */
#define EP15IN (31) /* Bulk 64 Yes */
/* Maximum Packet sizes */
#define MAX_PACKET_SIZE_EP0 (64)
#define MAX_PACKET_SIZE_EP1 (64)
#define MAX_PACKET_SIZE_EP2 (64)
#define MAX_PACKET_SIZE_EP3 (1023)
#define MAX_PACKET_SIZE_EP4 (64)
#define MAX_PACKET_SIZE_EP5 (64)
#define MAX_PACKET_SIZE_EP6 (1023)
#define MAX_PACKET_SIZE_EP7 (64)
#define MAX_PACKET_SIZE_EP8 (64)
#define MAX_PACKET_SIZE_EP9 (1023)
#define MAX_PACKET_SIZE_EP10 (64)
#define MAX_PACKET_SIZE_EP11 (64)
#define MAX_PACKET_SIZE_EP12 (1023)
#define MAX_PACKET_SIZE_EP13 (64)
#define MAX_PACKET_SIZE_EP14 (64)
#define MAX_PACKET_SIZE_EP15 (64)
/* Generic endpoints - intended to be portable accross devices */
/* and be suitable for simple USB devices. */
/* Bulk endpoints */
#define EPBULK_OUT (EP2OUT)
#define EPBULK_IN (EP2IN)
/* Interrupt endpoints */
#define EPINT_OUT (EP1OUT)
#define EPINT_IN (EP1IN)
/* Isochronous endpoints */
#define EPISO_OUT (EP3OUT)
#define EPISO_IN (EP3IN)
#define MAX_PACKET_SIZE_EPBULK (MAX_PACKET_SIZE_EP2)
#define MAX_PACKET_SIZE_EPINT (MAX_PACKET_SIZE_EP1)
#define MAX_PACKET_SIZE_EPISO (MAX_PACKET_SIZE_EP3)

View File

@ -0,0 +1,113 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBBUSINTERFACE_H
#define USBBUSINTERFACE_H
#include "mbed.h"
#include "USBEndpoints.h"
class USBHAL {
public:
/* Configuration */
USBHAL();
~USBHAL();
void connect(void);
void disconnect(void);
void configureDevice(void);
void unconfigureDevice(void);
void setAddress(uint8_t address);
void remoteWakeup(void);
/* Endpoint 0 */
void EP0setup(uint8_t *buffer);
void EP0read(void);
void EP0readStage(void);
uint32_t EP0getReadResult(uint8_t *buffer);
void EP0write(uint8_t *buffer, uint32_t size);
void EP0getWriteResult(void);
void EP0stall(void);
/* Other endpoints */
EP_STATUS endpointRead(uint8_t endpoint, uint32_t maximumSize);
EP_STATUS endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead);
EP_STATUS endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size);
EP_STATUS endpointWriteResult(uint8_t endpoint);
void stallEndpoint(uint8_t endpoint);
void unstallEndpoint(uint8_t endpoint);
bool realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options);
bool getEndpointStallState(unsigned char endpoint);
uint32_t endpointReadcore(uint8_t endpoint, uint8_t *buffer);
protected:
virtual void busReset(void){};
virtual void EP0setupCallback(void){};
virtual void EP0out(void){};
virtual void EP0in(void){};
virtual void connectStateChanged(unsigned int connected){};
virtual void suspendStateChanged(unsigned int suspended){};
virtual void SOF(int frameNumber){};
virtual bool EP1_OUT_callback(){return false;};
virtual bool EP1_IN_callback(){return false;};
virtual bool EP2_OUT_callback(){return false;};
virtual bool EP2_IN_callback(){return false;};
virtual bool EP3_OUT_callback(){return false;};
virtual bool EP3_IN_callback(){return false;};
virtual bool EP4_OUT_callback(){return false;};
virtual bool EP4_IN_callback(){return false;};
#if !defined(TARGET_LPC11U24)
virtual bool EP5_OUT_callback(){return false;};
virtual bool EP5_IN_callback(){return false;};
virtual bool EP6_OUT_callback(){return false;};
virtual bool EP6_IN_callback(){return false;};
virtual bool EP7_OUT_callback(){return false;};
virtual bool EP7_IN_callback(){return false;};
virtual bool EP8_OUT_callback(){return false;};
virtual bool EP8_IN_callback(){return false;};
virtual bool EP9_OUT_callback(){return false;};
virtual bool EP9_IN_callback(){return false;};
virtual bool EP10_OUT_callback(){return false;};
virtual bool EP10_IN_callback(){return false;};
virtual bool EP11_OUT_callback(){return false;};
virtual bool EP11_IN_callback(){return false;};
virtual bool EP12_OUT_callback(){return false;};
virtual bool EP12_IN_callback(){return false;};
virtual bool EP13_OUT_callback(){return false;};
virtual bool EP13_IN_callback(){return false;};
virtual bool EP14_OUT_callback(){return false;};
virtual bool EP14_IN_callback(){return false;};
virtual bool EP15_OUT_callback(){return false;};
virtual bool EP15_IN_callback(){return false;};
#endif
private:
void usbisr(void);
static void _usbisr(void);
static USBHAL * instance;
#if defined(TARGET_LPC11U24)
bool (USBHAL::*epCallback[10 - 2])(void);
#else
bool (USBHAL::*epCallback[32 - 2])(void);
#endif
};
#endif

View File

@ -0,0 +1,684 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef TARGET_LPC11U24
#include "USBHAL.h"
USBHAL * USBHAL::instance;
// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
// Convert physical endpoint number to register bit
#define EP(endpoint) (1UL<<endpoint)
// Convert physical to logical
#define PHY_TO_LOG(endpoint) ((endpoint)>>1)
// Get endpoint direction
#define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
// USB RAM
#define USB_RAM_START (0x20004000)
#define USB_RAM_SIZE (0x00000800)
// SYSAHBCLKCTRL
#define CLK_USB (1UL<<14)
#define CLK_USBRAM (1UL<<27)
// USB Information register
#define FRAME_NR(a) ((a) & 0x7ff) // Frame number
// USB Device Command/Status register
#define DEV_ADDR_MASK (0x7f) // Device address
#define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
#define DEV_EN (1UL<<7) // Device enable
#define SETUP (1UL<<8) // SETUP token received
#define PLL_ON (1UL<<9) // PLL enabled in suspend
#define DCON (1UL<<16) // Device status - connect
#define DSUS (1UL<<17) // Device status - suspend
#define DCON_C (1UL<<24) // Connect change
#define DSUS_C (1UL<<25) // Suspend change
#define DRES_C (1UL<<26) // Reset change
#define VBUSDEBOUNCED (1UL<<28) // Vbus detected
// Endpoint Command/Status list
#define CMDSTS_A (1UL<<31) // Active
#define CMDSTS_D (1UL<<30) // Disable
#define CMDSTS_S (1UL<<29) // Stall
#define CMDSTS_TR (1UL<<28) // Toggle Reset
#define CMDSTS_RF (1UL<<27) // Rate Feedback mode
#define CMDSTS_TV (1UL<<27) // Toggle Value
#define CMDSTS_T (1UL<<26) // Endpoint Type
#define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
#define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
// USB Non-endpoint interrupt sources
#define FRAME_INT (1UL<<30)
#define DEV_INT (1UL<<31)
static volatile int epComplete = 0;
// One entry for a double-buffered logical endpoint in the endpoint
// command/status list. Endpoint 0 is single buffered, out[1] is used
// for the SETUP packet and in[1] is not used
typedef __packed struct {
uint32_t out[2];
uint32_t in[2];
} EP_COMMAND_STATUS;
typedef __packed struct {
uint8_t out[MAX_PACKET_SIZE_EP0];
uint8_t in[MAX_PACKET_SIZE_EP0];
uint8_t setup[SETUP_PACKET_SIZE];
} CONTROL_TRANSFER;
typedef __packed struct {
uint32_t maxPacket;
uint32_t buffer[2];
uint32_t options;
} EP_STATE;
static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
// Pointer to the endpoint command/status list
static EP_COMMAND_STATUS *ep = NULL;
// Pointer to endpoint 0 data (IN/OUT and SETUP)
static CONTROL_TRANSFER *ct = NULL;
// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
// initiating a remote wakeup event.
static volatile uint32_t devCmdStat;
// Pointers used to allocate USB RAM
static uint32_t usbRamPtr = USB_RAM_START;
static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
if (size > 0) {
do {
*dst++ = *src++;
} while (--size > 0);
}
}
USBHAL::USBHAL(void) {
NVIC_DisableIRQ(USB_IRQn);
// fill in callback array
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP1_IN_callback;
epCallback[2] = &USBHAL::EP2_OUT_callback;
epCallback[3] = &USBHAL::EP2_IN_callback;
epCallback[4] = &USBHAL::EP3_OUT_callback;
epCallback[5] = &USBHAL::EP3_IN_callback;
epCallback[6] = &USBHAL::EP4_OUT_callback;
epCallback[7] = &USBHAL::EP4_IN_callback;
// nUSB_CONNECT output
LPC_IOCON->PIO0_6 = 0x00000001;
// Enable clocks (USB registers, USB RAM)
LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
// Ensure device disconnected (DCON not set)
LPC_USB->DEVCMDSTAT = 0;
// to ensure that the USB host sees the device as
// disconnected if the target CPU is reset.
wait(0.3);
// Reserve space in USB RAM for endpoint command/status list
// Must be 256 byte aligned
usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
ep = (EP_COMMAND_STATUS *)usbRamPtr;
usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
// Reserve space in USB RAM for Endpoint 0
// Must be 64 byte aligned
usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
ct = (CONTROL_TRANSFER *)usbRamPtr;
usbRamPtr += sizeof(CONTROL_TRANSFER);
LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
// Setup command/status list for EP0
ep[0].out[0] = 0;
ep[0].in[0] = 0;
ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
// Route all interrupts to IRQ, some can be routed to
// USB_FIQ if you wish.
LPC_USB->INTROUTING = 0;
// Set device address 0, enable USB device, no remote wakeup
devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
LPC_USB->DEVCMDSTAT = devCmdStat;
// Enable interrupts for device events and EP0
LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
instance = this;
//attach IRQ handler and enable interrupts
NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
}
USBHAL::~USBHAL(void) {
// Ensure device disconnected (DCON not set)
LPC_USB->DEVCMDSTAT = 0;
// Disable USB interrupts
NVIC_DisableIRQ(USB_IRQn);
}
void USBHAL::connect(void) {
NVIC_EnableIRQ(USB_IRQn);
devCmdStat |= DCON;
LPC_USB->DEVCMDSTAT = devCmdStat;
}
void USBHAL::disconnect(void) {
NVIC_DisableIRQ(USB_IRQn);
devCmdStat &= ~DCON;
LPC_USB->DEVCMDSTAT = devCmdStat;
}
void USBHAL::configureDevice(void) {
// Not required
}
void USBHAL::unconfigureDevice(void) {
// Not required
}
void USBHAL::EP0setup(uint8_t *buffer) {
// Copy setup packet data
USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
}
void USBHAL::EP0read(void) {
// Start an endpoint 0 read
// The USB ISR will call USBDevice_EP0out() when a packet has been read,
// the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
// read the data.
ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
// Complete an endpoint 0 read
uint32_t bytesRead;
// Find how many bytes were read
bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
// Copy data
USBMemCopy(buffer, ct->out, bytesRead);
return bytesRead;
}
void USBHAL::EP0readStage(void) {
// Not required
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
// Start and endpoint 0 write
// The USB ISR will call USBDevice_EP0in() when the data has
// been written, the USBDevice layer then calls
// USBBusInterface_EP0getWriteResult() to complete the transaction.
// Copy data
USBMemCopy(ct->in, buffer, size);
// Start transfer
ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
uint8_t bf = 0;
uint32_t flags = 0;
//check which buffer must be filled
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
}
// if isochronous endpoint, T = 1
if(endpointState[endpoint].options & ISOCHRONOUS)
{
flags |= CMDSTS_T;
}
//Active the endpoint for reading
ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
uint8_t bf = 0;
if (!(epComplete & EP(endpoint)))
return EP_PENDING;
else {
epComplete &= ~EP(endpoint);
//check which buffer has been filled
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered (here we read the previous buffer which was used)
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 0;
} else {
bf = 1;
}
}
// Find how many bytes were read
*bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
// Copy data
USBMemCopy(data, ct->out, *bytesRead);
return EP_COMPLETED;
}
}
void USBHAL::EP0getWriteResult(void) {
// Not required
}
void USBHAL::EP0stall(void) {
ep[0].in[0] = CMDSTS_S;
ep[0].out[0] = CMDSTS_S;
}
void USBHAL::setAddress(uint8_t address) {
devCmdStat &= ~DEV_ADDR_MASK;
devCmdStat |= DEV_ADDR(address);
LPC_USB->DEVCMDSTAT = devCmdStat;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
uint32_t flags = 0;
uint32_t bf;
// Validate parameters
if (data == NULL) {
return EP_INVALID;
}
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return EP_INVALID;
}
if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
return EP_INVALID;
}
if (size > endpointState[endpoint].maxPacket) {
return EP_INVALID;
}
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
} else {
// Single buffered
bf = 0;
}
// Check if already active
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
return EP_INVALID;
}
// Check if stalled
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
return EP_STALLED;
}
// Copy data to USB RAM
USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
// Add options
if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
flags |= CMDSTS_RF;
}
if (endpointState[endpoint].options & ISOCHRONOUS) {
flags |= CMDSTS_T;
}
// Add transfer
ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
endpointState[endpoint].buffer[bf]) \
| CMDSTS_NBYTES(size) | CMDSTS_A | flags;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
uint32_t bf;
// Validate parameters
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return EP_INVALID;
}
if (OUT_EP(endpoint)) {
return EP_INVALID;
}
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered // TODO: FIX THIS
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
} else {
// Single buffered
bf = 0;
}
// Check if endpoint still active
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
return EP_PENDING;
}
// Check if stalled
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
return EP_STALLED;
}
return EP_COMPLETED;
}
void USBHAL::stallEndpoint(uint8_t endpoint) {
// FIX: should this clear active bit?
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
} else {
ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
}
}
void USBHAL::unstallEndpoint(uint8_t endpoint) {
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
if (LPC_USB->EPINUSE & EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
if (LPC_USB->EPINUSE & EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
}
} else {
// Single buffered
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
}
}
bool USBHAL::getEndpointStallState(unsigned char endpoint) {
if (IN_EP(endpoint)) {
if (LPC_USB->EPINUSE & EP(endpoint)) {
if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
return true;
}
} else {
if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
return true;
}
}
} else {
if (LPC_USB->EPINUSE & EP(endpoint)) {
if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
return true;
}
} else {
if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
return true;
}
}
}
return false;
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
uint32_t tmpEpRamPtr;
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return false;
}
// Not applicable to the control endpoints
if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
return false;
}
// Allocate buffers in USB RAM
tmpEpRamPtr = epRamPtr;
// Must be 64 byte aligned
tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
// Out of memory
return false;
}
// Allocate first buffer
endpointState[endpoint].buffer[0] = tmpEpRamPtr;
tmpEpRamPtr += maxPacket;
if (!(options & SINGLE_BUFFERED)) {
// Must be 64 byte aligned
tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
// Out of memory
return false;
}
// Allocate second buffer
endpointState[endpoint].buffer[1] = tmpEpRamPtr;
tmpEpRamPtr += maxPacket;
}
// Commit to this USB RAM allocation
epRamPtr = tmpEpRamPtr;
// Remaining endpoint state values
endpointState[endpoint].maxPacket = maxPacket;
endpointState[endpoint].options = options;
// Enable double buffering if required
if (options & SINGLE_BUFFERED) {
LPC_USB->EPBUFCFG &= ~EP(endpoint);
} else {
// Double buffered
LPC_USB->EPBUFCFG |= EP(endpoint);
}
// Enable interrupt
LPC_USB->INTEN |= EP(endpoint);
// Enable endpoint
unstallEndpoint(endpoint);
return true;
}
void USBHAL::remoteWakeup(void) {
// Clearing DSUS bit initiates a remote wakeup if the
// device is currently enabled and suspended - otherwise
// it has no effect.
LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
}
static void disableEndpoints(void) {
uint32_t logEp;
// Ref. Table 158 "When a bus reset is received, software
// must set the disable bit of all endpoints to 1".
for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
ep[logEp].out[0] = CMDSTS_D;
ep[logEp].out[1] = CMDSTS_D;
ep[logEp].in[0] = CMDSTS_D;
ep[logEp].in[1] = CMDSTS_D;
}
// Start of USB RAM for endpoints > 0
epRamPtr = usbRamPtr;
}
void USBHAL::_usbisr(void) {
instance->usbisr();
}
void USBHAL::usbisr(void) {
// Start of frame
if (LPC_USB->INTSTAT & FRAME_INT) {
// Clear SOF interrupt
LPC_USB->INTSTAT = FRAME_INT;
// SOF event, read frame number
SOF(FRAME_NR(LPC_USB->INFO));
}
// Device state
if (LPC_USB->INTSTAT & DEV_INT) {
LPC_USB->INTSTAT = DEV_INT;
if (LPC_USB->DEVCMDSTAT & DSUS_C) {
// Suspend status changed
LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
suspendStateChanged(1);
}
}
if (LPC_USB->DEVCMDSTAT & DRES_C) {
// Bus reset
LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
suspendStateChanged(0);
// Disable endpoints > 0
disableEndpoints();
// Bus reset event
busReset();
}
}
// Endpoint 0
if (LPC_USB->INTSTAT & EP(EP0OUT)) {
// Clear EP0OUT/SETUP interrupt
LPC_USB->INTSTAT = EP(EP0OUT);
// Check if SETUP
if (LPC_USB->DEVCMDSTAT & SETUP) {
// Clear Active and Stall bits for EP0
// Documentation does not make it clear if we must use the
// EPSKIP register to achieve this, Fig. 16 and NXP reference
// code suggests we can just clear the Active bits - check with
// NXP to be sure.
ep[0].in[0] = 0;
ep[0].out[0] = 0;
// Clear EP0IN interrupt
LPC_USB->INTSTAT = EP(EP0IN);
// Clear SETUP (and INTONNAK_CI/O) in device status register
LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
// EP0 SETUP event (SETUP data received)
EP0setupCallback();
} else {
// EP0OUT ACK event (OUT data received)
EP0out();
}
}
if (LPC_USB->INTSTAT & EP(EP0IN)) {
// Clear EP0IN interrupt
LPC_USB->INTSTAT = EP(EP0IN);
// EP0IN ACK event (IN data sent)
EP0in();
}
for (uint8_t num = 2; num < 5*2; num++) {
if (LPC_USB->INTSTAT & EP(num)) {
LPC_USB->INTSTAT = EP(num);
epComplete |= EP(num);
if ((instance->*(epCallback[num - 2]))()) {
epComplete &= ~EP(num);
}
}
}
}
#endif

View File

@ -0,0 +1,623 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
#include "USBHAL.h"
// Get endpoint direction
#define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
// Convert physical endpoint number to register bit
#define EP(endpoint) (1UL<<endpoint)
// Power Control for Peripherals register
#define PCUSB (1UL<<31)
// USB Clock Control register
#define DEV_CLK_EN (1UL<<1)
#define AHB_CLK_EN (1UL<<4)
// USB Clock Status register
#define DEV_CLK_ON (1UL<<1)
#define AHB_CLK_ON (1UL<<4)
// USB Device Interupt registers
#define FRAME (1UL<<0)
#define EP_FAST (1UL<<1)
#define EP_SLOW (1UL<<2)
#define DEV_STAT (1UL<<3)
#define CCEMPTY (1UL<<4)
#define CDFULL (1UL<<5)
#define RxENDPKT (1UL<<6)
#define TxENDPKT (1UL<<7)
#define EP_RLZED (1UL<<8)
#define ERR_INT (1UL<<9)
// USB Control register
#define RD_EN (1<<0)
#define WR_EN (1<<1)
#define LOG_ENDPOINT(endpoint) ((endpoint>>1)<<2)
// USB Receive Packet Length register
#define DV (1UL<<10)
#define PKT_RDY (1UL<<11)
#define PKT_LNGTH_MASK (0x3ff)
// Serial Interface Engine (SIE)
#define SIE_WRITE (0x01)
#define SIE_READ (0x02)
#define SIE_COMMAND (0x05)
#define SIE_CMD_CODE(phase, data) ((phase<<8)|(data<<16))
// SIE Command codes
#define SIE_CMD_SET_ADDRESS (0xD0)
#define SIE_CMD_CONFIGURE_DEVICE (0xD8)
#define SIE_CMD_SET_MODE (0xF3)
#define SIE_CMD_READ_FRAME_NUMBER (0xF5)
#define SIE_CMD_READ_TEST_REGISTER (0xFD)
#define SIE_CMD_SET_DEVICE_STATUS (0xFE)
#define SIE_CMD_GET_DEVICE_STATUS (0xFE)
#define SIE_CMD_GET_ERROR_CODE (0xFF)
#define SIE_CMD_READ_ERROR_STATUS (0xFB)
#define SIE_CMD_SELECT_ENDPOINT(endpoint) (0x00+endpoint)
#define SIE_CMD_SELECT_ENDPOINT_CLEAR_INTERRUPT(endpoint) (0x40+endpoint)
#define SIE_CMD_SET_ENDPOINT_STATUS(endpoint) (0x40+endpoint)
#define SIE_CMD_CLEAR_BUFFER (0xF2)
#define SIE_CMD_VALIDATE_BUFFER (0xFA)
// SIE Device Status register
#define SIE_DS_CON (1<<0)
#define SIE_DS_CON_CH (1<<1)
#define SIE_DS_SUS (1<<2)
#define SIE_DS_SUS_CH (1<<3)
#define SIE_DS_RST (1<<4)
// SIE Device Set Address register
#define SIE_DSA_DEV_EN (1<<7)
// SIE Configue Device register
#define SIE_CONF_DEVICE (1<<0)
// Select Endpoint register
#define SIE_SE_FE (1<<0)
#define SIE_SE_ST (1<<1)
#define SIE_SE_STP (1<<2)
#define SIE_SE_PO (1<<3)
#define SIE_SE_EPN (1<<4)
#define SIE_SE_B_1_FULL (1<<5)
#define SIE_SE_B_2_FULL (1<<6)
// Set Endpoint Status command
#define SIE_SES_ST (1<<0)
#define SIE_SES_DA (1<<5)
#define SIE_SES_RF_MO (1<<6)
#define SIE_SES_CND_ST (1<<7)
USBHAL * USBHAL::instance;
static volatile int epComplete;
static uint32_t endpointStallState;
static void SIECommand(uint32_t command) {
// The command phase of a SIE transaction
LPC_USB->USBDevIntClr = CCEMPTY;
LPC_USB->USBCmdCode = SIE_CMD_CODE(SIE_COMMAND, command);
while (!(LPC_USB->USBDevIntSt & CCEMPTY));
}
static void SIEWriteData(uint8_t data) {
// The data write phase of a SIE transaction
LPC_USB->USBDevIntClr = CCEMPTY;
LPC_USB->USBCmdCode = SIE_CMD_CODE(SIE_WRITE, data);
while (!(LPC_USB->USBDevIntSt & CCEMPTY));
}
static uint8_t SIEReadData(uint32_t command) {
// The data read phase of a SIE transaction
LPC_USB->USBDevIntClr = CDFULL;
LPC_USB->USBCmdCode = SIE_CMD_CODE(SIE_READ, command);
while (!(LPC_USB->USBDevIntSt & CDFULL));
return (uint8_t)LPC_USB->USBCmdData;
}
static void SIEsetDeviceStatus(uint8_t status) {
// Write SIE device status register
SIECommand(SIE_CMD_SET_DEVICE_STATUS);
SIEWriteData(status);
}
static uint8_t SIEgetDeviceStatus(void) {
// Read SIE device status register
SIECommand(SIE_CMD_GET_DEVICE_STATUS);
return SIEReadData(SIE_CMD_GET_DEVICE_STATUS);
}
void SIEsetAddress(uint8_t address) {
// Write SIE device address register
SIECommand(SIE_CMD_SET_ADDRESS);
SIEWriteData((address & 0x7f) | SIE_DSA_DEV_EN);
}
static uint8_t SIEselectEndpoint(uint8_t endpoint) {
// SIE select endpoint command
SIECommand(SIE_CMD_SELECT_ENDPOINT(endpoint));
return SIEReadData(SIE_CMD_SELECT_ENDPOINT(endpoint));
}
static uint8_t SIEclearBuffer(void) {
// SIE clear buffer command
SIECommand(SIE_CMD_CLEAR_BUFFER);
return SIEReadData(SIE_CMD_CLEAR_BUFFER);
}
static void SIEvalidateBuffer(void) {
// SIE validate buffer command
SIECommand(SIE_CMD_VALIDATE_BUFFER);
}
static void SIEsetEndpointStatus(uint8_t endpoint, uint8_t status) {
// SIE set endpoint status command
SIECommand(SIE_CMD_SET_ENDPOINT_STATUS(endpoint));
SIEWriteData(status);
}
static uint16_t SIEgetFrameNumber(void) __attribute__ ((unused));
static uint16_t SIEgetFrameNumber(void) {
// Read current frame number
uint16_t lowByte;
uint16_t highByte;
SIECommand(SIE_CMD_READ_FRAME_NUMBER);
lowByte = SIEReadData(SIE_CMD_READ_FRAME_NUMBER);
highByte = SIEReadData(SIE_CMD_READ_FRAME_NUMBER);
return (highByte << 8) | lowByte;
}
static void SIEconfigureDevice(void) {
// SIE Configure device command
SIECommand(SIE_CMD_CONFIGURE_DEVICE);
SIEWriteData(SIE_CONF_DEVICE);
}
static void SIEunconfigureDevice(void) {
// SIE Configure device command
SIECommand(SIE_CMD_CONFIGURE_DEVICE);
SIEWriteData(0);
}
static void SIEconnect(void) {
// Connect USB device
uint8_t status = SIEgetDeviceStatus();
SIEsetDeviceStatus(status | SIE_DS_CON);
}
static void SIEdisconnect(void) {
// Disconnect USB device
uint8_t status = SIEgetDeviceStatus();
SIEsetDeviceStatus(status & ~SIE_DS_CON);
}
static uint8_t selectEndpointClearInterrupt(uint8_t endpoint) {
// Implemented using using EP_INT_CLR.
LPC_USB->USBEpIntClr = EP(endpoint);
while (!(LPC_USB->USBDevIntSt & CDFULL));
return (uint8_t)LPC_USB->USBCmdData;
}
static void enableEndpointEvent(uint8_t endpoint) {
// Enable an endpoint interrupt
LPC_USB->USBEpIntEn |= EP(endpoint);
}
static void disableEndpointEvent(uint8_t endpoint) __attribute__ ((unused));
static void disableEndpointEvent(uint8_t endpoint) {
// Disable an endpoint interrupt
LPC_USB->USBEpIntEn &= ~EP(endpoint);
}
static volatile uint32_t __attribute__((used)) dummyRead;
uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
// Read from an OUT endpoint
uint32_t size;
uint32_t i;
uint32_t data = 0;
uint8_t offset;
LPC_USB->USBCtrl = LOG_ENDPOINT(endpoint) | RD_EN;
while (!(LPC_USB->USBRxPLen & PKT_RDY));
size = LPC_USB->USBRxPLen & PKT_LNGTH_MASK;
offset = 0;
if (size > 0) {
for (i=0; i<size; i++) {
if (offset==0) {
// Fetch up to four bytes of data as a word
data = LPC_USB->USBRxData;
}
// extract a byte
*buffer = (data>>offset) & 0xff;
buffer++;
// move on to the next byte
offset = (offset + 8) % 32;
}
} else {
dummyRead = LPC_USB->USBRxData;
}
LPC_USB->USBCtrl = 0;
if ((endpoint >> 1) % 3 || (endpoint >> 1) == 0) {
SIEselectEndpoint(endpoint);
SIEclearBuffer();
}
return size;
}
static void endpointWritecore(uint8_t endpoint, uint8_t *buffer, uint32_t size) {
// Write to an IN endpoint
uint32_t temp, data;
uint8_t offset;
LPC_USB->USBCtrl = LOG_ENDPOINT(endpoint) | WR_EN;
LPC_USB->USBTxPLen = size;
offset = 0;
data = 0;
if (size>0) {
do {
// Fetch next data byte into a word-sized temporary variable
temp = *buffer++;
// Add to current data word
temp = temp << offset;
data = data | temp;
// move on to the next byte
offset = (offset + 8) % 32;
size--;
if ((offset==0) || (size==0)) {
// Write the word to the endpoint
LPC_USB->USBTxData = data;
data = 0;
}
} while (size>0);
} else {
LPC_USB->USBTxData = 0;
}
// Clear WR_EN to cover zero length packet case
LPC_USB->USBCtrl=0;
SIEselectEndpoint(endpoint);
SIEvalidateBuffer();
}
USBHAL::USBHAL(void) {
// Disable IRQ
NVIC_DisableIRQ(USB_IRQn);
// fill in callback array
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP1_IN_callback;
epCallback[2] = &USBHAL::EP2_OUT_callback;
epCallback[3] = &USBHAL::EP2_IN_callback;
epCallback[4] = &USBHAL::EP3_OUT_callback;
epCallback[5] = &USBHAL::EP3_IN_callback;
epCallback[6] = &USBHAL::EP4_OUT_callback;
epCallback[7] = &USBHAL::EP4_IN_callback;
epCallback[8] = &USBHAL::EP5_OUT_callback;
epCallback[9] = &USBHAL::EP5_IN_callback;
epCallback[10] = &USBHAL::EP6_OUT_callback;
epCallback[11] = &USBHAL::EP6_IN_callback;
epCallback[12] = &USBHAL::EP7_OUT_callback;
epCallback[13] = &USBHAL::EP7_IN_callback;
epCallback[14] = &USBHAL::EP8_OUT_callback;
epCallback[15] = &USBHAL::EP8_IN_callback;
epCallback[16] = &USBHAL::EP9_OUT_callback;
epCallback[17] = &USBHAL::EP9_IN_callback;
epCallback[18] = &USBHAL::EP10_OUT_callback;
epCallback[19] = &USBHAL::EP10_IN_callback;
epCallback[20] = &USBHAL::EP11_OUT_callback;
epCallback[21] = &USBHAL::EP11_IN_callback;
epCallback[22] = &USBHAL::EP12_OUT_callback;
epCallback[23] = &USBHAL::EP12_IN_callback;
epCallback[24] = &USBHAL::EP13_OUT_callback;
epCallback[25] = &USBHAL::EP13_IN_callback;
epCallback[26] = &USBHAL::EP14_OUT_callback;
epCallback[27] = &USBHAL::EP14_IN_callback;
epCallback[28] = &USBHAL::EP15_OUT_callback;
epCallback[29] = &USBHAL::EP15_IN_callback;
// Enable power to USB device controller
LPC_SC->PCONP |= PCUSB;
// Enable USB clocks
LPC_USB->USBClkCtrl |= DEV_CLK_EN | AHB_CLK_EN;
while (LPC_USB->USBClkSt != (DEV_CLK_ON | AHB_CLK_ON));
// Configure pins P0.29 and P0.30 to be USB D+ and USB D-
LPC_PINCON->PINSEL1 &= 0xc3ffffff;
LPC_PINCON->PINSEL1 |= 0x14000000;
// Disconnect USB device
SIEdisconnect();
// Configure pin P2.9 to be Connect
LPC_PINCON->PINSEL4 &= 0xfffcffff;
LPC_PINCON->PINSEL4 |= 0x00040000;
// Connect must be low for at least 2.5uS
wait(0.3);
// Set the maximum packet size for the control endpoints
realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
// Attach IRQ
instance = this;
NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
// Enable interrupts for device events and EP0
LPC_USB->USBDevIntEn = EP_SLOW | DEV_STAT | FRAME;
enableEndpointEvent(EP0IN);
enableEndpointEvent(EP0OUT);
}
USBHAL::~USBHAL(void) {
// Ensure device disconnected
SIEdisconnect();
// Disable USB interrupts
NVIC_DisableIRQ(USB_IRQn);
}
void USBHAL::connect(void) {
NVIC_EnableIRQ(USB_IRQn);
// Connect USB device
SIEconnect();
}
void USBHAL::disconnect(void) {
NVIC_DisableIRQ(USB_IRQn);
// Disconnect USB device
SIEdisconnect();
}
void USBHAL::configureDevice(void) {
SIEconfigureDevice();
}
void USBHAL::unconfigureDevice(void) {
SIEunconfigureDevice();
}
void USBHAL::setAddress(uint8_t address) {
SIEsetAddress(address);
}
void USBHAL::EP0setup(uint8_t *buffer) {
endpointReadcore(EP0OUT, buffer);
}
void USBHAL::EP0read(void) {
// Not required
}
void USBHAL::EP0readStage(void) {
// Not required
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
return endpointReadcore(EP0OUT, buffer);
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
endpointWritecore(EP0IN, buffer, size);
}
void USBHAL::EP0getWriteResult(void) {
// Not required
}
void USBHAL::EP0stall(void) {
// This will stall both control endpoints
stallEndpoint(EP0OUT);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
//for isochronous endpoint, we don't wait an interrupt
if ((endpoint >> 1) % 3 || (endpoint >> 1) == 0) {
if (!(epComplete & EP(endpoint)))
return EP_PENDING;
}
*bytesRead = endpointReadcore(endpoint, buffer);
epComplete &= ~EP(endpoint);
return EP_COMPLETED;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
if (getEndpointStallState(endpoint)) {
return EP_STALLED;
}
epComplete &= ~EP(endpoint);
endpointWritecore(endpoint, data, size);
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
if (epComplete & EP(endpoint)) {
epComplete &= ~EP(endpoint);
return EP_COMPLETED;
}
return EP_PENDING;
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
// Realise an endpoint
LPC_USB->USBDevIntClr = EP_RLZED;
LPC_USB->USBReEp |= EP(endpoint);
LPC_USB->USBEpInd = endpoint;
LPC_USB->USBMaxPSize = maxPacket;
while (!(LPC_USB->USBDevIntSt & EP_RLZED));
LPC_USB->USBDevIntClr = EP_RLZED;
// Clear stall state
endpointStallState &= ~EP(endpoint);
enableEndpointEvent(endpoint);
return true;
}
void USBHAL::stallEndpoint(uint8_t endpoint) {
// Stall an endpoint
if ( (endpoint==EP0IN) || (endpoint==EP0OUT) ) {
// Conditionally stall both control endpoints
SIEsetEndpointStatus(EP0OUT, SIE_SES_CND_ST);
} else {
SIEsetEndpointStatus(endpoint, SIE_SES_ST);
// Update stall state
endpointStallState |= EP(endpoint);
}
}
void USBHAL::unstallEndpoint(uint8_t endpoint) {
// Unstall an endpoint. The endpoint will also be reinitialised
SIEsetEndpointStatus(endpoint, 0);
// Update stall state
endpointStallState &= ~EP(endpoint);
}
bool USBHAL::getEndpointStallState(uint8_t endpoint) {
// Returns true if endpoint stalled
return endpointStallState & EP(endpoint);
}
void USBHAL::remoteWakeup(void) {
// Remote wakeup
uint8_t status;
// Enable USB clocks
LPC_USB->USBClkCtrl |= DEV_CLK_EN | AHB_CLK_EN;
while (LPC_USB->USBClkSt != (DEV_CLK_ON | AHB_CLK_ON));
status = SIEgetDeviceStatus();
SIEsetDeviceStatus(status & ~SIE_DS_SUS);
}
void USBHAL::_usbisr(void) {
instance->usbisr();
}
void USBHAL::usbisr(void) {
uint8_t devStat;
if (LPC_USB->USBDevIntSt & FRAME) {
// Start of frame event
SOF(SIEgetFrameNumber());
// Clear interrupt status flag
LPC_USB->USBDevIntClr = FRAME;
}
if (LPC_USB->USBDevIntSt & DEV_STAT) {
// Device Status interrupt
// Must clear the interrupt status flag before reading the device status from the SIE
LPC_USB->USBDevIntClr = DEV_STAT;
// Read device status from SIE
devStat = SIEgetDeviceStatus();
//printf("devStat: %d\r\n", devStat);
if (devStat & SIE_DS_SUS_CH) {
// Suspend status changed
if((devStat & SIE_DS_SUS) != 0) {
suspendStateChanged(0);
}
}
if (devStat & SIE_DS_RST) {
// Bus reset
if((devStat & SIE_DS_SUS) == 0) {
suspendStateChanged(1);
}
busReset();
}
}
if (LPC_USB->USBDevIntSt & EP_SLOW) {
// (Slow) Endpoint Interrupt
// Process each endpoint interrupt
if (LPC_USB->USBEpIntSt & EP(EP0OUT)) {
if (selectEndpointClearInterrupt(EP0OUT) & SIE_SE_STP) {
// this is a setup packet
EP0setupCallback();
} else {
EP0out();
}
LPC_USB->USBDevIntClr = EP_SLOW;
}
if (LPC_USB->USBEpIntSt & EP(EP0IN)) {
selectEndpointClearInterrupt(EP0IN);
LPC_USB->USBDevIntClr = EP_SLOW;
EP0in();
}
for (uint8_t num = 2; num < 16*2; num++) {
if (LPC_USB->USBEpIntSt & EP(num)) {
selectEndpointClearInterrupt(num);
epComplete |= EP(num);
LPC_USB->USBDevIntClr = EP_SLOW;
if ((instance->*(epCallback[num - 2]))()) {
epComplete &= ~EP(num);
}
}
}
}
}
#endif

View File

@ -0,0 +1,273 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBHAL.h"
#include "USBHID.h"
USBHID::USBHID(uint8_t output_report_length, uint8_t input_report_length, uint16_t vendor_id, uint16_t product_id, uint16_t product_release, bool connect): USBDevice(vendor_id, product_id, product_release)
{
output_length = output_report_length;
input_length = input_report_length;
if(connect) {
USBDevice::connect();
}
}
bool USBHID::send(HID_REPORT *report)
{
return write(EPINT_IN, report->data, report->length, MAX_HID_REPORT_SIZE);
}
bool USBHID::sendNB(HID_REPORT *report)
{
return writeNB(EPINT_IN, report->data, report->length, MAX_HID_REPORT_SIZE);
}
bool USBHID::read(HID_REPORT *report)
{
uint32_t bytesRead = 0;
bool result;
result = USBDevice::readEP(EPINT_OUT, report->data, &bytesRead, MAX_HID_REPORT_SIZE);
if(!readStart(EPINT_OUT, MAX_HID_REPORT_SIZE))
return false;
report->length = bytesRead;
return result;
}
bool USBHID::readNB(HID_REPORT *report)
{
uint32_t bytesRead = 0;
bool result;
result = USBDevice::readEP_NB(EPINT_OUT, report->data, &bytesRead, MAX_HID_REPORT_SIZE);
report->length = bytesRead;
if(!readStart(EPINT_OUT, MAX_HID_REPORT_SIZE))
return false;
return result;
}
uint16_t USBHID::reportDescLength() {
reportDesc();
return reportLength;
}
//
// Route callbacks from lower layers to class(es)
//
// Called in ISR context
// Called by USBDevice on Endpoint0 request
// This is used to handle extensions to standard requests
// and class specific requests
// Return true if class handles this request
bool USBHID::USBCallback_request() {
bool success = false;
CONTROL_TRANSFER * transfer = getTransferPtr();
uint8_t *hidDescriptor;
// Process additional standard requests
if ((transfer->setup.bmRequestType.Type == STANDARD_TYPE))
{
switch (transfer->setup.bRequest)
{
case GET_DESCRIPTOR:
switch (DESCRIPTOR_TYPE(transfer->setup.wValue))
{
case REPORT_DESCRIPTOR:
if ((reportDesc() != NULL) \
&& (reportDescLength() != 0))
{
transfer->remaining = reportDescLength();
transfer->ptr = reportDesc();
transfer->direction = DEVICE_TO_HOST;
success = true;
}
break;
case HID_DESCRIPTOR:
// Find the HID descriptor, after the configuration descriptor
hidDescriptor = findDescriptor(HID_DESCRIPTOR);
if (hidDescriptor != NULL)
{
transfer->remaining = HID_DESCRIPTOR_LENGTH;
transfer->ptr = hidDescriptor;
transfer->direction = DEVICE_TO_HOST;
success = true;
}
break;
default:
break;
}
break;
default:
break;
}
}
// Process class-specific requests
if (transfer->setup.bmRequestType.Type == CLASS_TYPE)
{
switch (transfer->setup.bRequest)
{
case SET_REPORT:
// First byte will be used for report ID
outputReport.data[0] = transfer->setup.wValue & 0xff;
outputReport.length = transfer->setup.wLength + 1;
transfer->remaining = sizeof(outputReport.data) - 1;
transfer->ptr = &outputReport.data[1];
transfer->direction = HOST_TO_DEVICE;
transfer->notify = true;
success = true;
default:
break;
}
}
return success;
}
#define DEFAULT_CONFIGURATION (1)
// Called in ISR context
// Set configuration. Return false if the
// configuration is not supported
bool USBHID::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure endpoints > 0
addEndpoint(EPINT_IN, MAX_PACKET_SIZE_EPINT);
addEndpoint(EPINT_OUT, MAX_PACKET_SIZE_EPINT);
// We activate the endpoint to be able to recceive data
readStart(EPINT_OUT, MAX_PACKET_SIZE_EPINT);
return true;
}
uint8_t * USBHID::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x08, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'H',0,'I',0,'D',0, //bString iInterface - HID
};
return stringIinterfaceDescriptor;
}
uint8_t * USBHID::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x16, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'H',0,'I',0,'D',0,' ',0,'D',0,'E',0,'V',0,'I',0,'C',0,'E',0 //bString iProduct - HID device
};
return stringIproductDescriptor;
}
uint8_t * USBHID::reportDesc() {
static uint8_t reportDescriptor[] = {
0x06, LSB(0xFFAB), MSB(0xFFAB),
0x0A, LSB(0x0200), MSB(0x0200),
0xA1, 0x01, // Collection 0x01
0x75, 0x08, // report size = 8 bits
0x15, 0x00, // logical minimum = 0
0x26, 0xFF, 0x00, // logical maximum = 255
0x95, input_length, // report count
0x09, 0x01, // usage
0x81, 0x02, // Input (array)
0x95, output_length,// report count
0x09, 0x02, // usage
0x91, 0x02, // Output (array)
0xC0 // end collection
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
}
#define DEFAULT_CONFIGURATION (1)
#define TOTAL_DESCRIPTOR_LENGTH ((1 * CONFIGURATION_DESCRIPTOR_LENGTH) \
+ (1 * INTERFACE_DESCRIPTOR_LENGTH) \
+ (1 * HID_DESCRIPTOR_LENGTH) \
+ (2 * ENDPOINT_DESCRIPTOR_LENGTH))
uint8_t * USBHID::configurationDesc() {
static uint8_t configurationDescriptor[] = {
CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
CONFIGURATION_DESCRIPTOR, // bDescriptorType
LSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (LSB)
MSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (MSB)
0x01, // bNumInterfaces
DEFAULT_CONFIGURATION, // bConfigurationValue
0x00, // iConfiguration
C_RESERVED | C_SELF_POWERED, // bmAttributes
C_POWER(0), // bMaxPower
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
HID_CLASS, // bInterfaceClass
HID_SUBCLASS_NONE, // bInterfaceSubClass
HID_PROTOCOL_NONE, // bInterfaceProtocol
0x00, // iInterface
HID_DESCRIPTOR_LENGTH, // bLength
HID_DESCRIPTOR, // bDescriptorType
LSB(HID_VERSION_1_11), // bcdHID (LSB)
MSB(HID_VERSION_1_11), // bcdHID (MSB)
0x00, // bCountryCode
0x01, // bNumDescriptors
REPORT_DESCRIPTOR, // bDescriptorType
LSB(this->reportDescLength()), // wDescriptorLength (LSB)
MSB(this->reportDescLength()), // wDescriptorLength (MSB)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_IN), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
};
return configurationDescriptor;
}

View File

@ -0,0 +1,172 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USB_HID_H
#define USB_HID_H
/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"
#include "USBHID_Types.h"
#include "USBDevice.h"
/**
* USBHID example
* @code
* #include "mbed.h"
* #include "USBHID.h"
*
* USBHID hid;
* HID_REPORT recv;
* BusOut leds(LED1,LED2,LED3,LED4);
*
* int main(void) {
* while (1) {
* hid.read(&recv);
* leds = recv.data[0];
* }
* }
* @endcode
*/
class USBHID: public USBDevice {
public:
/**
* Constructor
*
* @param output_report_length Maximum length of a sent report (up to 64 bytes) (default: 64 bytes)
* @param input_report_length Maximum length of a received report (up to 64 bytes) (default: 64 bytes)
* @param vendor_id Your vendor_id
* @param product_id Your product_id
* @param product_release Your preoduct_release
* @param connect Connect the device
*/
USBHID(uint8_t output_report_length = 64, uint8_t input_report_length = 64, uint16_t vendor_id = 0x1234, uint16_t product_id = 0x0006, uint16_t product_release = 0x0001, bool connect = true);
/**
* Send a Report. warning: blocking
*
* @param report Report which will be sent (a report is defined by all data and the length)
* @returns true if successful
*/
bool send(HID_REPORT *report);
/**
* Send a Report. warning: non blocking
*
* @param report Report which will be sent (a report is defined by all data and the length)
* @returns true if successful
*/
bool sendNB(HID_REPORT *report);
/**
* Read a report: blocking
*
* @param report pointer to the report to fill
* @returns true if successful
*/
bool read(HID_REPORT * report);
/**
* Read a report: non blocking
*
* @param report pointer to the report to fill
* @returns true if successful
*/
bool readNB(HID_REPORT * report);
protected:
uint16_t reportLength;
/*
* Get the Report descriptor
*
* @returns pointer to the report descriptor
*/
virtual uint8_t * reportDesc();
/*
* Get the length of the report descriptor
*
* @returns the length of the report descriptor
*/
virtual uint16_t reportDescLength();
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
/*
* HID Report received by SET_REPORT request. Warning: Called in ISR context
* First byte of data will be the report ID
*
* @param report Data and length received
*/
virtual void HID_callbackSetReport(HID_REPORT *report){};
/*
* Called by USBDevice on Endpoint0 request. Warning: Called in ISR context
* This is used to handle extensions to standard requests
* and class specific requests
*
* @returns true if class handles this request
*/
virtual bool USBCallback_request();
/*
* Called by USBDevice layer. Set configuration of the device.
* For instance, you can add all endpoints that you need on this function.
*
* @param configuration Number of the configuration
* @returns true if class handles this request
*/
virtual bool USBCallback_setConfiguration(uint8_t configuration);
private:
HID_REPORT outputReport;
uint8_t output_length;
uint8_t input_length;
};
#endif

View File

@ -0,0 +1,91 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBCLASS_HID_TYPES
#define USBCLASS_HID_TYPES
#include <stdint.h>
/* */
#define HID_VERSION_1_11 (0x0111)
/* HID Class */
#define HID_CLASS (3)
#define HID_SUBCLASS_NONE (0)
#define HID_PROTOCOL_NONE (0)
/* Descriptors */
#define HID_DESCRIPTOR (33)
#define HID_DESCRIPTOR_LENGTH (0x09)
#define REPORT_DESCRIPTOR (34)
/* Class requests */
#define GET_REPORT (0x1)
#define GET_IDLE (0x2)
#define SET_REPORT (0x9)
#define SET_IDLE (0xa)
/* HID Class Report Descriptor */
/* Short items: size is 0, 1, 2 or 3 specifying 0, 1, 2 or 4 (four) bytes */
/* of data as per HID Class standard */
/* Main items */
#define INPUT(size) (0x80 | size)
#define OUTPUT(size) (0x90 | size)
#define FEATURE(size) (0xb0 | size)
#define COLLECTION(size) (0xa0 | size)
#define END_COLLECTION(size) (0xc0 | size)
/* Global items */
#define USAGE_PAGE(size) (0x04 | size)
#define LOGICAL_MINIMUM(size) (0x14 | size)
#define LOGICAL_MAXIMUM(size) (0x24 | size)
#define PHYSICAL_MINIMUM(size) (0x34 | size)
#define PHYSICAL_MAXIMUM(size) (0x44 | size)
#define UNIT_EXPONENT(size) (0x54 | size)
#define UNIT(size) (0x64 | size)
#define REPORT_SIZE(size) (0x74 | size)
#define REPORT_ID(size) (0x84 | size)
#define REPORT_COUNT(size) (0x94 | size)
#define PUSH(size) (0xa4 | size)
#define POP(size) (0xb4 | size)
/* Local items */
#define USAGE(size) (0x08 | size)
#define USAGE_MINIMUM(size) (0x18 | size)
#define USAGE_MAXIMUM(size) (0x28 | size)
#define DESIGNATOR_INDEX(size) (0x38 | size)
#define DESIGNATOR_MINIMUM(size) (0x48 | size)
#define DESIGNATOR_MAXIMUM(size) (0x58 | size)
#define STRING_INDEX(size) (0x78 | size)
#define STRING_MINIMUM(size) (0x88 | size)
#define STRING_MAXIMUM(size) (0x98 | size)
#define DELIMITER(size) (0xa8 | size)
/* HID Report */
/* Where report IDs are used the first byte of 'data' will be the */
/* report ID and 'length' will include this report ID byte. */
#define MAX_HID_REPORT_SIZE (64)
typedef struct {
uint32_t length;
uint8_t data[MAX_HID_REPORT_SIZE];
} HID_REPORT;
#endif

View File

@ -0,0 +1,553 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBKeyboard.h"
#define REPORT_ID_KEYBOARD 1
#define REPORT_ID_VOLUME 3
typedef struct {
unsigned char usage;
unsigned char modifier;
} KEYMAP;
#ifdef US_KEYBOARD
/* US keyboard (as HID standard) */
#define KEYMAP_SIZE (152)
const KEYMAP keymap[KEYMAP_SIZE] = {
{0, 0}, /* NUL */
{0, 0}, /* SOH */
{0, 0}, /* STX */
{0, 0}, /* ETX */
{0, 0}, /* EOT */
{0, 0}, /* ENQ */
{0, 0}, /* ACK */
{0, 0}, /* BEL */
{0x2a, 0}, /* BS */ /* Keyboard Delete (Backspace) */
{0x2b, 0}, /* TAB */ /* Keyboard Tab */
{0x28, 0}, /* LF */ /* Keyboard Return (Enter) */
{0, 0}, /* VT */
{0, 0}, /* FF */
{0, 0}, /* CR */
{0, 0}, /* SO */
{0, 0}, /* SI */
{0, 0}, /* DEL */
{0, 0}, /* DC1 */
{0, 0}, /* DC2 */
{0, 0}, /* DC3 */
{0, 0}, /* DC4 */
{0, 0}, /* NAK */
{0, 0}, /* SYN */
{0, 0}, /* ETB */
{0, 0}, /* CAN */
{0, 0}, /* EM */
{0, 0}, /* SUB */
{0, 0}, /* ESC */
{0, 0}, /* FS */
{0, 0}, /* GS */
{0, 0}, /* RS */
{0, 0}, /* US */
{0x2c, 0}, /* */
{0x1e, KEY_SHIFT}, /* ! */
{0x34, KEY_SHIFT}, /* " */
{0x20, KEY_SHIFT}, /* # */
{0x21, KEY_SHIFT}, /* $ */
{0x22, KEY_SHIFT}, /* % */
{0x24, KEY_SHIFT}, /* & */
{0x34, 0}, /* ' */
{0x26, KEY_SHIFT}, /* ( */
{0x27, KEY_SHIFT}, /* ) */
{0x25, KEY_SHIFT}, /* * */
{0x2e, KEY_SHIFT}, /* + */
{0x36, 0}, /* , */
{0x2d, 0}, /* - */
{0x37, 0}, /* . */
{0x38, 0}, /* / */
{0x27, 0}, /* 0 */
{0x1e, 0}, /* 1 */
{0x1f, 0}, /* 2 */
{0x20, 0}, /* 3 */
{0x21, 0}, /* 4 */
{0x22, 0}, /* 5 */
{0x23, 0}, /* 6 */
{0x24, 0}, /* 7 */
{0x25, 0}, /* 8 */
{0x26, 0}, /* 9 */
{0x33, KEY_SHIFT}, /* : */
{0x33, 0}, /* ; */
{0x36, KEY_SHIFT}, /* < */
{0x2e, 0}, /* = */
{0x37, KEY_SHIFT}, /* > */
{0x38, KEY_SHIFT}, /* ? */
{0x1f, KEY_SHIFT}, /* @ */
{0x04, KEY_SHIFT}, /* A */
{0x05, KEY_SHIFT}, /* B */
{0x06, KEY_SHIFT}, /* C */
{0x07, KEY_SHIFT}, /* D */
{0x08, KEY_SHIFT}, /* E */
{0x09, KEY_SHIFT}, /* F */
{0x0a, KEY_SHIFT}, /* G */
{0x0b, KEY_SHIFT}, /* H */
{0x0c, KEY_SHIFT}, /* I */
{0x0d, KEY_SHIFT}, /* J */
{0x0e, KEY_SHIFT}, /* K */
{0x0f, KEY_SHIFT}, /* L */
{0x10, KEY_SHIFT}, /* M */
{0x11, KEY_SHIFT}, /* N */
{0x12, KEY_SHIFT}, /* O */
{0x13, KEY_SHIFT}, /* P */
{0x14, KEY_SHIFT}, /* Q */
{0x15, KEY_SHIFT}, /* R */
{0x16, KEY_SHIFT}, /* S */
{0x17, KEY_SHIFT}, /* T */
{0x18, KEY_SHIFT}, /* U */
{0x19, KEY_SHIFT}, /* V */
{0x1a, KEY_SHIFT}, /* W */
{0x1b, KEY_SHIFT}, /* X */
{0x1c, KEY_SHIFT}, /* Y */
{0x1d, KEY_SHIFT}, /* Z */
{0x2f, 0}, /* [ */
{0x31, 0}, /* \ */
{0x30, 0}, /* ] */
{0x23, KEY_SHIFT}, /* ^ */
{0x2d, KEY_SHIFT}, /* _ */
{0x35, 0}, /* ` */
{0x04, 0}, /* a */
{0x05, 0}, /* b */
{0x06, 0}, /* c */
{0x07, 0}, /* d */
{0x08, 0}, /* e */
{0x09, 0}, /* f */
{0x0a, 0}, /* g */
{0x0b, 0}, /* h */
{0x0c, 0}, /* i */
{0x0d, 0}, /* j */
{0x0e, 0}, /* k */
{0x0f, 0}, /* l */
{0x10, 0}, /* m */
{0x11, 0}, /* n */
{0x12, 0}, /* o */
{0x13, 0}, /* p */
{0x14, 0}, /* q */
{0x15, 0}, /* r */
{0x16, 0}, /* s */
{0x17, 0}, /* t */
{0x18, 0}, /* u */
{0x19, 0}, /* v */
{0x1a, 0}, /* w */
{0x1b, 0}, /* x */
{0x1c, 0}, /* y */
{0x1d, 0}, /* z */
{0x2f, KEY_SHIFT}, /* { */
{0x31, KEY_SHIFT}, /* | */
{0x30, KEY_SHIFT}, /* } */
{0x35, KEY_SHIFT}, /* ~ */
{0,0}, /* DEL */
{0x3a, 0}, /* F1 */
{0x3b, 0}, /* F2 */
{0x3c, 0}, /* F3 */
{0x3d, 0}, /* F4 */
{0x3e, 0}, /* F5 */
{0x3f, 0}, /* F6 */
{0x40, 0}, /* F7 */
{0x41, 0}, /* F8 */
{0x42, 0}, /* F9 */
{0x43, 0}, /* F10 */
{0x44, 0}, /* F11 */
{0x45, 0}, /* F12 */
{0x46, 0}, /* PRINT_SCREEN */
{0x47, 0}, /* SCROLL_LOCK */
{0x39, 0}, /* CAPS_LOCK */
{0x53, 0}, /* NUM_LOCK */
{0x49, 0}, /* INSERT */
{0x4a, 0}, /* HOME */
{0x4b, 0}, /* PAGE_UP */
{0x4e, 0}, /* PAGE_DOWN */
{0x4f, 0}, /* RIGHT_ARROW */
{0x50, 0}, /* LEFT_ARROW */
{0x51, 0}, /* DOWN_ARROW */
{0x52, 0}, /* UP_ARROW */
};
#else
/* UK keyboard */
#define KEYMAP_SIZE (152)
const KEYMAP keymap[KEYMAP_SIZE] = {
{0, 0}, /* NUL */
{0, 0}, /* SOH */
{0, 0}, /* STX */
{0, 0}, /* ETX */
{0, 0}, /* EOT */
{0, 0}, /* ENQ */
{0, 0}, /* ACK */
{0, 0}, /* BEL */
{0x2a, 0}, /* BS */ /* Keyboard Delete (Backspace) */
{0x2b, 0}, /* TAB */ /* Keyboard Tab */
{0x28, 0}, /* LF */ /* Keyboard Return (Enter) */
{0, 0}, /* VT */
{0, 0}, /* FF */
{0, 0}, /* CR */
{0, 0}, /* SO */
{0, 0}, /* SI */
{0, 0}, /* DEL */
{0, 0}, /* DC1 */
{0, 0}, /* DC2 */
{0, 0}, /* DC3 */
{0, 0}, /* DC4 */
{0, 0}, /* NAK */
{0, 0}, /* SYN */
{0, 0}, /* ETB */
{0, 0}, /* CAN */
{0, 0}, /* EM */
{0, 0}, /* SUB */
{0, 0}, /* ESC */
{0, 0}, /* FS */
{0, 0}, /* GS */
{0, 0}, /* RS */
{0, 0}, /* US */
{0x2c, 0}, /* */
{0x1e, KEY_SHIFT}, /* ! */
{0x1f, KEY_SHIFT}, /* " */
{0x32, 0}, /* # */
{0x21, KEY_SHIFT}, /* $ */
{0x22, KEY_SHIFT}, /* % */
{0x24, KEY_SHIFT}, /* & */
{0x34, 0}, /* ' */
{0x26, KEY_SHIFT}, /* ( */
{0x27, KEY_SHIFT}, /* ) */
{0x25, KEY_SHIFT}, /* * */
{0x2e, KEY_SHIFT}, /* + */
{0x36, 0}, /* , */
{0x2d, 0}, /* - */
{0x37, 0}, /* . */
{0x38, 0}, /* / */
{0x27, 0}, /* 0 */
{0x1e, 0}, /* 1 */
{0x1f, 0}, /* 2 */
{0x20, 0}, /* 3 */
{0x21, 0}, /* 4 */
{0x22, 0}, /* 5 */
{0x23, 0}, /* 6 */
{0x24, 0}, /* 7 */
{0x25, 0}, /* 8 */
{0x26, 0}, /* 9 */
{0x33, KEY_SHIFT}, /* : */
{0x33, 0}, /* ; */
{0x36, KEY_SHIFT}, /* < */
{0x2e, 0}, /* = */
{0x37, KEY_SHIFT}, /* > */
{0x38, KEY_SHIFT}, /* ? */
{0x34, KEY_SHIFT}, /* @ */
{0x04, KEY_SHIFT}, /* A */
{0x05, KEY_SHIFT}, /* B */
{0x06, KEY_SHIFT}, /* C */
{0x07, KEY_SHIFT}, /* D */
{0x08, KEY_SHIFT}, /* E */
{0x09, KEY_SHIFT}, /* F */
{0x0a, KEY_SHIFT}, /* G */
{0x0b, KEY_SHIFT}, /* H */
{0x0c, KEY_SHIFT}, /* I */
{0x0d, KEY_SHIFT}, /* J */
{0x0e, KEY_SHIFT}, /* K */
{0x0f, KEY_SHIFT}, /* L */
{0x10, KEY_SHIFT}, /* M */
{0x11, KEY_SHIFT}, /* N */
{0x12, KEY_SHIFT}, /* O */
{0x13, KEY_SHIFT}, /* P */
{0x14, KEY_SHIFT}, /* Q */
{0x15, KEY_SHIFT}, /* R */
{0x16, KEY_SHIFT}, /* S */
{0x17, KEY_SHIFT}, /* T */
{0x18, KEY_SHIFT}, /* U */
{0x19, KEY_SHIFT}, /* V */
{0x1a, KEY_SHIFT}, /* W */
{0x1b, KEY_SHIFT}, /* X */
{0x1c, KEY_SHIFT}, /* Y */
{0x1d, KEY_SHIFT}, /* Z */
{0x2f, 0}, /* [ */
{0x64, 0}, /* \ */
{0x30, 0}, /* ] */
{0x23, KEY_SHIFT}, /* ^ */
{0x2d, KEY_SHIFT}, /* _ */
{0x35, 0}, /* ` */
{0x04, 0}, /* a */
{0x05, 0}, /* b */
{0x06, 0}, /* c */
{0x07, 0}, /* d */
{0x08, 0}, /* e */
{0x09, 0}, /* f */
{0x0a, 0}, /* g */
{0x0b, 0}, /* h */
{0x0c, 0}, /* i */
{0x0d, 0}, /* j */
{0x0e, 0}, /* k */
{0x0f, 0}, /* l */
{0x10, 0}, /* m */
{0x11, 0}, /* n */
{0x12, 0}, /* o */
{0x13, 0}, /* p */
{0x14, 0}, /* q */
{0x15, 0}, /* r */
{0x16, 0}, /* s */
{0x17, 0}, /* t */
{0x18, 0}, /* u */
{0x19, 0}, /* v */
{0x1a, 0}, /* w */
{0x1b, 0}, /* x */
{0x1c, 0}, /* y */
{0x1d, 0}, /* z */
{0x2f, KEY_SHIFT}, /* { */
{0x64, KEY_SHIFT}, /* | */
{0x30, KEY_SHIFT}, /* } */
{0x32, KEY_SHIFT}, /* ~ */
{0,0}, /* DEL */
{0x3a, 0}, /* F1 */
{0x3b, 0}, /* F2 */
{0x3c, 0}, /* F3 */
{0x3d, 0}, /* F4 */
{0x3e, 0}, /* F5 */
{0x3f, 0}, /* F6 */
{0x40, 0}, /* F7 */
{0x41, 0}, /* F8 */
{0x42, 0}, /* F9 */
{0x43, 0}, /* F10 */
{0x44, 0}, /* F11 */
{0x45, 0}, /* F12 */
{0x46, 0}, /* PRINT_SCREEN */
{0x47, 0}, /* SCROLL_LOCK */
{0x39, 0}, /* CAPS_LOCK */
{0x53, 0}, /* NUM_LOCK */
{0x49, 0}, /* INSERT */
{0x4a, 0}, /* HOME */
{0x4b, 0}, /* PAGE_UP */
{0x4e, 0}, /* PAGE_DOWN */
{0x4f, 0}, /* RIGHT_ARROW */
{0x50, 0}, /* LEFT_ARROW */
{0x51, 0}, /* DOWN_ARROW */
{0x52, 0}, /* UP_ARROW */
};
#endif
uint8_t * USBKeyboard::reportDesc() {
static uint8_t reportDescriptor[] = {
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x06, // Keyboard
COLLECTION(1), 0x01, // Application
REPORT_ID(1), REPORT_ID_KEYBOARD,
USAGE_PAGE(1), 0x07, // Key Codes
USAGE_MINIMUM(1), 0xE0,
USAGE_MAXIMUM(1), 0xE7,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x08,
INPUT(1), 0x02, // Data, Variable, Absolute
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x08,
INPUT(1), 0x01, // Constant
REPORT_COUNT(1), 0x05,
REPORT_SIZE(1), 0x01,
USAGE_PAGE(1), 0x08, // LEDs
USAGE_MINIMUM(1), 0x01,
USAGE_MAXIMUM(1), 0x05,
OUTPUT(1), 0x02, // Data, Variable, Absolute
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x03,
OUTPUT(1), 0x01, // Constant
REPORT_COUNT(1), 0x06,
REPORT_SIZE(1), 0x08,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x65,
USAGE_PAGE(1), 0x07, // Key Codes
USAGE_MINIMUM(1), 0x00,
USAGE_MAXIMUM(1), 0x65,
INPUT(1), 0x00, // Data, Array
END_COLLECTION(0),
// Media Control
USAGE_PAGE(1), 0x0C,
USAGE(1), 0x01,
COLLECTION(1), 0x01,
REPORT_ID(1), REPORT_ID_VOLUME,
USAGE_PAGE(1), 0x0C,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x07,
USAGE(1), 0xB5, // Next Track
USAGE(1), 0xB6, // Previous Track
USAGE(1), 0xB7, // Stop
USAGE(1), 0xCD, // Play / Pause
USAGE(1), 0xE2, // Mute
USAGE(1), 0xE9, // Volume Up
USAGE(1), 0xEA, // Volume Down
INPUT(1), 0x02, // Input (Data, Variable, Absolute)
REPORT_COUNT(1), 0x01,
INPUT(1), 0x01,
END_COLLECTION(0),
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
}
bool USBKeyboard::EP1_OUT_callback() {
uint32_t bytesRead = 0;
uint8_t led[65];
USBDevice::readEP(EPINT_OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
// we take led[1] because led[0] is the report ID
lock_status = led[1] & 0x07;
// We activate the endpoint to be able to recceive data
if (!readStart(EPINT_OUT, MAX_HID_REPORT_SIZE))
return false;
return true;
}
uint8_t USBKeyboard::lockStatus() {
return lock_status;
}
int USBKeyboard::_putc(int c) {
return keyCode(c, keymap[c].modifier);
}
bool USBKeyboard::keyCode(uint8_t key, uint8_t modifier) {
// Send a simulated keyboard keypress. Returns true if successful.
HID_REPORT report;
report.data[0] = REPORT_ID_KEYBOARD;
report.data[1] = modifier;
report.data[2] = 0;
report.data[3] = keymap[key].usage;
report.data[4] = 0;
report.data[5] = 0;
report.data[6] = 0;
report.data[7] = 0;
report.data[8] = 0;
report.length = 9;
if (!send(&report)) {
return false;
}
report.data[1] = 0;
report.data[3] = 0;
if (!send(&report)) {
return false;
}
return true;
}
bool USBKeyboard::mediaControl(MEDIA_KEY key) {
HID_REPORT report;
report.data[0] = REPORT_ID_VOLUME;
report.data[1] = (1 << key) & 0x7f;
report.length = 2;
if (!send(&report)) {
return false;
}
report.data[0] = REPORT_ID_VOLUME;
report.data[1] = 0;
report.length = 2;
return send(&report);
}
#define DEFAULT_CONFIGURATION (1)
#define TOTAL_DESCRIPTOR_LENGTH ((1 * CONFIGURATION_DESCRIPTOR_LENGTH) \
+ (1 * INTERFACE_DESCRIPTOR_LENGTH) \
+ (1 * HID_DESCRIPTOR_LENGTH) \
+ (2 * ENDPOINT_DESCRIPTOR_LENGTH))
uint8_t * USBKeyboard::configurationDesc() {
static uint8_t configurationDescriptor[] = {
CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
CONFIGURATION_DESCRIPTOR, // bDescriptorType
LSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (LSB)
MSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (MSB)
0x01, // bNumInterfaces
DEFAULT_CONFIGURATION, // bConfigurationValue
0x00, // iConfiguration
C_RESERVED | C_SELF_POWERED, // bmAttributes
C_POWER(0), // bMaxPowerHello World from Mbed
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
HID_CLASS, // bInterfaceClass
1, // bInterfaceSubClass
1, // bInterfaceProtocol (keyboard)
0x00, // iInterface
HID_DESCRIPTOR_LENGTH, // bLength
HID_DESCRIPTOR, // bDescriptorType
LSB(HID_VERSION_1_11), // bcdHID (LSB)
MSB(HID_VERSION_1_11), // bcdHID (MSB)
0x00, // bCountryCode
0x01, // bNumDescriptors
REPORT_DESCRIPTOR, // bDescriptorType
LSB(reportDescLength()), // wDescriptorLength (LSB)
MSB(reportDescLength()), // wDescriptorLength (MSB)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_IN), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
};
return configurationDescriptor;
}

View File

@ -0,0 +1,183 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBKEYBOARD_H
#define USBKEYBOARD_H
#include "USBHID.h"
#include "Stream.h"
/* Modifiers */
enum MODIFIER_KEY {
KEY_CTRL = 1,
KEY_SHIFT = 2,
KEY_ALT = 4,
};
enum MEDIA_KEY {
KEY_NEXT_TRACK, /*!< next Track Button */
KEY_PREVIOUS_TRACK, /*!< Previous track Button */
KEY_STOP, /*!< Stop Button */
KEY_PLAY_PAUSE, /*!< Play/Pause Button */
KEY_MUTE, /*!< Mute Button */
KEY_VOLUME_UP, /*!< Volume Up Button */
KEY_VOLUME_DOWN, /*!< Volume Down Button */
};
enum FUNCTION_KEY {
KEY_F1 = 128, /* F1 key */
KEY_F2, /* F2 key */
KEY_F3, /* F3 key */
KEY_F4, /* F4 key */
KEY_F5, /* F5 key */
KEY_F6, /* F6 key */
KEY_F7, /* F7 key */
KEY_F8, /* F8 key */
KEY_F9, /* F9 key */
KEY_F10, /* F10 key */
KEY_F11, /* F11 key */
KEY_F12, /* F12 key */
KEY_PRINT_SCREEN, /* Print Screen key */
KEY_SCROLL_LOCK, /* Scroll lock */
KEY_CAPS_LOCK, /* caps lock */
KEY_NUM_LOCK, /* num lock */
KEY_INSERT, /* Insert key */
KEY_HOME, /* Home key */
KEY_PAGE_UP, /* Page Up key */
KEY_PAGE_DOWN, /* Page Down key */
RIGHT_ARROW, /* Right arrow */
LEFT_ARROW, /* Left arrow */
DOWN_ARROW, /* Down arrow */
UP_ARROW, /* Up arrow */
};
/**
* USBKeyboard example
* @code
*
* #include "mbed.h"
* #include "USBKeyboard.h"
*
* USBKeyboard key;
*
* int main(void)
* {
* while (1)
* {
* key.printf("Hello World\r\n");
* wait(1);
* }
* }
*
* @endcode
*/
class USBKeyboard: public USBHID, public Stream {
public:
/**
* Constructor
*
*
* @param leds Leds bus: first: NUM_LOCK, second: CAPS_LOCK, third: SCROLL_LOCK
* @param vendor_id Your vendor_id (default: 0x1235)
* @param product_id Your product_id (default: 0x0050)
* @param product_release Your preoduct_release (default: 0x0001)
*
*/
USBKeyboard(uint16_t vendor_id = 0x1235, uint16_t product_id = 0x0050, uint16_t product_release = 0x0001):
USBHID(0, 0, vendor_id, product_id, product_release, false) {
lock_status = 0;
connect();
};
/**
* To send a character defined by a modifier(CTRL, SHIFT, ALT) and the key
*
* @code
* //To send CTRL + s (save)
* keyboard.keyCode('s', KEY_CTRL);
* @endcode
*
* @param modifier bit 0: KEY_CTRL, bit 1: KEY_SHIFT, bit 2: KEY_ALT (default: 0)
* @param key character to send
* @returns true if there is no error, false otherwise
*/
bool keyCode(uint8_t key, uint8_t modifier = 0);
/**
* Send a character
*
* @param c character to be sent
* @returns true if there is no error, false otherwise
*/
virtual int _putc(int c);
/**
* Control media keys
*
* @param key media key pressed (KEY_NEXT_TRACK, KEY_PREVIOUS_TRACK, KEY_STOP, KEY_PLAY_PAUSE, KEY_MUTE, KEY_VOLUME_UP, KEY_VOLUME_DOWN)
* @returns true if there is no error, false otherwise
*/
bool mediaControl(MEDIA_KEY key);
/*
* To define the report descriptor. Warning: this method has to store the length of the report descriptor in reportLength.
*
* @returns pointer to the report descriptor
*/
virtual uint8_t * reportDesc();
/*
* Called when a data is received on the OUT endpoint. Useful to switch on LED of LOCK keys
*
* @returns if handle by subclass, return true
*/
virtual bool EP1_OUT_callback();
/**
* Read status of lock keys. Useful to switch-on/off leds according to key pressed. Only the first three bits of the result is important:
* - First bit: NUM_LOCK
* - Second bit: CAPS_LOCK
* - Third bit: SCROLL_LOCK
*
* @returns status of lock keys
*/
uint8_t lockStatus();
protected:
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
private:
//dummy otherwise it doesn,t compile (we must define all methods of an abstract class)
virtual int _getc() {
return -1;
};
uint8_t lock_status;
};
#endif

View File

@ -0,0 +1,245 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBMouse.h"
bool USBMouse::update(int16_t x, int16_t y, uint8_t button, int8_t z) {
switch (mouse_type) {
case REL_MOUSE:
while (x > 127) {
if (!mouseSend(127, 0, button, z)) return false;
x = x - 127;
}
while (x < -128) {
if (!mouseSend(-128, 0, button, z)) return false;
x = x + 128;
}
while (y > 127) {
if (!mouseSend(0, 127, button, z)) return false;
y = y - 127;
}
while (y < -128) {
if (!mouseSend(0, -128, button, z)) return false;
y = y + 128;
}
return mouseSend(x, y, button, z);
case ABS_MOUSE:
HID_REPORT report;
report.data[0] = x & 0xff;
report.data[1] = (x >> 8) & 0xff;
report.data[2] = y & 0xff;
report.data[3] = (y >> 8) & 0xff;
report.data[4] = -z;
report.data[5] = button & 0x07;
report.length = 6;
return send(&report);
default:
return false;
}
}
bool USBMouse::mouseSend(int8_t x, int8_t y, uint8_t buttons, int8_t z) {
HID_REPORT report;
report.data[0] = buttons & 0x07;
report.data[1] = x;
report.data[2] = y;
report.data[3] = -z; // >0 to scroll down, <0 to scroll up
report.length = 4;
return send(&report);
}
bool USBMouse::move(int16_t x, int16_t y) {
return update(x, y, button, 0);
}
bool USBMouse::scroll(int8_t z) {
return update(0, 0, button, z);
}
bool USBMouse::doubleClick() {
if (!click(MOUSE_LEFT))
return false;
wait(0.1);
return click(MOUSE_LEFT);
}
bool USBMouse::click(uint8_t button) {
if (!update(0, 0, button, 0))
return false;
wait(0.01);
return update(0, 0, 0, 0);
}
bool USBMouse::press(uint8_t button_) {
button = button_ & 0x07;
return update(0, 0, button, 0);
}
bool USBMouse::release(uint8_t button_) {
button = (button & (~button_)) & 0x07;
return update(0, 0, button, 0);
}
uint8_t * USBMouse::reportDesc() {
if (mouse_type == REL_MOUSE) {
static uint8_t reportDescriptor[] = {
USAGE_PAGE(1), 0x01, // Genric Desktop
USAGE(1), 0x02, // Mouse
COLLECTION(1), 0x01, // Application
USAGE(1), 0x01, // Pointer
COLLECTION(1), 0x00, // Physical
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x01,
USAGE_PAGE(1), 0x09, // Buttons
USAGE_MINIMUM(1), 0x1,
USAGE_MAXIMUM(1), 0x3,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
INPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x05,
INPUT(1), 0x01,
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x08,
USAGE_PAGE(1), 0x01,
USAGE(1), 0x30, // X
USAGE(1), 0x31, // Y
USAGE(1), 0x38, // scroll
LOGICAL_MINIMUM(1), 0x81,
LOGICAL_MAXIMUM(1), 0x7f,
INPUT(1), 0x06, // Relative data
END_COLLECTION(0),
END_COLLECTION(0),
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
} else if (mouse_type == ABS_MOUSE) {
static uint8_t reportDescriptor[] = {
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x02, // Mouse
COLLECTION(1), 0x01, // Application
USAGE(1), 0x01, // Pointer
COLLECTION(1), 0x00, // Physical
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x30, // X
USAGE(1), 0x31, // Y
LOGICAL_MINIMUM(1), 0x00, // 0
LOGICAL_MAXIMUM(2), 0xff, 0x7f, // 32767
REPORT_SIZE(1), 0x10,
REPORT_COUNT(1), 0x02,
INPUT(1), 0x02, // Data, Variable, Absolute
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x38, // scroll
LOGICAL_MINIMUM(1), 0x81, // -127
LOGICAL_MAXIMUM(1), 0x7f, // 127
REPORT_SIZE(1), 0x08,
REPORT_COUNT(1), 0x01,
INPUT(1), 0x06, // Data, Variable, Relative
USAGE_PAGE(1), 0x09, // Buttons
USAGE_MINIMUM(1), 0x01,
USAGE_MAXIMUM(1), 0x03,
LOGICAL_MINIMUM(1), 0x00, // 0
LOGICAL_MAXIMUM(1), 0x01, // 1
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x01,
INPUT(1), 0x02, // Data, Variable, Absolute
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x05,
INPUT(1), 0x01, // Constant
END_COLLECTION(0),
END_COLLECTION(0)
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
}
return NULL;
}
#define DEFAULT_CONFIGURATION (1)
#define TOTAL_DESCRIPTOR_LENGTH ((1 * CONFIGURATION_DESCRIPTOR_LENGTH) \
+ (1 * INTERFACE_DESCRIPTOR_LENGTH) \
+ (1 * HID_DESCRIPTOR_LENGTH) \
+ (2 * ENDPOINT_DESCRIPTOR_LENGTH))
uint8_t * USBMouse::configurationDesc() {
static uint8_t configurationDescriptor[] = {
CONFIGURATION_DESCRIPTOR_LENGTH,// bLength
CONFIGURATION_DESCRIPTOR, // bDescriptorType
LSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (LSB)
MSB(TOTAL_DESCRIPTOR_LENGTH), // wTotalLength (MSB)
0x01, // bNumInterfaces
DEFAULT_CONFIGURATION, // bConfigurationValue
0x00, // iConfiguration
C_RESERVED | C_SELF_POWERED, // bmAttributes
C_POWER(0), // bMaxPowerHello World from Mbed
INTERFACE_DESCRIPTOR_LENGTH, // bLength
INTERFACE_DESCRIPTOR, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
HID_CLASS, // bInterfaceClass
1, // bInterfaceSubClass
2, // bInterfaceProtocol (mouse)
0x00, // iInterface
HID_DESCRIPTOR_LENGTH, // bLength
HID_DESCRIPTOR, // bDescriptorType
LSB(HID_VERSION_1_11), // bcdHID (LSB)
MSB(HID_VERSION_1_11), // bcdHID (MSB)
0x00, // bCountryCode
0x01, // bNumDescriptors
REPORT_DESCRIPTOR, // bDescriptorType
LSB(reportDescLength()), // wDescriptorLength (LSB)
MSB(reportDescLength()), // wDescriptorLength (MSB)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_IN), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_OUT), // bEndpointAddress
E_INTERRUPT, // bmAttributes
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
1, // bInterval (milliseconds)
};
return configurationDescriptor;
}

View File

@ -0,0 +1,209 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBMOUSE_H
#define USBMOUSE_H
#include "USBHID.h"
#define REPORT_ID_MOUSE 2
/* Common usage */
enum MOUSE_BUTTON
{
MOUSE_LEFT = 1,
MOUSE_RIGHT = 2,
MOUSE_MIDDLE = 4,
};
/* X and Y limits */
/* These values do not directly map to screen pixels */
/* Zero may be interpreted as meaning 'no movement' */
#define X_MIN_ABS (1) /*!< Minimum value on x-axis */
#define Y_MIN_ABS (1) /*!< Minimum value on y-axis */
#define X_MAX_ABS (0x7fff) /*!< Maximum value on x-axis */
#define Y_MAX_ABS (0x7fff) /*!< Maximum value on y-axis */
#define X_MIN_REL (-127) /*!< The maximum value that we can move to the left on the x-axis */
#define Y_MIN_REL (-127) /*!< The maximum value that we can move up on the y-axis */
#define X_MAX_REL (127) /*!< The maximum value that we can move to the right on the x-axis */
#define Y_MAX_REL (127) /*!< The maximum value that we can move down on the y-axis */
enum MOUSE_TYPE
{
ABS_MOUSE,
REL_MOUSE,
};
/**
*
* USBMouse example
* @code
* #include "mbed.h"
* #include "USBMouse.h"
*
* USBMouse mouse;
*
* int main(void)
* {
* while (1)
* {
* mouse.move(20, 0);
* wait(0.5);
* }
* }
*
* @endcode
*
*
* @code
* #include "mbed.h"
* #include "USBMouse.h"
* #include <math.h>
*
* USBMouse mouse(ABS_MOUSE);
*
* int main(void)
* {
* uint16_t x_center = (X_MAX_ABS - X_MIN_ABS)/2;
* uint16_t y_center = (Y_MAX_ABS - Y_MIN_ABS)/2;
* uint16_t x_screen = 0;
* uint16_t y_screen = 0;
*
* uint32_t x_origin = x_center;
* uint32_t y_origin = y_center;
* uint32_t radius = 5000;
* uint32_t angle = 0;
*
* while (1)
* {
* x_screen = x_origin + cos((double)angle*3.14/180.0)*radius;
* y_screen = y_origin + sin((double)angle*3.14/180.0)*radius;
*
* mouse.move(x_screen, y_screen);
* angle += 3;
* wait(0.01);
* }
* }
*
* @endcode
*/
class USBMouse: public USBHID
{
public:
/**
* Constructor
*
* @param mouse_type Mouse type: ABS_MOUSE (absolute mouse) or REL_MOUSE (relative mouse) (default: REL_MOUSE)
* @param vendor_id Your vendor_id (default: 0x1234)
* @param product_id Your product_id (default: 0x0001)
* @param product_release Your preoduct_release (default: 0x0001)
*
*/
USBMouse(MOUSE_TYPE mouse_type = REL_MOUSE, uint16_t vendor_id = 0x1234, uint16_t product_id = 0x0001, uint16_t product_release = 0x0001):
USBHID(0, 0, vendor_id, product_id, product_release, false)
{
button = 0;
this->mouse_type = mouse_type;
connect();
};
/**
* Write a state of the mouse
*
* @param x x-axis position
* @param y y-axis position
* @param buttons buttons state (first bit represents MOUSE_LEFT, second bit MOUSE_RIGHT and third bit MOUSE_MIDDLE)
* @param z wheel state (>0 to scroll down, <0 to scroll up)
* @returns true if there is no error, false otherwise
*/
bool update(int16_t x, int16_t y, uint8_t buttons, int8_t z);
/**
* Move the cursor to (x, y)
*
* @param x-axis position
* @param y-axis position
* @returns true if there is no error, false otherwise
*/
bool move(int16_t x, int16_t y);
/**
* Press one or several buttons
*
* @param button button state (ex: press(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool press(uint8_t button);
/**
* Release one or several buttons
*
* @param button button state (ex: release(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool release(uint8_t button);
/**
* Double click (MOUSE_LEFT)
*
* @returns true if there is no error, false otherwise
*/
bool doubleClick();
/**
* Click
*
* @param button state of the buttons ( ex: clic(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool click(uint8_t button);
/**
* Scrolling
*
* @param z value of the wheel (>0 to go down, <0 to go up)
* @returns true if there is no error, false otherwise
*/
bool scroll(int8_t z);
/*
* To define the report descriptor. Warning: this method has to store the length of the report descriptor in reportLength.
*
* @returns pointer to the report descriptor
*/
virtual uint8_t * reportDesc();
protected:
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
private:
MOUSE_TYPE mouse_type;
uint8_t button;
bool mouseSend(int8_t x, int8_t y, uint8_t buttons, int8_t z);
};
#endif

View File

@ -0,0 +1,706 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBMouseKeyboard.h"
typedef struct {
unsigned char usage;
unsigned char modifier;
} KEYMAP;
#ifdef US_KEYBOARD
/* US keyboard (as HID standard) */
#define KEYMAP_SIZE (152)
const KEYMAP keymap[KEYMAP_SIZE] = {
{0, 0}, /* NUL */
{0, 0}, /* SOH */
{0, 0}, /* STX */
{0, 0}, /* ETX */
{0, 0}, /* EOT */
{0, 0}, /* ENQ */
{0, 0}, /* ACK */
{0, 0}, /* BEL */
{0x2a, 0}, /* BS */ /* Keyboard Delete (Backspace) */
{0x2b, 0}, /* TAB */ /* Keyboard Tab */
{0x28, 0}, /* LF */ /* Keyboard Return (Enter) */
{0, 0}, /* VT */
{0, 0}, /* FF */
{0, 0}, /* CR */
{0, 0}, /* SO */
{0, 0}, /* SI */
{0, 0}, /* DEL */
{0, 0}, /* DC1 */
{0, 0}, /* DC2 */
{0, 0}, /* DC3 */
{0, 0}, /* DC4 */
{0, 0}, /* NAK */
{0, 0}, /* SYN */
{0, 0}, /* ETB */
{0, 0}, /* CAN */
{0, 0}, /* EM */
{0, 0}, /* SUB */
{0, 0}, /* ESC */
{0, 0}, /* FS */
{0, 0}, /* GS */
{0, 0}, /* RS */
{0, 0}, /* US */
{0x2c, 0}, /* */
{0x1e, KEY_SHIFT}, /* ! */
{0x34, KEY_SHIFT}, /* " */
{0x20, KEY_SHIFT}, /* # */
{0x21, KEY_SHIFT}, /* $ */
{0x22, KEY_SHIFT}, /* % */
{0x24, KEY_SHIFT}, /* & */
{0x34, 0}, /* ' */
{0x26, KEY_SHIFT}, /* ( */
{0x27, KEY_SHIFT}, /* ) */
{0x25, KEY_SHIFT}, /* * */
{0x2e, KEY_SHIFT}, /* + */
{0x36, 0}, /* , */
{0x2d, 0}, /* - */
{0x37, 0}, /* . */
{0x38, 0}, /* / */
{0x27, 0}, /* 0 */
{0x1e, 0}, /* 1 */
{0x1f, 0}, /* 2 */
{0x20, 0}, /* 3 */
{0x21, 0}, /* 4 */
{0x22, 0}, /* 5 */
{0x23, 0}, /* 6 */
{0x24, 0}, /* 7 */
{0x25, 0}, /* 8 */
{0x26, 0}, /* 9 */
{0x33, KEY_SHIFT}, /* : */
{0x33, 0}, /* ; */
{0x36, KEY_SHIFT}, /* < */
{0x2e, 0}, /* = */
{0x37, KEY_SHIFT}, /* > */
{0x38, KEY_SHIFT}, /* ? */
{0x1f, KEY_SHIFT}, /* @ */
{0x04, KEY_SHIFT}, /* A */
{0x05, KEY_SHIFT}, /* B */
{0x06, KEY_SHIFT}, /* C */
{0x07, KEY_SHIFT}, /* D */
{0x08, KEY_SHIFT}, /* E */
{0x09, KEY_SHIFT}, /* F */
{0x0a, KEY_SHIFT}, /* G */
{0x0b, KEY_SHIFT}, /* H */
{0x0c, KEY_SHIFT}, /* I */
{0x0d, KEY_SHIFT}, /* J */
{0x0e, KEY_SHIFT}, /* K */
{0x0f, KEY_SHIFT}, /* L */
{0x10, KEY_SHIFT}, /* M */
{0x11, KEY_SHIFT}, /* N */
{0x12, KEY_SHIFT}, /* O */
{0x13, KEY_SHIFT}, /* P */
{0x14, KEY_SHIFT}, /* Q */
{0x15, KEY_SHIFT}, /* R */
{0x16, KEY_SHIFT}, /* S */
{0x17, KEY_SHIFT}, /* T */
{0x18, KEY_SHIFT}, /* U */
{0x19, KEY_SHIFT}, /* V */
{0x1a, KEY_SHIFT}, /* W */
{0x1b, KEY_SHIFT}, /* X */
{0x1c, KEY_SHIFT}, /* Y */
{0x1d, KEY_SHIFT}, /* Z */
{0x2f, 0}, /* [ */
{0x31, 0}, /* \ */
{0x30, 0}, /* ] */
{0x23, KEY_SHIFT}, /* ^ */
{0x2d, KEY_SHIFT}, /* _ */
{0x35, 0}, /* ` */
{0x04, 0}, /* a */
{0x05, 0}, /* b */
{0x06, 0}, /* c */
{0x07, 0}, /* d */
{0x08, 0}, /* e */
{0x09, 0}, /* f */
{0x0a, 0}, /* g */
{0x0b, 0}, /* h */
{0x0c, 0}, /* i */
{0x0d, 0}, /* j */
{0x0e, 0}, /* k */
{0x0f, 0}, /* l */
{0x10, 0}, /* m */
{0x11, 0}, /* n */
{0x12, 0}, /* o */
{0x13, 0}, /* p */
{0x14, 0}, /* q */
{0x15, 0}, /* r */
{0x16, 0}, /* s */
{0x17, 0}, /* t */
{0x18, 0}, /* u */
{0x19, 0}, /* v */
{0x1a, 0}, /* w */
{0x1b, 0}, /* x */
{0x1c, 0}, /* y */
{0x1d, 0}, /* z */
{0x2f, KEY_SHIFT}, /* { */
{0x31, KEY_SHIFT}, /* | */
{0x30, KEY_SHIFT}, /* } */
{0x35, KEY_SHIFT}, /* ~ */
{0,0}, /* DEL */
{0x3a, 0}, /* F1 */
{0x3b, 0}, /* F2 */
{0x3c, 0}, /* F3 */
{0x3d, 0}, /* F4 */
{0x3e, 0}, /* F5 */
{0x3f, 0}, /* F6 */
{0x40, 0}, /* F7 */
{0x41, 0}, /* F8 */
{0x42, 0}, /* F9 */
{0x43, 0}, /* F10 */
{0x44, 0}, /* F11 */
{0x45, 0}, /* F12 */
{0x46, 0}, /* PRINT_SCREEN */
{0x47, 0}, /* SCROLL_LOCK */
{0x39, 0}, /* CAPS_LOCK */
{0x53, 0}, /* NUM_LOCK */
{0x49, 0}, /* INSERT */
{0x4a, 0}, /* HOME */
{0x4b, 0}, /* PAGE_UP */
{0x4e, 0}, /* PAGE_DOWN */
{0x4f, 0}, /* RIGHT_ARROW */
{0x50, 0}, /* LEFT_ARROW */
{0x51, 0}, /* DOWN_ARROW */
{0x52, 0}, /* UP_ARROW */
};
#else
/* UK keyboard */
#define KEYMAP_SIZE (152)
const KEYMAP keymap[KEYMAP_SIZE] = {
{0, 0}, /* NUL */
{0, 0}, /* SOH */
{0, 0}, /* STX */
{0, 0}, /* ETX */
{0, 0}, /* EOT */
{0, 0}, /* ENQ */
{0, 0}, /* ACK */
{0, 0}, /* BEL */
{0x2a, 0}, /* BS */ /* Keyboard Delete (Backspace) */
{0x2b, 0}, /* TAB */ /* Keyboard Tab */
{0x28, 0}, /* LF */ /* Keyboard Return (Enter) */
{0, 0}, /* VT */
{0, 0}, /* FF */
{0, 0}, /* CR */
{0, 0}, /* SO */
{0, 0}, /* SI */
{0, 0}, /* DEL */
{0, 0}, /* DC1 */
{0, 0}, /* DC2 */
{0, 0}, /* DC3 */
{0, 0}, /* DC4 */
{0, 0}, /* NAK */
{0, 0}, /* SYN */
{0, 0}, /* ETB */
{0, 0}, /* CAN */
{0, 0}, /* EM */
{0, 0}, /* SUB */
{0, 0}, /* ESC */
{0, 0}, /* FS */
{0, 0}, /* GS */
{0, 0}, /* RS */
{0, 0}, /* US */
{0x2c, 0}, /* */
{0x1e, KEY_SHIFT}, /* ! */
{0x1f, KEY_SHIFT}, /* " */
{0x32, 0}, /* # */
{0x21, KEY_SHIFT}, /* $ */
{0x22, KEY_SHIFT}, /* % */
{0x24, KEY_SHIFT}, /* & */
{0x34, 0}, /* ' */
{0x26, KEY_SHIFT}, /* ( */
{0x27, KEY_SHIFT}, /* ) */
{0x25, KEY_SHIFT}, /* * */
{0x2e, KEY_SHIFT}, /* + */
{0x36, 0}, /* , */
{0x2d, 0}, /* - */
{0x37, 0}, /* . */
{0x38, 0}, /* / */
{0x27, 0}, /* 0 */
{0x1e, 0}, /* 1 */
{0x1f, 0}, /* 2 */
{0x20, 0}, /* 3 */
{0x21, 0}, /* 4 */
{0x22, 0}, /* 5 */
{0x23, 0}, /* 6 */
{0x24, 0}, /* 7 */
{0x25, 0}, /* 8 */
{0x26, 0}, /* 9 */
{0x33, KEY_SHIFT}, /* : */
{0x33, 0}, /* ; */
{0x36, KEY_SHIFT}, /* < */
{0x2e, 0}, /* = */
{0x37, KEY_SHIFT}, /* > */
{0x38, KEY_SHIFT}, /* ? */
{0x34, KEY_SHIFT}, /* @ */
{0x04, KEY_SHIFT}, /* A */
{0x05, KEY_SHIFT}, /* B */
{0x06, KEY_SHIFT}, /* C */
{0x07, KEY_SHIFT}, /* D */
{0x08, KEY_SHIFT}, /* E */
{0x09, KEY_SHIFT}, /* F */
{0x0a, KEY_SHIFT}, /* G */
{0x0b, KEY_SHIFT}, /* H */
{0x0c, KEY_SHIFT}, /* I */
{0x0d, KEY_SHIFT}, /* J */
{0x0e, KEY_SHIFT}, /* K */
{0x0f, KEY_SHIFT}, /* L */
{0x10, KEY_SHIFT}, /* M */
{0x11, KEY_SHIFT}, /* N */
{0x12, KEY_SHIFT}, /* O */
{0x13, KEY_SHIFT}, /* P */
{0x14, KEY_SHIFT}, /* Q */
{0x15, KEY_SHIFT}, /* R */
{0x16, KEY_SHIFT}, /* S */
{0x17, KEY_SHIFT}, /* T */
{0x18, KEY_SHIFT}, /* U */
{0x19, KEY_SHIFT}, /* V */
{0x1a, KEY_SHIFT}, /* W */
{0x1b, KEY_SHIFT}, /* X */
{0x1c, KEY_SHIFT}, /* Y */
{0x1d, KEY_SHIFT}, /* Z */
{0x2f, 0}, /* [ */
{0x64, 0}, /* \ */
{0x30, 0}, /* ] */
{0x23, KEY_SHIFT}, /* ^ */
{0x2d, KEY_SHIFT}, /* _ */
{0x35, 0}, /* ` */
{0x04, 0}, /* a */
{0x05, 0}, /* b */
{0x06, 0}, /* c */
{0x07, 0}, /* d */
{0x08, 0}, /* e */
{0x09, 0}, /* f */
{0x0a, 0}, /* g */
{0x0b, 0}, /* h */
{0x0c, 0}, /* i */
{0x0d, 0}, /* j */
{0x0e, 0}, /* k */
{0x0f, 0}, /* l */
{0x10, 0}, /* m */
{0x11, 0}, /* n */
{0x12, 0}, /* o */
{0x13, 0}, /* p */
{0x14, 0}, /* q */
{0x15, 0}, /* r */
{0x16, 0}, /* s */
{0x17, 0}, /* t */
{0x18, 0}, /* u */
{0x19, 0}, /* v */
{0x1a, 0}, /* w */
{0x1b, 0}, /* x */
{0x1c, 0}, /* y */
{0x1d, 0}, /* z */
{0x2f, KEY_SHIFT}, /* { */
{0x64, KEY_SHIFT}, /* | */
{0x30, KEY_SHIFT}, /* } */
{0x32, KEY_SHIFT}, /* ~ */
{0,0}, /* DEL */
{0x3a, 0}, /* F1 */
{0x3b, 0}, /* F2 */
{0x3c, 0}, /* F3 */
{0x3d, 0}, /* F4 */
{0x3e, 0}, /* F5 */
{0x3f, 0}, /* F6 */
{0x40, 0}, /* F7 */
{0x41, 0}, /* F8 */
{0x42, 0}, /* F9 */
{0x43, 0}, /* F10 */
{0x44, 0}, /* F11 */
{0x45, 0}, /* F12 */
{0x46, 0}, /* PRINT_SCREEN */
{0x47, 0}, /* SCROLL_LOCK */
{0x39, 0}, /* CAPS_LOCK */
{0x53, 0}, /* NUM_LOCK */
{0x49, 0}, /* INSERT */
{0x4a, 0}, /* HOME */
{0x4b, 0}, /* PAGE_UP */
{0x4e, 0}, /* PAGE_DOWN */
{0x4f, 0}, /* RIGHT_ARROW */
{0x50, 0}, /* LEFT_ARROW */
{0x51, 0}, /* DOWN_ARROW */
{0x52, 0}, /* UP_ARROW */
};
#endif
uint8_t * USBMouseKeyboard::reportDesc() {
if (mouse_type == REL_MOUSE) {
static uint8_t reportDescriptor[] = {
// Keyboard
USAGE_PAGE(1), 0x01,
USAGE(1), 0x06,
COLLECTION(1), 0x01,
REPORT_ID(1), REPORT_ID_KEYBOARD,
USAGE_PAGE(1), 0x07,
USAGE_MINIMUM(1), 0xE0,
USAGE_MAXIMUM(1), 0xE7,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x08,
INPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x08,
INPUT(1), 0x01,
REPORT_COUNT(1), 0x05,
REPORT_SIZE(1), 0x01,
USAGE_PAGE(1), 0x08,
USAGE_MINIMUM(1), 0x01,
USAGE_MAXIMUM(1), 0x05,
OUTPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x03,
OUTPUT(1), 0x01,
REPORT_COUNT(1), 0x06,
REPORT_SIZE(1), 0x08,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(2), 0xff, 0x00,
USAGE_PAGE(1), 0x07,
USAGE_MINIMUM(1), 0x00,
USAGE_MAXIMUM(2), 0xff, 0x00,
INPUT(1), 0x00,
END_COLLECTION(0),
// Mouse
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x02, // Mouse
COLLECTION(1), 0x01, // Application
USAGE(1), 0x01, // Pointer
COLLECTION(1), 0x00, // Physical
REPORT_ID(1), REPORT_ID_MOUSE,
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x01,
USAGE_PAGE(1), 0x09, // Buttons
USAGE_MINIMUM(1), 0x1,
USAGE_MAXIMUM(1), 0x3,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
INPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x05,
INPUT(1), 0x01,
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x08,
USAGE_PAGE(1), 0x01,
USAGE(1), 0x30, // X
USAGE(1), 0x31, // Y
USAGE(1), 0x38, // scroll
LOGICAL_MINIMUM(1), 0x81,
LOGICAL_MAXIMUM(1), 0x7f,
INPUT(1), 0x06,
END_COLLECTION(0),
END_COLLECTION(0),
// Media Control
USAGE_PAGE(1), 0x0C,
USAGE(1), 0x01,
COLLECTION(1), 0x01,
REPORT_ID(1), REPORT_ID_VOLUME,
USAGE_PAGE(1), 0x0C,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x07,
USAGE(1), 0xB5, // Next Track
USAGE(1), 0xB6, // Previous Track
USAGE(1), 0xB7, // Stop
USAGE(1), 0xCD, // Play / Pause
USAGE(1), 0xE2, // Mute
USAGE(1), 0xE9, // Volume Up
USAGE(1), 0xEA, // Volume Down
INPUT(1), 0x02, // Input (Data, Variable, Absolute)
REPORT_COUNT(1), 0x01,
INPUT(1), 0x01,
END_COLLECTION(0),
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
} else if (mouse_type == ABS_MOUSE) {
static uint8_t reportDescriptor[] = {
// Keyboard
USAGE_PAGE(1), 0x01,
USAGE(1), 0x06,
COLLECTION(1), 0x01,
REPORT_ID(1), REPORT_ID_KEYBOARD,
USAGE_PAGE(1), 0x07,
USAGE_MINIMUM(1), 0xE0,
USAGE_MAXIMUM(1), 0xE7,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x08,
INPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x08,
INPUT(1), 0x01,
REPORT_COUNT(1), 0x05,
REPORT_SIZE(1), 0x01,
USAGE_PAGE(1), 0x08,
USAGE_MINIMUM(1), 0x01,
USAGE_MAXIMUM(1), 0x05,
OUTPUT(1), 0x02,
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x03,
OUTPUT(1), 0x01,
REPORT_COUNT(1), 0x06,
REPORT_SIZE(1), 0x08,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(2), 0xff, 0x00,
USAGE_PAGE(1), 0x07,
USAGE_MINIMUM(1), 0x00,
USAGE_MAXIMUM(2), 0xff, 0x00,
INPUT(1), 0x00,
END_COLLECTION(0),
// Mouse
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x02, // Mouse
COLLECTION(1), 0x01, // Application
USAGE(1), 0x01, // Pointer
COLLECTION(1), 0x00, // Physical
REPORT_ID(1), REPORT_ID_MOUSE,
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x30, // X
USAGE(1), 0x31, // Y
LOGICAL_MINIMUM(1), 0x00, // 0
LOGICAL_MAXIMUM(2), 0xff, 0x7f, // 32767
REPORT_SIZE(1), 0x10,
REPORT_COUNT(1), 0x02,
INPUT(1), 0x02, // Data, Variable, Absolute
USAGE_PAGE(1), 0x01, // Generic Desktop
USAGE(1), 0x38, // scroll
LOGICAL_MINIMUM(1), 0x81, // -127
LOGICAL_MAXIMUM(1), 0x7f, // 127
REPORT_SIZE(1), 0x08,
REPORT_COUNT(1), 0x01,
INPUT(1), 0x06, // Data, Variable, Relative
USAGE_PAGE(1), 0x09, // Buttons
USAGE_MINIMUM(1), 0x01,
USAGE_MAXIMUM(1), 0x03,
LOGICAL_MINIMUM(1), 0x00, // 0
LOGICAL_MAXIMUM(1), 0x01, // 1
REPORT_COUNT(1), 0x03,
REPORT_SIZE(1), 0x01,
INPUT(1), 0x02, // Data, Variable, Absolute
REPORT_COUNT(1), 0x01,
REPORT_SIZE(1), 0x05,
INPUT(1), 0x01, // Constant
END_COLLECTION(0),
END_COLLECTION(0),
// Media Control
USAGE_PAGE(1), 0x0C,
USAGE(1), 0x01,
COLLECTION(1), 0x01,
REPORT_ID(1), REPORT_ID_VOLUME,
USAGE_PAGE(1), 0x0C,
LOGICAL_MINIMUM(1), 0x00,
LOGICAL_MAXIMUM(1), 0x01,
REPORT_SIZE(1), 0x01,
REPORT_COUNT(1), 0x07,
USAGE(1), 0xB5, // Next Track
USAGE(1), 0xB6, // Previous Track
USAGE(1), 0xB7, // Stop
USAGE(1), 0xCD, // Play / Pause
USAGE(1), 0xE2, // Mute
USAGE(1), 0xE9, // Volume Up
USAGE(1), 0xEA, // Volume Down
INPUT(1), 0x02, // Input (Data, Variable, Absolute)
REPORT_COUNT(1), 0x01,
INPUT(1), 0x01,
END_COLLECTION(0),
};
reportLength = sizeof(reportDescriptor);
return reportDescriptor;
}
return NULL;
}
bool USBMouseKeyboard::EP1_OUT_callback() {
uint32_t bytesRead = 0;
uint8_t led[65];
USBDevice::readEP(EPINT_OUT, led, &bytesRead, MAX_HID_REPORT_SIZE);
// we take led[1] because led[0] is the report ID
lock_status = led[1] & 0x07;
// We activate the endpoint to be able to recceive data
if (!readStart(EPINT_OUT, MAX_HID_REPORT_SIZE))
return false;
return true;
}
uint8_t USBMouseKeyboard::lockStatus() {
return lock_status;
}
bool USBMouseKeyboard::update(int16_t x, int16_t y, uint8_t button, int8_t z) {
switch (mouse_type) {
case REL_MOUSE:
while (x > 127) {
if (!mouseSend(127, 0, button, z)) return false;
x = x - 127;
}
while (x < -128) {
if (!mouseSend(-128, 0, button, z)) return false;
x = x + 128;
}
while (y > 127) {
if (!mouseSend(0, 127, button, z)) return false;
y = y - 127;
}
while (y < -128) {
if (!mouseSend(0, -128, button, z)) return false;
y = y + 128;
}
return mouseSend(x, y, button, z);
case ABS_MOUSE:
HID_REPORT report;
report.data[0] = REPORT_ID_MOUSE;
report.data[1] = x & 0xff;
report.data[2] = (x >> 8) & 0xff;
report.data[3] = y & 0xff;
report.data[4] = (y >> 8) & 0xff;
report.data[5] = -z;
report.data[6] = button & 0x07;
report.length = 7;
return send(&report);
default:
return false;
}
}
bool USBMouseKeyboard::mouseSend(int8_t x, int8_t y, uint8_t buttons, int8_t z) {
HID_REPORT report;
report.data[0] = REPORT_ID_MOUSE;
report.data[1] = buttons & 0x07;
report.data[2] = x;
report.data[3] = y;
report.data[4] = -z; // >0 to scroll down, <0 to scroll up
report.length = 5;
return send(&report);
}
bool USBMouseKeyboard::move(int16_t x, int16_t y) {
return update(x, y, button, 0);
}
bool USBMouseKeyboard::scroll(int8_t z) {
return update(0, 0, button, z);
}
bool USBMouseKeyboard::doubleClick() {
if (!click(MOUSE_LEFT))
return false;
wait(0.1);
return click(MOUSE_LEFT);
}
bool USBMouseKeyboard::click(uint8_t button) {
if (!update(0, 0, button, 0))
return false;
wait(0.01);
return update(0, 0, 0, 0);
}
bool USBMouseKeyboard::press(uint8_t button_) {
button = button_ & 0x07;
return update(0, 0, button, 0);
}
bool USBMouseKeyboard::release(uint8_t button_) {
button = (button & (~button_)) & 0x07;
return update(0, 0, button, 0);
}
int USBMouseKeyboard::_putc(int c) {
return keyCode(c, keymap[c].modifier);
}
bool USBMouseKeyboard::keyCode(uint8_t key, uint8_t modifier) {
// Send a simulated keyboard keypress. Returns true if successful.
HID_REPORT report;
report.data[0] = REPORT_ID_KEYBOARD;
report.data[1] = modifier;
report.data[2] = 0;
report.data[3] = keymap[key].usage;
report.data[4] = 0;
report.data[5] = 0;
report.data[6] = 0;
report.data[7] = 0;
report.data[8] = 0;
report.length = 9;
if (!send(&report)) {
return false;
}
report.data[1] = 0;
report.data[3] = 0;
if (!send(&report)) {
return false;
}
return true;
}
bool USBMouseKeyboard::mediaControl(MEDIA_KEY key) {
HID_REPORT report;
report.data[0] = REPORT_ID_VOLUME;
report.data[1] = (1 << key) & 0x7f;
report.length = 2;
send(&report);
report.data[0] = REPORT_ID_VOLUME;
report.data[1] = 0;
report.length = 2;
return send(&report);
}

View File

@ -0,0 +1,220 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBMOUSEKEYBOARD_H
#define USBMOUSEKEYBOARD_H
#define REPORT_ID_KEYBOARD 1
#define REPORT_ID_MOUSE 2
#define REPORT_ID_VOLUME 3
#include "USBMouse.h"
#include "USBKeyboard.h"
#include "Stream.h"
#include "USBHID.h"
/**
* USBMouseKeyboard example
* @code
*
* #include "mbed.h"
* #include "USBMouseKeyboard.h"
*
* USBMouseKeyboard key_mouse;
*
* int main(void)
* {
* while(1)
* {
* key_mouse.move(20, 0);
* key_mouse.printf("Hello From MBED\r\n");
* wait(1);
* }
* }
* @endcode
*
*
* @code
*
* #include "mbed.h"
* #include "USBMouseKeyboard.h"
*
* USBMouseKeyboard key_mouse(ABS_MOUSE);
*
* int main(void)
* {
* while(1)
* {
* key_mouse.move(X_MAX_ABS/2, Y_MAX_ABS/2);
* key_mouse.printf("Hello from MBED\r\n");
* wait(1);
* }
* }
* @endcode
*/
class USBMouseKeyboard: public USBHID, public Stream
{
public:
/**
* Constructor
*
* @param mouse_type Mouse type: ABS_MOUSE (absolute mouse) or REL_MOUSE (relative mouse) (default: REL_MOUSE)
* @param leds Leds bus: first: NUM_LOCK, second: CAPS_LOCK, third: SCROLL_LOCK
* @param vendor_id Your vendor_id (default: 0x1234)
* @param product_id Your product_id (default: 0x0001)
* @param product_release Your preoduct_release (default: 0x0001)
*
*/
USBMouseKeyboard(MOUSE_TYPE mouse_type = REL_MOUSE, uint16_t vendor_id = 0x0021, uint16_t product_id = 0x0011, uint16_t product_release = 0x0001):
USBHID(0, 0, vendor_id, product_id, product_release, false)
{
lock_status = 0;
button = 0;
this->mouse_type = mouse_type;
connect();
};
/**
* Write a state of the mouse
*
* @param x x-axis position
* @param y y-axis position
* @param buttons buttons state (first bit represents MOUSE_LEFT, second bit MOUSE_RIGHT and third bit MOUSE_MIDDLE)
* @param z wheel state (>0 to scroll down, <0 to scroll up)
* @returns true if there is no error, false otherwise
*/
bool update(int16_t x, int16_t y, uint8_t buttons, int8_t z);
/**
* Move the cursor to (x, y)
*
* @param x x-axis position
* @param y y-axis position
* @returns true if there is no error, false otherwise
*/
bool move(int16_t x, int16_t y);
/**
* Press one or several buttons
*
* @param button button state (ex: press(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool press(uint8_t button);
/**
* Release one or several buttons
*
* @param button button state (ex: release(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool release(uint8_t button);
/**
* Double click (MOUSE_LEFT)
*
* @returns true if there is no error, false otherwise
*/
bool doubleClick();
/**
* Click
*
* @param button state of the buttons ( ex: clic(MOUSE_LEFT))
* @returns true if there is no error, false otherwise
*/
bool click(uint8_t button);
/**
* Scrolling
*
* @param z value of the wheel (>0 to go down, <0 to go up)
* @returns true if there is no error, false otherwise
*/
bool scroll(int8_t z);
/**
* To send a character defined by a modifier(CTRL, SHIFT, ALT) and the key
*
* @code
* //To send CTRL + s (save)
* keyboard.keyCode('s', KEY_CTRL);
* @endcode
*
* @param modifier bit 0: KEY_CTRL, bit 1: KEY_SHIFT, bit 2: KEY_ALT (default: 0)
* @param key character to send
* @returns true if there is no error, false otherwise
*/
bool keyCode(uint8_t key, uint8_t modifier = 0);
/**
* Send a character
*
* @param c character to be sent
* @returns true if there is no error, false otherwise
*/
virtual int _putc(int c);
/**
* Control media keys
*
* @param key media key pressed (KEY_NEXT_TRACK, KEY_PREVIOUS_TRACK, KEY_STOP, KEY_PLAY_PAUSE, KEY_MUTE, KEY_VOLUME_UP, KEY_VOLUME_DOWN)
* @returns true if there is no error, false otherwise
*/
bool mediaControl(MEDIA_KEY key);
/**
* Read status of lock keys. Useful to switch-on/off leds according to key pressed. Only the first three bits of the result is important:
* - First bit: NUM_LOCK
* - Second bit: CAPS_LOCK
* - Third bit: SCROLL_LOCK
*
* @returns status of lock keys
*/
uint8_t lockStatus();
/*
* To define the report descriptor. Warning: this method has to store the length of the report descriptor in reportLength.
*
* @returns pointer to the report descriptor
*/
virtual uint8_t * reportDesc();
/*
* Called when a data is received on the OUT endpoint. Useful to switch on LED of LOCK keys
*
* @returns if handle by subclass, return true
*/
virtual bool EP1_OUT_callback();
private:
bool mouseWrite(int8_t x, int8_t y, uint8_t buttons, int8_t z);
MOUSE_TYPE mouse_type;
uint8_t button;
bool mouseSend(int8_t x, int8_t y, uint8_t buttons, int8_t z);
uint8_t lock_status;
//dummy otherwise it doesn't compile (we must define all methods of an abstract class)
virtual int _getc() { return -1;}
};
#endif

View File

@ -0,0 +1,250 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MIDIMESSAGE_H
#define MIDIMESSAGE_H
#include "mbed.h"
// MIDI Message Format
//
// [ msg(4) | channel(4) ] [ 0 | n(7) ] [ 0 | m(7) ]
//
// MIDI Data Messages (Channel Specific)
//
// Message msg n m
// ---------------------------------------------
// Note Off 0x8 Key Velocity
// Note On 0x9 Key Velocity
// Polyphonic Aftertouch 0xA Key Pressure
// Control Change 0xB Controller Value
// Program Change 0xC Program -
// Channel Aftertouch 0xD Pressure -
// Pitch Wheel 0xE LSB MSB
#define CABLE_NUM (0<<4)
/** A MIDI message container */
class MIDIMessage {
public:
MIDIMessage() {}
MIDIMessage(uint8_t *buf) {
*((uint32_t *)data) = *((uint32_t *)buf);
}
// create messages
/** Create a NoteOff message
* @param key Key ID
* @param velocity Key velocity (0-127, default = 127)
* @param channel Key channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage NoteOff(int key, int velocity = 127, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x08;
msg.data[1] = 0x80 | (channel & 0x0F);
msg.data[2] = key & 0x7F;
msg.data[3] = velocity & 0x7F;
return msg;
}
/** Create a NoteOn message
* @param key Key ID
* @param velocity Key velocity (0-127, default = 127)
* @param channel Key channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage NoteOn(int key, int velocity = 127, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x09;
msg.data[1] = 0x90 | (channel & 0x0F);
msg.data[2] = key & 0x7F;
msg.data[3] = velocity & 0x7F;
return msg;
}
/** Create a PolyPhonic Aftertouch message
* @param key Key ID
* @param pressure Aftertouch pressure (0-127)
* @param channel Key channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage PolyphonicAftertouch(int key, int pressure, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x0A;
msg.data[1] = 0xA0 | (channel & 0x0F);
msg.data[2] = key & 0x7F;
msg.data[3] = pressure & 0x7F;
return msg;
}
/** Create a Control Change message
* @param control Controller ID
* @param value Controller value (0-127)
* @param channel Controller channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage ControlChange(int control, int value, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x0B;
msg.data[1] = 0xB0 | (channel & 0x0F);
msg.data[2] = control & 0x7F;
msg.data[3] = value & 0x7F;
return msg;
}
/** Create a Program Change message
* @param program Program ID
* @param channel Channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage ProgramChange(int program, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x0C;
msg.data[1] = 0xC0 | (channel & 0x0F);
msg.data[2] = program & 0x7F;
msg.data[3] = 0x00;
return msg;
}
/** Create a Channel Aftertouch message
* @param pressure Pressure
* @param channel Key channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage ChannelAftertouch(int pressure, int channel = 0) {
MIDIMessage msg;
msg.data[0] = CABLE_NUM | 0x0D;
msg.data[1] = 0xD0 | (channel & 0x0F);
msg.data[2] = pressure & 0x7F;
msg.data[3] = 0x00;
return msg;
}
/** Create a Pitch Wheel message
* @param pitch Pitch (-8192 - 8191, default = 0)
* @param channel Channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage PitchWheel(int pitch = 0, int channel = 0) {
MIDIMessage msg;
int p = pitch + 8192; // 0 - 16383, 8192 is center
msg.data[0] = CABLE_NUM | 0x0E;
msg.data[1] = 0xE0 | (channel & 0x0F);
msg.data[2] = p & 0x7F;
msg.data[3] = (p >> 7) & 0x7F;
return msg;
}
/** Create an All Notes Off message
* @param channel Channel (0-15, default 0)
* @returns A MIDIMessage
*/
static MIDIMessage AllNotesOff(int channel = 0) {
return ControlChange(123, 0, channel);
}
// decode messages
/** MIDI Message Types */
enum MIDIMessageType {
ErrorType,
NoteOffType,
NoteOnType,
PolyphonicAftertouchType,
ControlChangeType,
ProgramChangeType,
ChannelAftertouchType,
PitchWheelType,
AllNotesOffType
};
/** Read the message type
* @returns MIDIMessageType
*/
MIDIMessageType type() {
switch((data[1] >> 4) & 0xF) {
case 0x8: return NoteOffType;
case 0x9: return NoteOnType;
case 0xA: return PolyphonicAftertouchType;
case 0xB:
if(controller() < 120) { // standard controllers
return ControlChangeType;
} else if(controller() == 123) {
return AllNotesOffType;
} else {
return ErrorType; // unsupported atm
}
case 0xC: return ProgramChangeType;
case 0xD: return ChannelAftertouchType;
case 0xE: return PitchWheelType;
default: return ErrorType;
}
}
/** Read the channel number */
int channel() {
return (data[1] & 0x0F);
}
/** Read the key ID */
int key() {
return (data[2] & 0x7F);
}
/** Read the velocity */
int velocity() {
return (data[3] & 0x7F);
}
/** Read the controller value */
int value() {
return (data[3] & 0x7F);
}
/** Read the aftertouch pressure */
int pressure() {
if(type() == PolyphonicAftertouchType) {
return (data[3] & 0x7F);
} else {
return (data[2] & 0x7F);
}
}
/** Read the controller number */
int controller() {
return (data[2] & 0x7F);
}
/** Read the program number */
int program() {
return (data[2] & 0x7F);
}
/** Read the pitch value */
int pitch() {
int p = ((data[3] & 0x7F) << 7) | (data[2] & 0x7F);
return p - 8192; // 0 - 16383, 8192 is center
}
uint8_t data[4];
};
#endif

View File

@ -0,0 +1,121 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBMIDI.h"
USBMIDI::USBMIDI(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
midi_evt = NULL;
USBDevice::connect();
}
void USBMIDI::write(MIDIMessage m) {
USBDevice::write(EPBULK_IN, m.data, 4, MAX_PACKET_SIZE_EPBULK);
}
void USBMIDI::attach(void (*fptr)(MIDIMessage)) {
midi_evt = fptr;
}
bool USBMIDI::EP2_OUT_callback() {
uint8_t buf[64];
uint32_t len;
readEP(EPBULK_OUT, buf, &len, 64);
if (midi_evt != NULL) {
for (int i=0; i<len; i+=4) {
midi_evt(MIDIMessage(buf+i));
}
}
// We reactivate the endpoint to receive next characters
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
// Called in ISR context
// Set configuration. Return false if the
// configuration is not supported.
bool USBMIDI::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure endpoints > 0
addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK);
addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
// We activate the endpoint to be able to receive data
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
uint8_t * USBMIDI::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x0c, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'A',0,'u',0,'d',0,'i',0,'o',0 //bString iInterface - Audio
};
return stringIinterfaceDescriptor;
}
uint8_t * USBMIDI::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x16, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'b',0,'e',0,'d',0,' ',0,'A',0,'u',0,'d',0,'i',0,'o',0 //bString iProduct - Mbed Audio
};
return stringIproductDescriptor;
}
uint8_t * USBMIDI::configurationDesc() {
static uint8_t configDescriptor[] = {
// configuration descriptor
0x09, 0x02, 0x65, 0x00, 0x02, 0x01, 0x00, 0xc0, 0x50,
// The Audio Interface Collection
0x09, 0x04, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, // Standard AC Interface Descriptor
0x09, 0x24, 0x01, 0x00, 0x01, 0x09, 0x00, 0x01, 0x01, // Class-specific AC Interface Descriptor
0x09, 0x04, 0x01, 0x00, 0x02, 0x01, 0x03, 0x00, 0x00, // MIDIStreaming Interface Descriptors
0x07, 0x24, 0x01, 0x00, 0x01, 0x41, 0x00, // Class-Specific MS Interface Header Descriptor
// MIDI IN JACKS
0x06, 0x24, 0x02, 0x01, 0x01, 0x00,
0x06, 0x24, 0x02, 0x02, 0x02, 0x00,
// MIDI OUT JACKS
0x09, 0x24, 0x03, 0x01, 0x03, 0x01, 0x02, 0x01, 0x00,
0x09, 0x24, 0x03, 0x02, 0x06, 0x01, 0x01, 0x01, 0x00,
// OUT endpoint descriptor
0x09, 0x05, 0x02, 0x02, 0x40, 0x00, 0x00, 0x00, 0x00,
0x05, 0x25, 0x01, 0x01, 0x01,
// IN endpoint descriptor
0x09, 0x05, 0x82, 0x02, 0x40, 0x00, 0x00, 0x00, 0x00,
0x05, 0x25, 0x01, 0x01, 0x03,
};
return configDescriptor;
}

View File

@ -0,0 +1,109 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBMIDI_H
#define USBMIDI_H
/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"
#include "USBDevice.h"
#include "MIDIMessage.h"
#define DEFAULT_CONFIGURATION (1)
/**
* USBMIDI example
*
* @code
* #include "mbed.h"
* #include "USBMIDI.h"
*
* USBMIDI midi;
*
* int main() {
* while (1) {
* for(int i=48; i<83; i++) { // send some messages!
* midi.write(MIDIMessage::NoteOn(i));
* wait(0.25);
* midi.write(MIDIMessage::NoteOff(i));
* wait(0.5);
* }
* }
* }
* @endcode
*/
class USBMIDI: public USBDevice {
public:
/**
* Constructor
*
* @param vendor_id Your vendor_id
* @param product_id Your product_id
* @param product_release Your preoduct_release
*/
USBMIDI(uint16_t vendor_id = 0x0700, uint16_t product_id = 0x0101, uint16_t product_release = 0x0001);
/**
* Send a MIDIMessage
*
* @param m The MIDIMessage to send
*/
void write(MIDIMessage m);
/**
* Attach a callback for when a MIDIEvent is received
*
* @param fptr function pointer
*/
void attach(void (*fptr)(MIDIMessage));
protected:
virtual bool EP2_OUT_callback();
virtual bool USBCallback_setConfiguration(uint8_t configuration);
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
private:
void (*midi_evt)(MIDIMessage);
};
#endif

View File

@ -0,0 +1,645 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBMSD.h"
#define DISK_OK 0x00
#define NO_INIT 0x01
#define NO_DISK 0x02
#define WRITE_PROTECT 0x04
#define CBW_Signature 0x43425355
#define CSW_Signature 0x53425355
// SCSI Commands
#define TEST_UNIT_READY 0x00
#define REQUEST_SENSE 0x03
#define FORMAT_UNIT 0x04
#define INQUIRY 0x12
#define MODE_SELECT6 0x15
#define MODE_SENSE6 0x1A
#define START_STOP_UNIT 0x1B
#define MEDIA_REMOVAL 0x1E
#define READ_FORMAT_CAPACITIES 0x23
#define READ_CAPACITY 0x25
#define READ10 0x28
#define WRITE10 0x2A
#define VERIFY10 0x2F
#define READ12 0xA8
#define WRITE12 0xAA
#define MODE_SELECT10 0x55
#define MODE_SENSE10 0x5A
// MSC class specific requests
#define MSC_REQUEST_RESET 0xFF
#define MSC_REQUEST_GET_MAX_LUN 0xFE
#define DEFAULT_CONFIGURATION (1)
// max packet size
#define MAX_PACKET MAX_PACKET_SIZE_EPBULK
// CSW Status
enum Status {
CSW_PASSED,
CSW_FAILED,
CSW_ERROR,
};
USBMSD::USBMSD(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
stage = READ_CBW;
memset((void *)&cbw, 0, sizeof(CBW));
memset((void *)&csw, 0, sizeof(CSW));
}
// Called in ISR context to process a class specific request
bool USBMSD::USBCallback_request(void) {
bool success = false;
CONTROL_TRANSFER * transfer = getTransferPtr();
static uint8_t maxLUN[1] = {0};
if (transfer->setup.bmRequestType.Type == CLASS_TYPE) {
switch (transfer->setup.bRequest) {
case MSC_REQUEST_RESET:
reset();
success = true;
break;
case MSC_REQUEST_GET_MAX_LUN:
transfer->remaining = 1;
transfer->ptr = maxLUN;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
default:
break;
}
}
return success;
}
bool USBMSD::connect() {
//disk initialization
if (disk_status() & NO_INIT) {
if (disk_initialize()) {
return false;
}
}
// get number of blocks
BlockCount = disk_sectors();
// get memory size
MemorySize = disk_size();
if (BlockCount > 0) {
BlockSize = MemorySize / BlockCount;
if (BlockSize != 0) {
page = (uint8_t *)malloc(BlockSize * sizeof(uint8_t));
if (page == NULL)
return false;
}
} else {
return false;
}
//connect the device
USBDevice::connect();
return true;
}
void USBMSD::reset() {
stage = READ_CBW;
}
// Called in ISR context called when a data is received
bool USBMSD::EP2_OUT_callback() {
uint32_t size = 0;
uint8_t buf[MAX_PACKET_SIZE_EPBULK];
readEP(EPBULK_OUT, buf, &size, MAX_PACKET_SIZE_EPBULK);
switch (stage) {
// the device has to decode the CBW received
case READ_CBW:
CBWDecode(buf, size);
break;
// the device has to receive data from the host
case PROCESS_CBW:
switch (cbw.CB[0]) {
case WRITE10:
case WRITE12:
memoryWrite(buf, size);
break;
case VERIFY10:
memoryVerify(buf, size);
break;
}
break;
// an error has occured: stall endpoint and send CSW
default:
stallEndpoint(EPBULK_OUT);
csw.Status = CSW_ERROR;
sendCSW();
break;
}
//reactivate readings on the OUT bulk endpoint
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
// Called in ISR context when a data has been transferred
bool USBMSD::EP2_IN_callback() {
switch (stage) {
// the device has to send data to the host
case PROCESS_CBW:
switch (cbw.CB[0]) {
case READ10:
case READ12:
memoryRead();
break;
}
break;
//the device has to send a CSW
case SEND_CSW:
sendCSW();
break;
// an error has occured
case ERROR:
stallEndpoint(EPBULK_IN);
sendCSW();
break;
// the host has received the CSW -> we wait a CBW
case WAIT_CSW:
stage = READ_CBW;
break;
}
return true;
}
void USBMSD::memoryWrite (uint8_t * buf, uint16_t size) {
if ((addr + size) > MemorySize) {
size = MemorySize - addr;
stage = ERROR;
stallEndpoint(EPBULK_OUT);
}
// we fill an array in RAM of 1 block before writing it in memory
for (int i = 0; i < size; i++)
page[addr%BlockSize + i] = buf[i];
// if the array is filled, write it in memory
if (!((addr + size)%BlockSize)) {
if (!(disk_status() & WRITE_PROTECT)) {
disk_write(page, addr/BlockSize);
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ((!length) || (stage != PROCESS_CBW)) {
csw.Status = (stage == ERROR) ? CSW_FAILED : CSW_PASSED;
sendCSW();
}
}
void USBMSD::memoryVerify (uint8_t * buf, uint16_t size) {
uint32_t n;
if ((addr + size) > MemorySize) {
size = MemorySize - addr;
stage = ERROR;
stallEndpoint(EPBULK_OUT);
}
// beginning of a new block -> load a whole block in RAM
if (!(addr%BlockSize))
disk_read(page, addr/BlockSize);
// info are in RAM -> no need to re-read memory
for (n = 0; n < size; n++) {
if (page[addr%BlockSize + n] != buf[n]) {
memOK = false;
break;
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ( !length || (stage != PROCESS_CBW)) {
csw.Status = (memOK && (stage == PROCESS_CBW)) ? CSW_PASSED : CSW_FAILED;
sendCSW();
}
}
bool USBMSD::inquiryRequest (void) {
uint8_t inquiry[] = { 0x00, 0x80, 0x00, 0x01,
36 - 4, 0x80, 0x00, 0x00,
'M', 'B', 'E', 'D', '.', 'O', 'R', 'G',
'M', 'B', 'E', 'D', ' ', 'U', 'S', 'B', ' ', 'D', 'I', 'S', 'K', ' ', ' ', ' ',
'1', '.', '0', ' ',
};
if (!write(inquiry, sizeof(inquiry))) {
return false;
}
return true;
}
bool USBMSD::readFormatCapacity() {
uint8_t capacity[] = { 0x00, 0x00, 0x00, 0x08,
(BlockCount >> 24) & 0xff,
(BlockCount >> 16) & 0xff,
(BlockCount >> 8) & 0xff,
(BlockCount >> 0) & 0xff,
0x02,
(BlockSize >> 16) & 0xff,
(BlockSize >> 8) & 0xff,
(BlockSize >> 0) & 0xff,
};
if (!write(capacity, sizeof(capacity))) {
return false;
}
return true;
}
bool USBMSD::readCapacity (void) {
uint8_t capacity[] = {
((BlockCount - 1) >> 24) & 0xff,
((BlockCount - 1) >> 16) & 0xff,
((BlockCount - 1) >> 8) & 0xff,
((BlockCount - 1) >> 0) & 0xff,
(BlockSize >> 24) & 0xff,
(BlockSize >> 16) & 0xff,
(BlockSize >> 8) & 0xff,
(BlockSize >> 0) & 0xff,
};
if (!write(capacity, sizeof(capacity))) {
return false;
}
return true;
}
bool USBMSD::write (uint8_t * buf, uint16_t size) {
if (size >= cbw.DataLength) {
size = cbw.DataLength;
}
stage = SEND_CSW;
if (!writeNB(EPBULK_IN, buf, size, MAX_PACKET_SIZE_EPBULK)) {
return false;
}
csw.DataResidue -= size;
csw.Status = CSW_PASSED;
return true;
}
bool USBMSD::modeSense6 (void) {
uint8_t sense6[] = { 0x03, 0x00, 0x00, 0x00 };
if (!write(sense6, sizeof(sense6))) {
return false;
}
return true;
}
void USBMSD::sendCSW() {
csw.Signature = CSW_Signature;
writeNB(EPBULK_IN, (uint8_t *)&csw, sizeof(CSW), MAX_PACKET_SIZE_EPBULK);
stage = WAIT_CSW;
}
bool USBMSD::requestSense (void) {
uint8_t request_sense[] = {
0x70,
0x00,
0x05, // Sense Key: illegal request
0x00,
0x00,
0x00,
0x00,
0x0A,
0x00,
0x00,
0x00,
0x00,
0x30,
0x01,
0x00,
0x00,
0x00,
0x00,
};
if (!write(request_sense, sizeof(request_sense))) {
return false;
}
return true;
}
void USBMSD::fail() {
csw.Status = CSW_FAILED;
sendCSW();
}
void USBMSD::CBWDecode(uint8_t * buf, uint16_t size) {
if (size == sizeof(cbw)) {
memcpy((uint8_t *)&cbw, buf, size);
if (cbw.Signature == CBW_Signature) {
csw.Tag = cbw.Tag;
csw.DataResidue = cbw.DataLength;
if ((cbw.CBLength < 1) || (cbw.CBLength > 16) ) {
fail();
} else {
switch (cbw.CB[0]) {
case TEST_UNIT_READY:
testUnitReady();
break;
case REQUEST_SENSE:
requestSense();
break;
case INQUIRY:
inquiryRequest();
break;
case MODE_SENSE6:
modeSense6();
break;
case READ_FORMAT_CAPACITIES:
readFormatCapacity();
break;
case READ_CAPACITY:
readCapacity();
break;
case READ10:
case READ12:
if (infoTransfer()) {
if ((cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
memoryRead();
} else {
stallEndpoint(EPBULK_OUT);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case WRITE10:
case WRITE12:
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
} else {
stallEndpoint(EPBULK_IN);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case VERIFY10:
if (!(cbw.CB[1] & 0x02)) {
csw.Status = CSW_PASSED;
sendCSW();
break;
}
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
memOK = true;
} else {
stallEndpoint(EPBULK_IN);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case MEDIA_REMOVAL:
csw.Status = CSW_PASSED;
sendCSW();
break;
default:
fail();
break;
}
}
}
}
}
void USBMSD::testUnitReady (void) {
if (cbw.DataLength != 0) {
if ((cbw.Flags & 0x80) != 0) {
stallEndpoint(EPBULK_IN);
} else {
stallEndpoint(EPBULK_OUT);
}
}
csw.Status = CSW_PASSED;
sendCSW();
}
void USBMSD::memoryRead (void) {
uint32_t n;
n = (length > MAX_PACKET) ? MAX_PACKET : length;
if ((addr + n) > MemorySize) {
n = MemorySize - addr;
stage = ERROR;
}
// we read an entire block
if (!(addr%BlockSize))
disk_read(page, addr/BlockSize);
// write data which are in RAM
writeNB(EPBULK_IN, &page[addr%BlockSize], n, MAX_PACKET_SIZE_EPBULK);
addr += n;
length -= n;
csw.DataResidue -= n;
if ( !length || (stage != PROCESS_CBW)) {
csw.Status = (stage == PROCESS_CBW) ? CSW_PASSED : CSW_FAILED;
stage = (stage == PROCESS_CBW) ? SEND_CSW : stage;
}
}
bool USBMSD::infoTransfer (void) {
uint32_t n;
// Logical Block Address of First Block
n = (cbw.CB[2] << 24) | (cbw.CB[3] << 16) | (cbw.CB[4] << 8) | (cbw.CB[5] << 0);
addr = n * BlockSize;
// Number of Blocks to transfer
switch (cbw.CB[0]) {
case READ10:
case WRITE10:
case VERIFY10:
n = (cbw.CB[7] << 8) | (cbw.CB[8] << 0);
break;
case READ12:
case WRITE12:
n = (cbw.CB[6] << 24) | (cbw.CB[7] << 16) | (cbw.CB[8] << 8) | (cbw.CB[9] << 0);
break;
}
length = n * BlockSize;
if (!cbw.DataLength) { // host requests no data
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
if (cbw.DataLength != length) {
if ((cbw.Flags & 0x80) != 0) {
stallEndpoint(EPBULK_IN);
} else {
stallEndpoint(EPBULK_OUT);
}
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
return true;
}
// Called in ISR context
// Set configuration. Return false if the
// configuration is not supported.
bool USBMSD::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure endpoints > 0
addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK);
addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
//activate readings
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
uint8_t * USBMSD::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x08, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'S',0,'D',0 //bString iInterface - MSD
};
return stringIinterfaceDescriptor;
}
uint8_t * USBMSD::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x12, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'b',0,'e',0,'d',0,' ',0,'M',0,'S',0,'D',0 //bString iProduct - Mbed Audio
};
return stringIproductDescriptor;
}
uint8_t * USBMSD::configurationDesc() {
static uint8_t configDescriptor[] = {
// Configuration 1
9, // bLength
2, // bDescriptorType
LSB(9 + 9 + 7 + 7), // wTotalLength
MSB(9 + 9 + 7 + 7),
0x01, // bNumInterfaces
0x01, // bConfigurationValue: 0x01 is used to select this configuration
0x00, // iConfiguration: no string to describe this configuration
0xC0, // bmAttributes
100, // bMaxPower, device power consumption is 100 mA
// Interface 0, Alternate Setting 0, MSC Class
9, // bLength
4, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
0x08, // bInterfaceClass
0x06, // bInterfaceSubClass
0x50, // bInterfaceProtocol
0x04, // iInterface
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
PHY_TO_DESC(EPBULK_IN), // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
PHY_TO_DESC(EPBULK_OUT), // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0 // bInterval
};
return configDescriptor;
}

View File

@ -0,0 +1,239 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBMSD_H
#define USBMSD_H
/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"
#include "USBDevice.h"
/**
* USBMSD class: generic class in order to use all kinds of blocks storage chip
*
* Introduction
*
* The USBMSD implements the MSD protocol. It permits to access a memory chip (flash, sdcard,...)
* from a computer over USB. But this class doesn't work standalone, you need to subclass this class
* and define virtual functions which are called in USBMSD.
*
* How to use this class with your chip ?
*
* You have to inherit and define some pure virtual functions (mandatory step):
* - virtual int disk_read(char * data, int block): function to read a block
* - virtual int disk_write(const char * data, int block): function to write a block
* - virtual int disk_initialize(): function to initialize the memory
* - virtual int disk_sectors(): return the number of blocks
* - virtual int disk_size(): return the memory size
* - virtual int disk_status(): return the status of the storage chip (0: OK, 1: not initialized, 2: no medium in the drive, 4: write protection)
*
* All functions names are compatible with the fat filesystem library. So you can imagine using your own class with
* USBMSD and the fat filesystem library in the same program. Just be careful because there are two different parts which
* will access the sd card. You can do a master/slave system using the disk_status method.
*
* Once these functions defined, you can call connect() (at the end of the constructor of your class for instance)
* of USBMSD to connect your mass storage device. connect() will first call disk_status() to test the status of the disk.
* If disk_status() returns 1 (disk not initialized), then disk_initialize() is called. After this step, connect() will collect information
* such as the number of blocks and the memory size.
*/
class USBMSD: public USBDevice {
public:
/**
* Constructor
*
* @param vendor_id Your vendor_id
* @param product_id Your product_id
* @param product_release Your preoduct_release
*/
USBMSD(uint16_t vendor_id = 0x0703, uint16_t product_id = 0x0104, uint16_t product_release = 0x0001);
/**
* Connect the USB MSD device. Establish disk initialization before really connect the device.
*
* @returns true if successful
*/
bool connect();
protected:
/*
* read a block on a storage chip
*
* @param data pointer where will be stored read data
* @param block block number
* @returns 0 if successful
*/
virtual int disk_read(uint8_t * data, uint64_t block) = 0;
/*
* write a block on a storage chip
*
* @param data data to write
* @param block block number
* @returns 0 if successful
*/
virtual int disk_write(const uint8_t * data, uint64_t block) = 0;
/*
* Disk initilization
*/
virtual int disk_initialize() = 0;
/*
* Return the number of blocks
*
* @returns number of blocks
*/
virtual uint64_t disk_sectors() = 0;
/*
* Return memory size
*
* @returns memory size
*/
virtual uint64_t disk_size() = 0;
/*
* To check the status of the storage chip
*
* @returns status: 0: OK, 1: disk not initialized, 2: no medium in the drive, 4: write protected
*/
virtual int disk_status() = 0;
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
/*
* Callback called when a packet is received
*/
virtual bool EP2_OUT_callback();
/*
* Callback called when a packet has been sent
*/
virtual bool EP2_IN_callback();
/*
* Set configuration of device. Add endpoints
*/
virtual bool USBCallback_setConfiguration(uint8_t configuration);
/*
* Callback called to process class specific requests
*/
virtual bool USBCallback_request();
private:
// MSC Bulk-only Stage
enum Stage {
READ_CBW, // wait a CBW
ERROR, // error
PROCESS_CBW, // process a CBW request
SEND_CSW, // send a CSW
WAIT_CSW, // wait that a CSW has been effectively sent
};
// Bulk-only CBW
typedef __packed struct {
uint32_t Signature;
uint32_t Tag;
uint32_t DataLength;
uint8_t Flags;
uint8_t LUN;
uint8_t CBLength;
uint8_t CB[16];
} CBW;
// Bulk-only CSW
typedef __packed struct {
uint32_t Signature;
uint32_t Tag;
uint32_t DataResidue;
uint8_t Status;
} CSW;
//state of the bulk-only state machine
Stage stage;
// current CBW
CBW cbw;
// CSW which will be sent
CSW csw;
// addr where will be read or written data
uint32_t addr;
// length of a reading or writing
uint32_t length;
// memory OK (after a memoryVerify)
bool memOK;
// cache in RAM before writing in memory. Useful also to read a block.
uint8_t * page;
int BlockSize;
uint64_t MemorySize;
uint64_t BlockCount;
void CBWDecode(uint8_t * buf, uint16_t size);
void sendCSW (void);
bool inquiryRequest (void);
bool write (uint8_t * buf, uint16_t size);
bool readFormatCapacity();
bool readCapacity (void);
bool infoTransfer (void);
void memoryRead (void);
bool modeSense6 (void);
void testUnitReady (void);
bool requestSense (void);
void memoryVerify (uint8_t * buf, uint16_t size);
void memoryWrite (uint8_t * buf, uint16_t size);
void reset();
void fail();
};
#endif

View File

@ -0,0 +1,69 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef CIRCBUFFER_H
#define CIRCBUFFER_H
template <class T>
class CircBuffer {
public:
CircBuffer(int length) {
write = 0;
read = 0;
size = length + 1;
buf = (T *)malloc(size * sizeof(T));
};
bool isFull() {
return ((write + 1) % size == read);
};
bool isEmpty() {
return (read == write);
};
void queue(T k) {
if (isFull()) {
read++;
read %= size;
}
buf[write++] = k;
write %= size;
}
uint16_t available() {
return (write >= read) ? write - read : size - read + write;
};
bool dequeue(T * c) {
bool empty = isEmpty();
if (!empty) {
*c = buf[read++];
read %= size;
}
return(!empty);
};
private:
volatile uint16_t write;
volatile uint16_t read;
uint16_t size;
T * buf;
};
#endif

View File

@ -0,0 +1,253 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBCDC.h"
static uint8_t cdc_line_coding[7]= {0x80, 0x25, 0x00, 0x00, 0x00, 0x00, 0x08};
#define DEFAULT_CONFIGURATION (1)
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define MAX_CDC_REPORT_SIZE MAX_PACKET_SIZE_EPBULK
USBCDC::USBCDC(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
terminal_connected = false;
USBDevice::connect();
}
bool USBCDC::USBCallback_request(void) {
/* Called in ISR context */
bool success = false;
CONTROL_TRANSFER * transfer = getTransferPtr();
/* Process class-specific requests */
if (transfer->setup.bmRequestType.Type == CLASS_TYPE) {
switch (transfer->setup.bRequest) {
case CDC_GET_LINE_CODING:
transfer->remaining = 7;
transfer->ptr = cdc_line_coding;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
case CDC_SET_LINE_CODING:
transfer->remaining = 7;
success = true;
terminal_connected = true;
break;
case CDC_SET_CONTROL_LINE_STATE:
terminal_connected = false;
success = true;
break;
default:
break;
}
}
return success;
}
// Called in ISR context
// Set configuration. Return false if the
// configuration is not supported.
bool USBCDC::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure endpoints > 0
addEndpoint(EPINT_IN, MAX_PACKET_SIZE_EPINT);
addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK);
addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
// We activate the endpoint to be able to recceive data
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
bool USBCDC::send(uint8_t * buffer, uint32_t size) {
return USBDevice::write(EPBULK_IN, buffer, size, MAX_CDC_REPORT_SIZE);
}
bool USBCDC::readEP(uint8_t * buffer, uint32_t * size) {
if (!USBDevice::readEP(EPBULK_OUT, buffer, size, MAX_CDC_REPORT_SIZE))
return false;
if (!readStart(EPBULK_OUT, MAX_CDC_REPORT_SIZE))
return false;
return true;
}
bool USBCDC::readEP_NB(uint8_t * buffer, uint32_t * size) {
if (!USBDevice::readEP_NB(EPBULK_OUT, buffer, size, MAX_CDC_REPORT_SIZE))
return false;
if (!readStart(EPBULK_OUT, MAX_CDC_REPORT_SIZE))
return false;
return true;
}
uint8_t * USBCDC::deviceDesc() {
static uint8_t deviceDescriptor[] = {
18, // bLength
1, // bDescriptorType
0x10, 0x01, // bcdUSB
2, // bDeviceClass
0, // bDeviceSubClass
0, // bDeviceProtocol
MAX_PACKET_SIZE_EP0, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID),// idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
3, // iSerialNumber
1 // bNumConfigurations
};
return deviceDescriptor;
}
uint8_t * USBCDC::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x08,
STRING_DESCRIPTOR,
'C',0,'D',0,'C',0,
};
return stringIinterfaceDescriptor;
}
uint8_t * USBCDC::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x16,
STRING_DESCRIPTOR,
'C',0,'D',0,'C',0,' ',0,'D',0,'E',0,'V',0,'I',0,'C',0,'E',0
};
return stringIproductDescriptor;
}
#define CONFIG1_DESC_SIZE (9+8+9+5+5+4+5+7+9+7+7)
uint8_t * USBCDC::configurationDesc() {
static uint8_t configDescriptor[] = {
// configuration descriptor
9, // bLength
2, // bDescriptorType
LSB(CONFIG1_DESC_SIZE), // wTotalLength
MSB(CONFIG1_DESC_SIZE),
2, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0x80, // bmAttributes
50, // bMaxPower
// IAD to associate the two CDC interfaces
0x08, // bLength
0x0b, // bDescriptorType
0x00, // bFirstInterface
0x02, // bInterfaceCount
0x02, // bFunctionClass
0x02, // bFunctionSubClass
0, // bFunctionProtocol
0, // iFunction
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
0, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubClass
0x01, // bInterfaceProtocol
0, // iInterface
// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
5, // bFunctionLength
0x24, // bDescriptorType
0x00, // bDescriptorSubtype
0x10, 0x01, // bcdCDC
// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
5, // bFunctionLength
0x24, // bDescriptorType
0x01, // bDescriptorSubtype
0x03, // bmCapabilities
1, // bDataInterface
// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
4, // bFunctionLength
0x24, // bDescriptorType
0x02, // bDescriptorSubtype
0x06, // bmCapabilities
// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
5, // bFunctionLength
0x24, // bDescriptorType
0x06, // bDescriptorSubtype
0, // bMasterInterface
1, // bSlaveInterface0
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPINT_IN), // bEndpointAddress
E_INTERRUPT, // bmAttributes (0x03=intr)
LSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPINT), // wMaxPacketSize (MSB)
16, // bInterval
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
1, // bInterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPBULK_IN), // bEndpointAddress
E_BULK, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
ENDPOINT_DESCRIPTOR_LENGTH, // bLength
ENDPOINT_DESCRIPTOR, // bDescriptorType
PHY_TO_DESC(EPBULK_OUT), // bEndpointAddress
E_BULK, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0 // bInterval
};
return configDescriptor;
}

View File

@ -0,0 +1,110 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBCDC_H
#define USBCDC_H
/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"
#include "USBDevice.h"
class USBCDC: public USBDevice {
public:
/*
* Constructor
*
* @param vendor_id Your vendor_id
* @param product_id Your product_id
* @param product_release Your preoduct_release
*/
USBCDC(uint16_t vendor_id, uint16_t product_id, uint16_t product_release);
protected:
/*
* Get device descriptor. Warning: this method has to store the length of the report descriptor in reportLength.
*
* @returns pointer to the device descriptor
*/
virtual uint8_t * deviceDesc();
/*
* Get string product descriptor
*
* @returns pointer to the string product descriptor
*/
virtual uint8_t * stringIproductDesc();
/*
* Get string interface descriptor
*
* @returns pointer to the string interface descriptor
*/
virtual uint8_t * stringIinterfaceDesc();
/*
* Get configuration descriptor
*
* @returns pointer to the configuration descriptor
*/
virtual uint8_t * configurationDesc();
/*
* Send a buffer
*
* @param endpoint endpoint which will be sent the buffer
* @param buffer buffer to be sent
* @param size length of the buffer
* @returns true if successful
*/
bool send(uint8_t * buffer, uint32_t size);
/*
* Read a buffer from a certain endpoint. Warning: blocking
*
* @param endpoint endpoint to read
* @param buffer buffer where will be stored bytes
* @param size the number of bytes read will be stored in *size
* @param maxSize the maximum length that can be read
* @returns true if successful
*/
bool readEP(uint8_t * buffer, uint32_t * size);
/*
* Read a buffer from a certain endpoint. Warning: non blocking
*
* @param endpoint endpoint to read
* @param buffer buffer where will be stored bytes
* @param size the number of bytes read will be stored in *size
* @param maxSize the maximum length that can be read
* @returns true if successful
*/
bool readEP_NB(uint8_t * buffer, uint32_t * size);
protected:
virtual bool USBCallback_request();
virtual bool USBCallback_setConfiguration(uint8_t configuration);
volatile bool terminal_connected;
};
#endif

View File

@ -0,0 +1,69 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBSerial.h"
int USBSerial::_putc(int c) {
if (!terminal_connected)
return 0;
send((uint8_t *)&c, 1);
return 1;
}
int USBSerial::_getc() {
uint8_t c;
while (buf.isEmpty());
buf.dequeue(&c);
return c;
}
bool USBSerial::writeBlock(uint8_t * buf, uint16_t size) {
if(size > MAX_PACKET_SIZE_EPBULK) {
return false;
}
if(!send(buf, size)) {
return false;
}
return true;
}
bool USBSerial::EP2_OUT_callback() {
uint8_t c[65];
uint32_t size = 0;
//we read the packet received and put it on the circular buffer
readEP(c, &size);
for (int i = 0; i < size; i++) {
buf.queue(c[i]);
}
//call a potential handler
rx.call();
// We reactivate the endpoint to receive next characters
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
uint8_t USBSerial::available() {
return buf.available();
}

View File

@ -0,0 +1,128 @@
/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USBSERIAL_H
#define USBSERIAL_H
#include "USBCDC.h"
#include "Stream.h"
#include "CircBuffer.h"
/**
* USBSerial example
*
* @code
* #include "mbed.h"
* #include "USBSerial.h"
*
* //Virtual serial port over USB
* USBSerial serial;
*
* int main(void) {
*
* while(1)
* {
* serial.printf("I am a virtual serial port\n");
* wait(1);
* }
* }
* @endcode
*/
class USBSerial: public USBCDC, public Stream {
public:
/**
* Constructor
*
* @param vendor_id Your vendor_id (default: 0x1f00)
* @param product_id Your product_id (default: 0x2012)
* @param product_release Your preoduct_release (default: 0x0001)
*
*/
USBSerial(uint16_t vendor_id = 0x1f00, uint16_t product_id = 0x2012, uint16_t product_release = 0x0001): USBCDC(vendor_id, product_id, product_release), buf(128){ };
/**
* Send a character. You can use puts, printf.
*
* @param c character to be sent
* @returns true if there is no error, false otherwise
*/
virtual int _putc(int c);
/**
* Read a character: blocking
*
* @returns character read
*/
virtual int _getc();
/**
* Check the number of bytes available.
*
* @returns the number of bytes available
*/
uint8_t available();
/**
* Write a block of data.
*
* For more efficiency, a block of size 64 (maximum size of a bulk endpoint) has to be written.
*
* @param buf pointer on data which will be written
* @param size size of the buffer. The maximum size of a block is limited by the size of the endpoint (64 bytes)
*
* @returns true if successfull
*/
bool writeBlock(uint8_t * buf, uint16_t size);
/**
* Attach a member function to call when a packet is received.
*
* @param tptr pointer to the object to call the member function on
* @param mptr pointer to the member function to be called
*/
template<typename T>
void attach(T* tptr, void (T::*mptr)(void)) {
if((mptr != NULL) && (tptr != NULL)) {
rx.attach(tptr, mptr);
}
}
/**
* Attach a callback called when a packet is received
*
* @param fptr function pointer
*/
void attach(void (*fn)(void)) {
if(fn != NULL) {
rx.attach(fn);
}
}
protected:
virtual bool EP2_OUT_callback();
private:
FunctionPointer rx;
CircBuffer<uint8_t> buf;
};
#endif

BIN
libraries/doc/mbed.dia Normal file

Binary file not shown.

35
libraries/doc/net/doc.txt Normal file
View File

@ -0,0 +1,35 @@
lwip/api/tcpip.c: tcpip_init -> tcpip_thread
lwip/core/netif.c: netif_add
lwip/arch/lpc17_emac.c: lpc_enetif_init -> packet_rx, packet_tx
=== tcpip_thread ===
while (true):
sys_timeouts_mbox_fetch(&mbox, (void **)&msg)
...
Feeding the tcpip_thread mbox:
tcpip_input
tcpip_callback_with_block
tcpip_timeout
tcpip_untimeout
tcpip_apimsg
tcpip_netifapi
=== packet_rx ===
while (true):
sys_arch_sem_wait(&lpc_enetif->RxSem, osWaitForever)
...
Feeding the RX semaphore:
ENET_IRQHandler
=== packet_tx ===
while (true):
sys_arch_sem_wait(&lpc_enetif->TxCleanSem, osWaitForever)
...
Feeding the TX semaphore:
ENET_IRQHandler

Binary file not shown.

View File

@ -0,0 +1,32 @@
lwip-1.4.0:
http://download.savannah.gnu.org/releases/lwip/lwip-1.4.0.zip
NXP lwIP port:
http://sw.lpcware.com/index.php?p=lwip_lpc.git&a=snapshot&h=7b84446afe97af955acad1d720696a0de73ab7cf&fmt=zip
NXP Driver Library (needed for Ethernet defines)
http://ics.nxp.com/support/documents/microcontrollers/zip/lpc17xx.cmsis.driver.library.zip
# lwip library
lwip-1.4.0\src
api
core
include
netif
# lwip-eth library
lwip_lpc\nxpcommon\
examples/lpc177x_8x/ea1788/ea1788_tcpecho_freertos/source/configs/flash/lpc_emac_config.h
lpc_phy_dp83848.c
lpc_phy.h
arch\lpc177x_8x\lpc17_emac.c
arch\lpc177x_8x\lpc17_emac.h
lpc17xx.cmsis.driver.library\Drivers\include
lpc17xx_emac.h
# lwip-sys library
lwip_lpc\nxpcommon\arch
cc.h
perf.h
touch sys_arch.c
touch sys_arch.h

View File

@ -0,0 +1,216 @@
sys_arch interface for lwIP 0.6++
Author: Adam Dunkels
The operating system emulation layer provides a common interface
between the lwIP code and the underlying operating system kernel. The
general idea is that porting lwIP to new architectures requires only
small changes to a few header files and a new sys_arch
implementation. It is also possible to do a sys_arch implementation
that does not rely on any underlying operating system.
The sys_arch provides semaphores and mailboxes to lwIP. For the full
lwIP functionality, multiple threads support can be implemented in the
sys_arch, but this is not required for the basic lwIP
functionality. Previous versions of lwIP required the sys_arch to
implement timer scheduling as well but as of lwIP 0.5 this is
implemented in a higher layer.
In addition to the source file providing the functionality of sys_arch,
the OS emulation layer must provide several header files defining
macros used throughout lwip. The files required and the macros they
must define are listed below the sys_arch description.
Semaphores can be either counting or binary - lwIP works with both
kinds. Mailboxes are used for message passing and can be implemented
either as a queue which allows multiple messages to be posted to a
mailbox, or as a rendez-vous point where only one message can be
posted at a time. lwIP works with both kinds, but the former type will
be more efficient. A message in a mailbox is just a pointer, nothing
more.
Semaphores are represented by the type "sys_sem_t" which is typedef'd
in the sys_arch.h file. Mailboxes are equivalently represented by the
type "sys_mbox_t". lwIP does not place any restrictions on how
sys_sem_t or sys_mbox_t are represented internally.
The following functions must be implemented by the sys_arch:
- void sys_init(void)
Is called to initialize the sys_arch layer.
- sys_sem_t sys_sem_new(u8_t count)
Creates and returns a new semaphore. The "count" argument specifies
the initial state of the semaphore.
- void sys_sem_free(sys_sem_t sem)
Deallocates a semaphore.
- void sys_sem_signal(sys_sem_t sem)
Signals a semaphore.
- u32_t sys_arch_sem_wait(sys_sem_t sem, u32_t timeout)
Blocks the thread while waiting for the semaphore to be
signaled. If the "timeout" argument is non-zero, the thread should
only be blocked for the specified time (measured in
milliseconds). If the "timeout" argument is zero, the thread should be
blocked until the semaphore is signalled.
If the timeout argument is non-zero, the return value is the number of
milliseconds spent waiting for the semaphore to be signaled. If the
semaphore wasn't signaled within the specified time, the return value is
SYS_ARCH_TIMEOUT. If the thread didn't have to wait for the semaphore
(i.e., it was already signaled), the function may return zero.
Notice that lwIP implements a function with a similar name,
sys_sem_wait(), that uses the sys_arch_sem_wait() function.
- sys_mbox_t sys_mbox_new(int size)
Creates an empty mailbox for maximum "size" elements. Elements stored
in mailboxes are pointers. You have to define macros "_MBOX_SIZE"
in your lwipopts.h, or ignore this parameter in your implementation
and use a default size.
- void sys_mbox_free(sys_mbox_t mbox)
Deallocates a mailbox. If there are messages still present in the
mailbox when the mailbox is deallocated, it is an indication of a
programming error in lwIP and the developer should be notified.
- void sys_mbox_post(sys_mbox_t mbox, void *msg)
Posts the "msg" to the mailbox. This function have to block until
the "msg" is really posted.
- err_t sys_mbox_trypost(sys_mbox_t mbox, void *msg)
Try to post the "msg" to the mailbox. Returns ERR_MEM if this one
is full, else, ERR_OK if the "msg" is posted.
- u32_t sys_arch_mbox_fetch(sys_mbox_t mbox, void **msg, u32_t timeout)
Blocks the thread until a message arrives in the mailbox, but does
not block the thread longer than "timeout" milliseconds (similar to
the sys_arch_sem_wait() function). If "timeout" is 0, the thread should
be blocked until a message arrives. The "msg" argument is a result
parameter that is set by the function (i.e., by doing "*msg =
ptr"). The "msg" parameter maybe NULL to indicate that the message
should be dropped.
The return values are the same as for the sys_arch_sem_wait() function:
Number of milliseconds spent waiting or SYS_ARCH_TIMEOUT if there was a
timeout.
Note that a function with a similar name, sys_mbox_fetch(), is
implemented by lwIP.
- u32_t sys_arch_mbox_tryfetch(sys_mbox_t mbox, void **msg)
This is similar to sys_arch_mbox_fetch, however if a message is not
present in the mailbox, it immediately returns with the code
SYS_MBOX_EMPTY. On success 0 is returned.
To allow for efficient implementations, this can be defined as a
function-like macro in sys_arch.h instead of a normal function. For
example, a naive implementation could be:
#define sys_arch_mbox_tryfetch(mbox,msg) \
sys_arch_mbox_fetch(mbox,msg,1)
although this would introduce unnecessary delays.
If threads are supported by the underlying operating system and if
such functionality is needed in lwIP, the following function will have
to be implemented as well:
- sys_thread_t sys_thread_new(char *name, void (* thread)(void *arg), void *arg, int stacksize, int prio)
Starts a new thread named "name" with priority "prio" that will begin its
execution in the function "thread()". The "arg" argument will be passed as an
argument to the thread() function. The stack size to used for this thread is
the "stacksize" parameter. The id of the new thread is returned. Both the id
and the priority are system dependent.
- sys_prot_t sys_arch_protect(void)
This optional function does a "fast" critical region protection and returns
the previous protection level. This function is only called during very short
critical regions. An embedded system which supports ISR-based drivers might
want to implement this function by disabling interrupts. Task-based systems
might want to implement this by using a mutex or disabling tasking. This
function should support recursive calls from the same task or interrupt. In
other words, sys_arch_protect() could be called while already protected. In
that case the return value indicates that it is already protected.
sys_arch_protect() is only required if your port is supporting an operating
system.
- void sys_arch_unprotect(sys_prot_t pval)
This optional function does a "fast" set of critical region protection to the
value specified by pval. See the documentation for sys_arch_protect() for
more information. This function is only required if your port is supporting
an operating system.
Note:
Be carefull with using mem_malloc() in sys_arch. When malloc() refers to
mem_malloc() you can run into a circular function call problem. In mem.c
mem_init() tries to allcate a semaphore using mem_malloc, which of course
can't be performed when sys_arch uses mem_malloc.
-------------------------------------------------------------------------------
Additional files required for the "OS support" emulation layer:
-------------------------------------------------------------------------------
cc.h - Architecture environment, some compiler specific, some
environment specific (probably should move env stuff
to sys_arch.h.)
Typedefs for the types used by lwip -
u8_t, s8_t, u16_t, s16_t, u32_t, s32_t, mem_ptr_t
Compiler hints for packing lwip's structures -
PACK_STRUCT_FIELD(x)
PACK_STRUCT_STRUCT
PACK_STRUCT_BEGIN
PACK_STRUCT_END
Platform specific diagnostic output -
LWIP_PLATFORM_DIAG(x) - non-fatal, print a message.
LWIP_PLATFORM_ASSERT(x) - fatal, print message and abandon execution.
Portability defines for printf formatters:
U16_F, S16_F, X16_F, U32_F, S32_F, X32_F, SZT_F
"lightweight" synchronization mechanisms -
SYS_ARCH_DECL_PROTECT(x) - declare a protection state variable.
SYS_ARCH_PROTECT(x) - enter protection mode.
SYS_ARCH_UNPROTECT(x) - leave protection mode.
If the compiler does not provide memset() this file must include a
definition of it, or include a file which defines it.
This file must either include a system-local <errno.h> which defines
the standard *nix error codes, or it should #define LWIP_PROVIDE_ERRNO
to make lwip/arch.h define the codes which are used throughout.
perf.h - Architecture specific performance measurement.
Measurement calls made throughout lwip, these can be defined to nothing.
PERF_START - start measuring something.
PERF_STOP(x) - stop measuring something, and record the result.
sys_arch.h - Tied to sys_arch.c
Arch dependent types for the following objects:
sys_sem_t, sys_mbox_t, sys_thread_t,
And, optionally:
sys_prot_t
Defines to set vars of sys_mbox_t and sys_sem_t to NULL.
SYS_MBOX_NULL NULL
SYS_SEM_NULL NULL

BIN
libraries/doc/net/tcp.dia Normal file

Binary file not shown.

BIN
libraries/doc/net/udp.dia Normal file

Binary file not shown.

37
libraries/doc/rtos.txt Normal file
View File

@ -0,0 +1,37 @@
=== Tasks ===
^ os_tsk.new->task_id ^ Tasks ^ Stack Size ^
| 0x01 | Main | 4*OS_MAINSTKSIZE |
| 0x02 | Timer | 4*OS_TIMERSTKSZ |
| 0xFF | Idle | 4*OS_STKSIZE |
----------
|
V os_tsk.run->tsk_stack
MAGIC_WORD os_tsk.run->stack[0]
----------
The current task structure is always pointed by:
struct OS_TSK os_tsk;
=== Init Sequence ===
OS:
* osKernelInitialize
* rt_sys_init
* rt_init_context
* rt_init_stack
* rt_set_PSP
* rt_init_robin
* rt_svc_init
* set_main_stack
* osThreadCreate(os_thread_def_main)
* rt_tsk_create
* rt_init_context
* rt_init_stack
* rt_dispatch
* osKernelStart

166
libraries/doc/style.xml Normal file
View File

@ -0,0 +1,166 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<profiles version="1">
<profile kind="CodeFormatterProfile" name="mbed K&amp;R" version="1">
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_method_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_for" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_in_empty_block" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.lineSplit" value="80"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_member_access" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_base_types" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.keep_else_statement_on_same_line" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.indent_switchstatements_compare_to_switch" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_constructor_initializer_list" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_brace_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_method_declaration_parameters" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_if" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_parenthesized_expression" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_exception_specification" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_base_types" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_body_declarations_compare_to_access_specifier" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_exception_specification" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_template_arguments" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_block" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_method_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.use_tabs_only_for_leading_indentations" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_colon_in_labeled_statement" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_colon_in_case" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.comment.min_distance_between_code_and_line_comment" value="1"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_array_initializer" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_enum_declarations" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_expressions_in_array_initializer" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_declarator_list" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_bracket" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_for" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_prefix_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.tabulation.size" value="4"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_else_in_if_statement" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_enumerator_list" value="50"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_parenthesized_expression" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_between_empty_parens_in_method_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_switch" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_declarator_list" value="16"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_parenthesized_expression" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_empty_lines" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.indent_switchstatements_compare_to_cases" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.keep_empty_array_initializer_on_one_line" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_method_declaration" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.put_empty_statement_on_new_line" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_switch" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_cast" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_between_empty_braces_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_method_declaration" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_while" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_question_in_conditional" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_semicolon" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_closing_angle_bracket_in_template_arguments" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_colon_in_base_clause" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_breaks_compare_to_cases" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_unary_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.join_wrapped_lines" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_declarator_list" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_arguments_in_method_invocation" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_while" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_between_empty_brackets" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_bracket" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_parameters_in_method_declaration" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_closing_brace_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.number_of_empty_lines_to_preserve" value="1"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_method_invocation" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_brace_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_semicolon_in_for" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_colon_in_conditional" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_block" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.comment.preserve_white_space_between_code_and_line_comments" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_type_declaration" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_assignment_operator" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_angle_bracket_in_template_arguments" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_expression_list" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_angle_bracket_in_template_parameters" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.continuation_indentation" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_expression_list" value="0"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_method_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_template_parameters" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_colon_in_default" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_binary_operator" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_conditional_expression" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_between_empty_parens_in_method_invocation" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_if" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.format_guardian_clause_on_one_line" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.indent_access_specifier_extra_spaces" value="0"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_cast" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_access_specifier_compare_to_type_header" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_type_declaration" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.continuation_indentation_for_array_initializer" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_colon_in_labeled_statement" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_method_declaration_parameters" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_semicolon_in_for" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_method_invocation" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_body_declarations_compare_to_namespace_header" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_compact_if" value="16"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_assignment_operator" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_closing_brace_in_block" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_array_initializer" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_at_end_of_file_if_missing" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_assignment" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_conditional_expression_chain" value="18"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_template_parameters" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_expression_list" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_question_in_conditional" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_exception_specification" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_binary_operator" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_identifier_in_function_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_base_clause_in_type_declaration" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_method_declaration_throws" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_between_empty_parens_in_exception_specification" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_method_invocation_arguments" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_declaration_compare_to_template_header" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_unary_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_switch" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.indent_statements_compare_to_body" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_method_declaration_throws" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_binary_expression" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.indent_statements_compare_to_block" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_template_arguments" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_catch_in_try_statement" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_throws_clause_in_method_declaration" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_method_invocation" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_closing_paren_in_cast" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_paren_in_catch" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_angle_bracket_in_template_parameters" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.tabulation.char" value="space"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_angle_bracket_in_template_parameters" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_colon_in_constructor_initializer_list" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_while" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_comma_in_method_invocation_arguments" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_block_in_case" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.compact_else_if" value="true"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_postfix_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_after_template_declaration" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_colon_in_base_clause" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_catch" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.keep_then_statement_on_same_line" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_switch" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.alignment_for_overloaded_left_shift_chain" value="2"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_if" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_paren_in_switch" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.keep_imple_if_on_one_line" value="false"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_after_opening_brace_in_array_initializer" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.indentation.size" value="4"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_namespace_declaration" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_colon_in_conditional" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_comma_in_enum_declarations" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_prefix_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_angle_bracket_in_template_arguments" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.brace_position_for_array_initializer" value="end_of_line"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_colon_in_case" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_catch" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_brace_in_namespace_declaration" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_postfix_operator" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_closing_bracket" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_new_line_before_while_in_do_statement" value="do not insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_before_opening_paren_in_for" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_closing_angle_bracket_in_template_parameters" value="insert"/>
<setting id="org.eclipse.cdt.core.formatter.insert_space_after_opening_angle_bracket_in_template_arguments" value="do not insert"/>
</profile>
</profiles>

View File

@ -0,0 +1,159 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_f32.c
*
* Description: Vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
#include <math.h>
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAbs Vector Absolute Value
*
* Computes the absolute value of a vector on an element-by-element basis.
*
* <pre>
* pDst[n] = abs(pSrcA[n]), 0 <= n < blockSize.
* </pre>
*
* The operation can be done in-place by setting the input and output pointers to the same buffer.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Floating-point vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
/* read sample from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
/* find absolute value */
in1 = fabsf(in1);
/* read sample from source */
in4 = *(pSrc + 3);
/* find absolute value */
in2 = fabsf(in2);
/* read sample from source */
*pDst = in1;
/* find absolute value */
in3 = fabsf(in3);
/* find absolute value */
in4 = fabsf(in4);
/* store result to destination */
*(pDst + 1) = in2;
/* store result to destination */
*(pDst + 2) = in3;
/* store result to destination */
*(pDst + 3) = in4;
/* Update source pointer to process next sampels */
pSrc += 4u;
/* Update destination pointer to process next sampels */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
*pDst++ = fabsf(*pSrc++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,173 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q15.c
*
* Description: Q15 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q15 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1; /* Input value1 */
q15_t in2; /* Input value2 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read two inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* Store the Absolute result in the destination buffer by packing the two values, in a single cycle */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __QSUB16(0, in1)),
((in2 > 0) ? in2 : __QSUB16(0, in2)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __QSUB16(0, in2)),
((in1 > 0) ? in1 : __QSUB16(0, in1)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __QSUB16(0, in1)),
((in2 > 0) ? in2 : __QSUB16(0, in2)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __QSUB16(0, in2)),
((in1 > 0) ? in1 : __QSUB16(0, in1)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in1 = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in1 > 0) ? in1 : __QSUB16(0, in1);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t in; /* Temporary input variable */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q31.c
*
* Description: Q31 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q31 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = (in1 > 0) ? in1 : __QSUB(0, in1);
*pDst++ = (in2 > 0) ? in2 : __QSUB(0, in2);
*pDst++ = (in3 > 0) ? in3 : __QSUB(0, in3);
*pDst++ = (in4 > 0) ? in4 : __QSUB(0, in4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute value of the input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,152 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q7.c
*
* Description: Q7 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q7 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q7_t in; /* Input value1 */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read inputs */
in1 = (q31_t) * pSrc;
in2 = (q31_t) * (pSrc + 1);
in3 = (q31_t) * (pSrc + 2);
/* find absolute value */
out1 = (in1 > 0) ? in1 : __QSUB8(0, in1);
/* read input */
in4 = (q31_t) * (pSrc + 3);
/* find absolute value */
out2 = (in2 > 0) ? in2 : __QSUB8(0, in2);
/* store result to destination */
*pDst = (q7_t) out1;
/* find absolute value */
out3 = (in3 > 0) ? in3 : __QSUB8(0, in3);
/* find absolute value */
out4 = (in4 > 0) ? in4 : __QSUB8(0, in4);
/* store result to destination */
*(pDst + 1) = (q7_t) out2;
/* store result to destination */
*(pDst + 2) = (q7_t) out3;
/* store result to destination */
*(pDst + 3) = (q7_t) out4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = blockSize;
#endif // #define ARM_MATH_CM0
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Store the Absolute result in the destination buffer */
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? 0x7f : -in);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_f32.c
*
* Description: Floating-point vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAdd Vector Addition
*
* Element-by-element addition of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] + pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Floating-point vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary input variabels */
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
/* read four inputs from sourceA and four inputs from sourceB */
inA1 = *pSrcA;
inB1 = *pSrcB;
inA2 = *(pSrcA + 1);
inB2 = *(pSrcB + 1);
inA3 = *(pSrcA + 2);
inB3 = *(pSrcB + 2);
inA4 = *(pSrcA + 3);
inB4 = *(pSrcB + 3);
/* C = A + B */
/* add and store result to destination */
*pDst = inA1 + inB1;
*(pDst + 1) = inA2 + inB2;
*(pDst + 2) = inA3 + inB3;
*(pDst + 3) = inA4 + inB4;
/* update pointers to process next samples */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) + (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q15.c
*
* Description: Q15 vector addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q15 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inB1, inB2;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
inA1 = *__SIMD32(pSrcA)++;
inA2 = *__SIMD32(pSrcA)++;
inB1 = *__SIMD32(pSrcB)++;
inB2 = *__SIMD32(pSrcB)++;
*__SIMD32(pDst)++ = __QADD16(inA1, inB1);
*__SIMD32(pDst)++ = __QADD16(inA2, inB2);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ + *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,143 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q31.c
*
* Description: Q31 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q31 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
*pDst++ = __QADD(inA1, inB1);
*pDst++ = __QADD(inA2, inB2);
*pDst++ = __QADD(inA3, inB3);
*pDst++ = __QADD(inA4, inB4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,129 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q7.c
*
* Description: Q7 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q7 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_f32.c
*
* Description: Floating-point dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup dot_prod Vector Dot Product
*
* Computes the dot product of two vectors.
* The vectors are multiplied element-by-element and then summed.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of floating-point vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result)
{
float32_t sum = 0.0f; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer */
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result back in the destination buffer */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q15.c
*
* Description: Q15 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q15 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these
* results are added to a 64-bit accumulator in 34.30 format.
* Nonsaturating additions are used and given that there are 33 guard bits in the accumulator
* there is no risk of overflow.
* The return result is in 34.30 format.
*/
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum = __SMLALD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum += (q63_t) ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 34.30 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,138 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q31.c
*
* Description: Q31 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these
* are truncated to 2.48 format by discarding the lower 14 bits.
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as
* the length of the vectors is less than 2^16 elements.
* The return result is in 16.48 format.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
sum += ((q63_t) inA1 * inB1) >> 14u;
sum += ((q63_t) inA2 * inB2) >> 14u;
sum += ((q63_t) inA3 * inB3) >> 14u;
sum += ((q63_t) inA4 * inB4) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result in the destination buffer in 16.48 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,154 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q7.c
*
* Description: Q7 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q7 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these
* results are added to an accumulator in 18.14 format.
* Nonsaturating additions are used and there is no danger of wrap around as long as
* the vectors are less than 2^18 elements long.
* The return result is in 18.14 format.
*/
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result)
{
uint32_t blkCnt; /* loop counter */
q31_t sum = 0; /* Temporary variables to store output */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t input1, input2; /* Temporary variables to store input */
q31_t inA1, inA2, inB1, inB2; /* Temporary variables to store input */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read 4 samples at a time from sourceA */
input1 = *__SIMD32(pSrcA)++;
/* read 4 samples at a time from sourceB */
input2 = *__SIMD32(pSrcB)++;
/* extract two q7_t samples to q15_t samples */
inA1 = __SXTB16(__ROR(input1, 8));
/* extract reminaing two samples */
inA2 = __SXTB16(input1);
/* extract two q7_t samples to q15_t samples */
inB1 = __SXTB16(__ROR(input2, 8));
/* extract reminaing two samples */
inB2 = __SXTB16(input2);
/* multiply and accumulate two samples at a time */
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum = __SMLAD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum += (q31_t) ((q15_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 18.14 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,172 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_f32.c
*
* Description: Floating-point vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicMult Vector Multiplication
*
* Element-by-element multiplication of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Floating-point vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary input variables */
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
float32_t out1, out2, out3, out4; /* temporary output variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
/* read sample from sourceA */
inA1 = *pSrcA;
/* read sample from sourceB */
inB1 = *pSrcB;
/* read sample from sourceA */
inA2 = *(pSrcA + 1);
/* read sample from sourceB */
inB2 = *(pSrcB + 1);
/* out = sourceA * sourceB */
out1 = inA1 * inB1;
/* read sample from sourceA */
inA3 = *(pSrcA + 2);
/* read sample from sourceB */
inB3 = *(pSrcB + 2);
/* out = sourceA * sourceB */
out2 = inA2 * inB2;
/* read sample from sourceA */
inA4 = *(pSrcA + 3);
/* store result to destination buffer */
*pDst = out1;
/* read sample from sourceB */
inB4 = *(pSrcB + 3);
/* out = sourceA * sourceB */
out3 = inA3 * inB3;
/* store result to destination buffer */
*(pDst + 1) = out2;
/* out = sourceA * sourceB */
out4 = inA4 * inB4;
/* store result to destination buffer */
*(pDst + 2) = out3;
/* store result to destination buffer */
*(pDst + 3) = out4;
/* update pointers to process next samples */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
*pDst++ = (*pSrcA++) * (*pSrcB++);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,152 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q15.c
*
* Description: Q15 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q15 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
q15_t out1, out2, out3, out4; /* temporary output variables */
q31_t mul1, mul2, mul3, mul4; /* temporary variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read two samples at a time from sourceA */
inA1 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB1 = *__SIMD32(pSrcB)++;
/* read two samples at a time from sourceA */
inA2 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB2 = *__SIMD32(pSrcB)++;
/* multiply mul = sourceA * sourceB */
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
/* saturate result to 16 bit */
out1 = (q15_t) __SSAT(mul1 >> 15, 16);
out2 = (q15_t) __SSAT(mul2 >> 15, 16);
out3 = (q15_t) __SSAT(mul3 >> 15, 16);
out4 = (q15_t) __SSAT(mul4 >> 15, 16);
/* store the result */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#else
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,143 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q31.c
*
* Description: Q31 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q31 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4; /* temporary input variables */
q31_t inB1, inB2, inB3, inB4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB2) >> 32;
out3 = ((q63_t) inA3 * inB3) >> 32;
out4 = ((q63_t) inA4 * inB4) >> 32;
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
*pDst++ = out1 << 1u;
*pDst++ = out2 << 1u;
*pDst++ = out3 << 1u;
*pDst++ = out4 << 1u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,128 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q7.c
*
* Description: Q7 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10 DP
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q7 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in temporary variables */
out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,137 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_f32.c
*
* Description: Negates floating-point vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup negate Vector Negate
*
* Negates the elements of a vector.
*
* <pre>
* pDst[n] = -pSrc[n], 0 <= n < blockSize.
* </pre>
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* negate the input */
in1 = -in1;
in2 = -in2;
in3 = -in3;
in4 = -in4;
/* store the result to destination */
*pDst = in1;
*(pDst + 1) = in2;
*(pDst + 2) = in3;
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,137 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q15.c
*
* Description: Negates Q15 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q15_t in;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read two inputs at a time */
in1 = _SIMD32_OFFSET(pSrc);
in2 = _SIMD32_OFFSET(pSrc + 2);
/* negate two samples at a time */
in1 = __QSUB16(0, in1);
/* negate two samples at a time */
in2 = __QSUB16(0, in2);
/* store the result to destination 2 samples at a time */
_SIMD32_OFFSET(pDst) = in1;
/* store the result to destination 2 samples at a time */
_SIMD32_OFFSET(pDst + 2) = in2;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,124 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q31.c
*
* Description: Negates Q31 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t in; /* Temporary variable */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = __QSUB(0, in1);
*pDst++ = __QSUB(0, in2);
*pDst++ = __QSUB(0, in3);
*pDst++ = __QSUB(0, in4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,120 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q7.c
*
* Description: Negates Q7 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q7_t in;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t input; /* Input values1-4 */
q31_t zero = 0x00000000;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read four inputs */
input = *__SIMD32(pSrc)++;
/* Store the Negated results in the destination buffer in a single cycle by packing the results */
*__SIMD32(pDst)++ = __QSUB8(zero, input);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */ \
in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? 0x7f : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,158 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_f32.c
*
* Description: Floating-point vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup offset Vector Offset
*
* Adds a constant offset to each element of a vector.
*
* <pre>
* pDst[n] = pSrc[n] + offset, 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
/* read samples from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
/* add offset to input */
in1 = in1 + offset;
/* read samples from source */
in3 = *(pSrc + 2);
/* add offset to input */
in2 = in2 + offset;
/* read samples from source */
in4 = *(pSrc + 3);
/* add offset to input */
in3 = in3 + offset;
/* store result to destination */
*pDst = in1;
/* add offset to input */
in4 = in4 + offset;
/* store result to destination */
*(pDst + 1) = in2;
/* store result to destination */
*(pDst + 2) = in3;
/* store result to destination */
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) + offset;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,131 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q15.c
*
* Description: Q15 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PKHBT(offset, offset, 16);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer, 2 samples at a time. */
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrc++ + offset), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q31.c
*
* Description: Q31 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = __QADD(in1, offset);
*pDst++ = __QADD(in2, offset);
*pDst++ = __QADD(in3, offset);
*pDst++ = __QADD(in4, offset);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = __QADD(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,130 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q7.c
*
* Description: Q7 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] are saturated.
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PACKq7(offset, offset, offset, offset);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination bufferfor 4 samples at a time. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,161 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_f32.c
*
* Description: Multiplies a floating-point vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup scale Vector Scale
*
* Multiply a vector by a scalar value. For floating-point data, the algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] * scale, 0 <= n < blockSize.
* </pre>
*
* In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
* The shift allows the gain of the scaling operation to exceed 1.0.
* The algorithm used with fixed-point data is:
*
* <pre>
* pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize.
* </pre>
*
* The overall scale factor applied to the fixed-point data is
* <pre>
* scale = scaleFract * 2^shift.
* </pre>
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a floating-point vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scale scale factor to be applied
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variabels */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the results in the destination buffer. */
/* read input samples from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
/* multiply with scaling factor */
in1 = in1 * scale;
/* read input sample from source */
in3 = *(pSrc + 2);
/* multiply with scaling factor */
in2 = in2 * scale;
/* read input sample from source */
in4 = *(pSrc + 3);
/* multiply with scaling factor */
in3 = in3 * scale;
in4 = in4 * scale;
/* store the result to destination */
*pDst = in1;
*(pDst + 1) = in2;
*(pDst + 2) = in3;
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) * scale;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q15.c
*
* Description: Multiplies a Q15 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q15 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
int8_t shift,
q15_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 15 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2, in3, in4;
q31_t inA1, inA2; /* Temporary variables */
q31_t out1, out2, out3, out4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 2 inputs from memory */
inA1 = *__SIMD32(pSrc)++;
inA2 = *__SIMD32(pSrc)++;
/* C = A * scale */
/* Scale the inputs and then store the 2 results in the destination buffer
* in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) inA1 * scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) inA2 * scaleFract);
/* apply shifting */
out1 = out1 >> kShift;
out2 = out2 >> kShift;
out3 = out3 >> kShift;
out4 = out4 >> kShift;
/* saturate the output */
in1 = (q15_t) (__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16));
/* store the result to destination */
*__SIMD32(pDst)++ = __PKHBT(in2, in1, 16);
*__SIMD32(pDst)++ = __PKHBT(in4, in3, 16);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,223 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. May 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q31.c
*
* Description: Multiplies a Q31 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize)
{
int8_t kShift = shift + 1; /* Shift to apply after scaling */
int8_t sign = (kShift & 0x80);
uint32_t blkCnt; /* loop counter */
q31_t in, out;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variabels */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 << kShift;
out2 = in2 << kShift;
/* saturate the results. */
if(in1 != (out1 >> kShift))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> kShift))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
out3 = in3 << kShift;
out4 = in4 << kShift;
*pDst = out1;
*(pDst + 1) = out2;
if(in3 != (out3 >> kShift))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> kShift))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
/* Store result destination */
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
kShift = -kShift;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 >> kShift;
out2 = in2 >> kShift;
out3 = in3 >> kShift;
out4 = in4 >> kShift;
/* Store result destination */
*pDst = out1;
*(pDst + 1) = out2;
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
if(sign != 0u)
kShift = -kShift;
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32;
if(sign == 0)
{
out = in << kShift;
if(in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31);
}
else
{
out = in >> kShift;
}
*pDst++ = out;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q7.c
*
* Description: Multiplies a Q7 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q7 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format.
* These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format.
*/
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
int8_t shift,
q7_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 7 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1, in2, in3, in4, out1, out2, out3, out4; /* Temporary variables to store input & output */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 4 inputs from memory */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* C = A * scale */
/* Scale the inputs and then store the results in the temporary variables. */
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8));
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8));
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8));
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8));
/* Packing the individual outputs into 32bit and storing in
* destination buffer in single write */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,243 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q15.c
*
* Description: Shifts the elements of a Q15 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A << shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,195 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q31.c
*
* Description: Shifts the elements of a Q31 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup shift Vector Shift
*
* Shifts the elements of a fixed-point vector by a specified number of bits.
* There are separate functions for Q7, Q15, and Q31 data types.
* The underlying algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] << shift, 0 <= n < blockSize.
* </pre>
*
* If <code>shift</code> is positive then the elements of the vector are shifted to the left.
* If <code>shift</code> is negative then the elements of the vector are shifted to the right.
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
q31_t in1, in2, in3, in4; /* Temporary input variables */
q31_t out1, out2, out3, out4; /* Temporary output variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the results in the destination buffer. */
in1 = *pSrc;
in2 = *(pSrc + 1);
out1 = in1 << shiftBits;
in3 = *(pSrc + 2);
out2 = in2 << shiftBits;
in4 = *(pSrc + 3);
if(in1 != (out1 >> shiftBits))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> shiftBits))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
*pDst = out1;
out3 = in3 << shiftBits;
*(pDst + 1) = out2;
out4 = in4 << shiftBits;
if(in3 != (out3 >> shiftBits))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> shiftBits))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update destination pointer to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the results in the destination buffer. */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
*pDst = (in1 >> -shiftBits);
*(pDst + 1) = (in2 >> -shiftBits);
*(pDst + 2) = (in3 >> -shiftBits);
*(pDst + 3) = (in4 >> -shiftBits);
pSrc += 4u;
pDst += 4u;
blkCnt--;
}
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A (>> or <<) shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,215 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q7.c
*
* Description: Processing function for the Q7 Shifting
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x8 0x7F] will be saturated.
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1; /* Input value1 */
q7_t in2; /* Input value2 */
q7_t in3; /* Input value3 */
q7_t in4; /* Input value4 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Read 4 inputs */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7(__SSAT((in1 << shiftBits), 8),
__SSAT((in2 << shiftBits), 8),
__SSAT((in3 << shiftBits), 8),
__SSAT((in4 << shiftBits), 8));
/* Update source pointer to process next sampels */
pSrc += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((*pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
shiftBits = -shiftBits;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Read 4 inputs */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7((in1 >> shiftBits), (in2 >> shiftBits),
(in3 >> shiftBits), (in4 >> shiftBits));
pSrc += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
in1 = *pSrc++;
*pDst++ = (in1 >> shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(((q15_t) * pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_f32.c
*
* Description: Floating-point vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicSub Vector Subtraction
*
* Element-by-element subtraction of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] - pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Floating-point vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary variables */
float32_t inB1, inB2, inB3, inB4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
/* Read 4 input samples from sourceA and sourceB */
inA1 = *pSrcA;
inB1 = *pSrcB;
inA2 = *(pSrcA + 1);
inB2 = *(pSrcB + 1);
inA3 = *(pSrcA + 2);
inB3 = *(pSrcB + 2);
inA4 = *(pSrcA + 3);
inB4 = *(pSrcB + 3);
/* dst = srcA - srcB */
/* subtract and store the result */
*pDst = inA1 - inB1;
*(pDst + 1) = inA2 - inB2;
*(pDst + 2) = inA3 - inB3;
*(pDst + 3) = inA4 - inB4;
/* Update pointers to process next sampels */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) - (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q15.c
*
* Description: Q15 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q15 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2;
q31_t inB1, inB2;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer two samples at a time. */
inA1 = *__SIMD32(pSrcA)++;
inA2 = *__SIMD32(pSrcA)++;
inB1 = *__SIMD32(pSrcB)++;
inB2 = *__SIMD32(pSrcB)++;
*__SIMD32(pDst)++ = __QSUB16(inA1, inB1);
*__SIMD32(pDst)++ = __QSUB16(inA2, inB2);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q31.c
*
* Description: Q31 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q31 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
*pDst++ = __QSUB(inA1, inB1);
*pDst++ = __QSUB(inA2, inB2);
*pDst++ = __QSUB(inA3, inB3);
*pDst++ = __QSUB(inA4, inB4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ - *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,126 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q7.c
*
* Description: Q7 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q7 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer 4 samples at a time. */
*__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,174 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
*
* Description: Floating-point complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_conj Complex Conjugate
*
* Conjugates the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0)] = pSrc[(2*n)+0]; // real part
* pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // imag part
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Floating-point complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_conj_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inR1, inR2, inR3, inR4;
float32_t inI1, inI2, inI3, inI4;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* read real input samples */
inR1 = pSrc[0];
/* store real samples to destination */
pDst[0] = inR1;
inR2 = pSrc[2];
pDst[2] = inR2;
inR3 = pSrc[4];
pDst[4] = inR3;
inR4 = pSrc[6];
pDst[6] = inR4;
/* read imaginary input samples */
inI1 = pSrc[1];
inI2 = pSrc[3];
/* conjugate input */
inI1 = -inI1;
/* read imaginary input samples */
inI3 = pSrc[5];
/* conjugate input */
inI2 = -inI2;
/* read imaginary input samples */
inI4 = pSrc[7];
/* conjugate input */
inI3 = -inI3;
/* store imaginary samples to destination */
pDst[1] = inI1;
pDst[3] = inI2;
/* conjugate input */
inI4 = -inI4;
/* store imaginary samples to destination */
pDst[5] = inI3;
/* increment source pointer by 8 to process next sampels */
pSrc += 8u;
/* store imaginary sample to destination */
pDst[7] = inI4;
/* increment destination pointer by 8 to store next samples */
pDst += 8u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* realOut + j (imagOut) = realIn + j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q15.c
*
* Description: Q15 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q15 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_cmplx_conj_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t zero = 0;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
#ifndef ARM_MATH_BIG_ENDIAN
in1 = __QASX(zero, in1);
in2 = __QASX(zero, in2);
in3 = __QASX(zero, in3);
in4 = __QASX(zero, in4);
#else
in1 = __QSAX(zero, in1);
in2 = __QSAX(zero, in2);
in3 = __QSAX(zero, in3);
in4 = __QSAX(zero, in4);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16);
in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16);
in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16);
in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16);
*__SIMD32(pDst)++ = in1;
*__SIMD32(pDst)++ = in2;
*__SIMD32(pDst)++ = in3;
*__SIMD32(pDst)++ = in4;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
/* Decrement the loop counter */
blkCnt--;
}
#else
q15_t in;
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,172 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q31.c
*
* Description: Q31 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q31 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_cmplx_conj_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inR1, inR2, inR3, inR4; /* Temporary real variables */
q31_t inI1, inI2, inI3, inI4; /* Temporary imaginary variables */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
/* read real input sample */
inR1 = pSrc[0];
/* store real input sample */
pDst[0] = inR1;
/* read imaginary input sample */
inI1 = pSrc[1];
/* read real input sample */
inR2 = pSrc[2];
/* store real input sample */
pDst[2] = inR2;
/* read imaginary input sample */
inI2 = pSrc[3];
/* negate imaginary input sample */
inI1 = __QSUB(0, inI1);
/* read real input sample */
inR3 = pSrc[4];
/* store real input sample */
pDst[4] = inR3;
/* read imaginary input sample */
inI3 = pSrc[5];
/* negate imaginary input sample */
inI2 = __QSUB(0, inI2);
/* read real input sample */
inR4 = pSrc[6];
/* store real input sample */
pDst[6] = inR4;
/* negate imaginary input sample */
inI3 = __QSUB(0, inI3);
/* store imaginary input sample */
inI4 = pSrc[7];
/* store imaginary input samples */
pDst[1] = inI1;
/* negate imaginary input sample */
inI4 = __QSUB(0, inI4);
/* store imaginary input samples */
pDst[3] = inI2;
/* increment source pointer by 8 to proecess next samples */
pSrc += 8u;
/* store imaginary input samples */
pDst[5] = inI3;
pDst[7] = inI4;
/* increment destination pointer by 8 to process next samples */
pDst += 8u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,160 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_f32.c
*
* Description: Floating-point complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_dot_prod Complex Dot Product
*
* Computes the dot product of two complex vectors.
* The vectors are multiplied element-by-element and then summed.
*
* The <code>pSrcA</code> points to the first complex input vector and
* <code>pSrcB</code> points to the second complex input vector.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
*
* The underlying algorithm is used:
* <pre>
* realResult=0;
* imagResult=0;
* for(n=0; n<numSamples; n++) {
* realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];
* imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Floating-point complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*/
void arm_cmplx_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t numSamples,
float32_t * realResult,
float32_t * imagResult)
{
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in the destination buffers */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q15.c
*
* Description: Processing function for the Q15 Complex Dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q15 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
* These are accumulated in a 64-bit accumulator with 34.30 precision.
* As a final step, the accumulators are converted to 8.24 format.
* The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
*/
void arm_cmplx_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t numSamples,
q31_t * realResult,
q31_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 8.24 format */
/* Convert real data in 34.30 to 8.24 by 6 right shifts */
*realResult = (q31_t) (real_sum) >> 6;
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
*imagResult = (q31_t) (imag_sum) >> 6;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q31.c
*
* Description: Q31 complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q31 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format.
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits.
* Additions are nonsaturating and no overflow will occur as long as <code>numSamples</code> is less than 32768.
* The return results <code>realResult</code> and <code>imagResult</code> are in 16.48 format.
* Input down scaling is not required.
*/
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
/* Convert real data in 2.62 to 16.48 by 14 right shifts */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
/* Convert imag data in 2.62 to 16.48 by 14 right shifts */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* outReal = realA[0]* realB[0] + realA[2]* realB[2] + realA[4]* realB[4] + .....+ realA[numSamples-2]* realB[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* outImag = imagA[1]* imagB[1] + imagA[3]* imagB[3] + imagA[5]* imagB[5] + .....+ imagA[numSamples-1]* imagB[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 16.48 format */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_f32.c
*
* Description: Floating-point complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag Complex Magnitude
*
* Computes the magnitude of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Floating-point complex magnitude.
* @param[in] *pSrc points to complex input buffer
* @param[out] *pDst points to real output buffer
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*
*/
void arm_cmplx_mag_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t realIn, imagIn; /* Temporary variables to hold input values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = sqrt((real * real) + (imag * imag)) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q15.c
*
* Description: Q15 complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q15 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
*/
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t acc2, acc3;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
acc1 = __SMUAD(in2, in2);
acc2 = __SMUAD(in3, in3);
acc3 = __SMUAD(in4, in4);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t real, imag; /* Temporary variables to hold input values */
while(numSamples > 0u)
{
/* out = sqrt(real * real + imag * imag) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,177 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q31.c
*
* Description: Q31 complex magnitude
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q31 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to hold input values */
q31_t acc0, acc1; /* Accumulators */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t real1, real2, imag1, imag2; /* Temporary variables to hold input values */
q31_t out1, out2, out3, out4; /* Accumulators */
q63_t mul1, mul2, mul3, mul4; /* Temporary variables */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read complex input from source buffer */
real1 = pSrc[0];
imag1 = pSrc[1];
real2 = pSrc[2];
imag2 = pSrc[3];
/* calculate power of input values */
mul1 = (q63_t) real1 *real1;
mul2 = (q63_t) imag1 *imag1;
mul3 = (q63_t) real2 *real2;
mul4 = (q63_t) imag2 *imag2;
/* get the result to 3.29 format */
out1 = (q31_t) (mul1 >> 33);
out2 = (q31_t) (mul2 >> 33);
out3 = (q31_t) (mul3 >> 33);
out4 = (q31_t) (mul4 >> 33);
/* add real and imaginary accumulators */
out1 = out1 + out2;
out3 = out3 + out4;
/* read complex input from source buffer */
real1 = pSrc[4];
imag1 = pSrc[5];
real2 = pSrc[6];
imag2 = pSrc[7];
/* calculate square root */
arm_sqrt_q31(out1, &pDst[0]);
/* calculate power of input values */
mul1 = (q63_t) real1 *real1;
/* calculate square root */
arm_sqrt_q31(out3, &pDst[1]);
/* calculate power of input values */
mul2 = (q63_t) imag1 *imag1;
mul3 = (q63_t) real2 *real2;
mul4 = (q63_t) imag2 *imag2;
/* get the result to 3.29 format */
out1 = (q31_t) (mul1 >> 33);
out2 = (q31_t) (mul2 >> 33);
out3 = (q31_t) (mul3 >> 33);
out4 = (q31_t) (mul4 >> 33);
/* add real and imaginary accumulators */
out1 = out1 + out2;
out3 = out3 + out4;
/* calculate square root */
arm_sqrt_q31(out1, &pDst[2]);
/* increment destination by 8 to process next samples */
pSrc += 8u;
/* calculate square root */
arm_sqrt_q31(out3, &pDst[3]);
/* increment destination by 4 to process next samples */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,207 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_f32.c
*
* Description: Floating-point complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag_squared Complex Magnitude Squared
*
* Computes the magnitude squared of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Floating-point complex magnitude squared
* @param[in] *pSrc points to the complex input vector
* @param[out] *pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*/
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t real, imag; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */
float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */
float32_t mul1, mul2, mul3, mul4; /* Temporary variables */
float32_t mul5, mul6, mul7, mul8; /* Temporary variables */
float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
/* read real input sample from source buffer */
real1 = pSrc[0];
/* read imaginary input sample from source buffer */
imag1 = pSrc[1];
/* calculate power of real value */
mul1 = real1 * real1;
/* read real input sample from source buffer */
real2 = pSrc[2];
/* calculate power of imaginary value */
mul2 = imag1 * imag1;
/* read imaginary input sample from source buffer */
imag2 = pSrc[3];
/* calculate power of real value */
mul3 = real2 * real2;
/* read real input sample from source buffer */
real3 = pSrc[4];
/* calculate power of imaginary value */
mul4 = imag2 * imag2;
/* read imaginary input sample from source buffer */
imag3 = pSrc[5];
/* calculate power of real value */
mul5 = real3 * real3;
/* calculate power of imaginary value */
mul6 = imag3 * imag3;
/* read real input sample from source buffer */
real4 = pSrc[6];
/* accumulate real and imaginary powers */
out1 = mul1 + mul2;
/* read imaginary input sample from source buffer */
imag4 = pSrc[7];
/* accumulate real and imaginary powers */
out2 = mul3 + mul4;
/* calculate power of real value */
mul7 = real4 * real4;
/* calculate power of imaginary value */
mul8 = imag4 * imag4;
/* store output to destination */
pDst[0] = out1;
/* accumulate real and imaginary powers */
out3 = mul5 + mul6;
/* store output to destination */
pDst[1] = out2;
/* accumulate real and imaginary powers */
out4 = mul7 + mul8;
/* store output to destination */
pDst[2] = out3;
/* increment destination pointer by 8 to process next samples */
pSrc += 8u;
/* store output to destination */
pDst[3] = out4;
/* increment destination pointer by 4 to process next samples */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* out = (real * real) + (imag * imag) */
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,140 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q15.c
*
* Description: Q15 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q15 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mag_squared_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t acc2, acc3;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
acc1 = __SMUAD(in2, in2);
acc2 = __SMUAD(in3, in3);
acc3 = __SMUAD(in4, in4);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (acc0 >> 17);
*pDst++ = (q15_t) (acc1 >> 17);
*pDst++ = (q15_t) (acc2 >> 17);
*pDst++ = (q15_t) (acc3 >> 17);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (acc0 >> 17);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t real, imag; /* Temporary variables to store real and imaginary values */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q31.c
*
* Description: Q31 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q31 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_squared_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to store real and imaginary values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,199 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_f32.c
*
* Description: Floating-point complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
*
* Multiplies a complex vector by another complex vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
* pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Floating-point complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_mult_cmplx_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t numSamples)
{
float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */
float32_t acc1, acc2, acc3, acc4;
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a1 = *pSrcA; /* A[2 * i] */
c1 = *pSrcB; /* B[2 * i] */
b1 = *(pSrcA + 1); /* A[2 * i + 1] */
acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */
a2 = *(pSrcA + 2); /* A[2 * i + 2] */
acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */
d1 = *(pSrcB + 1); /* B[2 * i + 1] */
c2 = *(pSrcB + 2); /* B[2 * i + 2] */
acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
d2 = *(pSrcB + 3); /* B[2 * i + 3] */
acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */
b2 = *(pSrcA + 3); /* A[2 * i + 3] */
acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
a1 = *(pSrcA + 4); /* A[2 * i + 4] */
acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */
c1 = *(pSrcB + 4); /* B[2 * i + 4] */
acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */
*pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
b1 = *(pSrcA + 5); /* A[2 * i + 5] */
acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */
*(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
acc1 = (a1 * c1);
d1 = *(pSrcB + 5);
acc2 = (b1 * c1);
*(pDst + 2) = acc3;
*(pDst + 3) = acc4;
a2 = *(pSrcA + 6);
acc1 -= (b1 * d1);
c2 = *(pSrcB + 6);
acc2 += (a1 * d1);
b2 = *(pSrcA + 7);
acc3 = (a2 * c2);
d2 = *(pSrcB + 7);
acc4 = (b2 * c2);
*(pDst + 4) = acc1;
pSrcA += 8u;
acc3 -= (b2 * d2);
acc4 += (a2 * d2);
*(pDst + 5) = acc2;
pSrcB += 8u;
*(pDst + 6) = acc3;
*(pDst + 7) = acc4;
pDst += 8u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a1 = *pSrcA++;
b1 = *pSrcA++;
c1 = *pSrcB++;
d1 = *pSrcB++;
/* store the result in the destination buffer. */
*pDst++ = (a1 * c1) - (b1 * d1);
*pDst++ = (a1 * d1) + (b1 * c1);
/* Decrement the numSamples loop counter */
blkCnt--;
}
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,185 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q15.c
*
* Description: Q15 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q15 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mult_cmplx_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t numSamples)
{
q15_t a, b, c, d; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,318 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q31.c
*
* Description: Q31 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q31 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mult_cmplx_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t numSamples)
{
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counters */
q31_t mul1, mul2, mul3, mul4;
q31_t out1, out2;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* loop Unrolling */
blkCnt = numSamples >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x2u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,217 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
*
* Description: Floating-point complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
*
* Multiplies a complex vector by a real vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values while the real array has a total of <code>numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Floating-point complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*/
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
float32_t in; /* Temporary variable to store input value */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */
float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */
float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */
float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */
float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read input from complex input buffer */
inA1 = pSrcCmplx[0];
inA2 = pSrcCmplx[1];
/* read input from real input buffer */
inB1 = pSrcReal[0];
/* read input from complex input buffer */
inA3 = pSrcCmplx[2];
/* multiply complex buffer real input with real buffer input */
out1 = inA1 * inB1;
/* read input from complex input buffer */
inA4 = pSrcCmplx[3];
/* multiply complex buffer imaginary input with real buffer input */
out2 = inA2 * inB1;
/* read input from real input buffer */
inB2 = pSrcReal[1];
/* read input from complex input buffer */
inA5 = pSrcCmplx[4];
/* multiply complex buffer real input with real buffer input */
out3 = inA3 * inB2;
/* read input from complex input buffer */
inA6 = pSrcCmplx[5];
/* read input from real input buffer */
inB3 = pSrcReal[2];
/* multiply complex buffer imaginary input with real buffer input */
out4 = inA4 * inB2;
/* read input from complex input buffer */
inA7 = pSrcCmplx[6];
/* multiply complex buffer real input with real buffer input */
out5 = inA5 * inB3;
/* read input from complex input buffer */
inA8 = pSrcCmplx[7];
/* multiply complex buffer imaginary input with real buffer input */
out6 = inA6 * inB3;
/* read input from real input buffer */
inB4 = pSrcReal[3];
/* store result to destination bufer */
pCmplxDst[0] = out1;
/* multiply complex buffer real input with real buffer input */
out7 = inA7 * inB4;
/* store result to destination bufer */
pCmplxDst[1] = out2;
/* multiply complex buffer imaginary input with real buffer input */
out8 = inA8 * inB4;
/* store result to destination bufer */
pCmplxDst[2] = out3;
pCmplxDst[3] = out4;
pCmplxDst[4] = out5;
/* incremnet complex input buffer by 8 to process next samples */
pSrcCmplx += 8u;
/* store result to destination bufer */
pCmplxDst[5] = out6;
/* increment real input buffer by 4 to process next samples */
pSrcReal += 4u;
/* store result to destination bufer */
pCmplxDst[6] = out7;
pCmplxDst[7] = out8;
/* increment destination buffer by 8 to process next sampels */
pCmplxDst += 8u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
blkCnt--;
}
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,195 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q15.c
*
* Description: Q15 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q15 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_cmplx_mult_real_q15(
q15_t * pSrcCmplx,
q15_t * pSrcReal,
q15_t * pCmplxDst,
uint32_t numSamples)
{
q15_t in; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
q31_t inA1, inA2; /* Temporary variables to hold input data */
q31_t inB1; /* Temporary variables to hold input data */
q15_t out1, out2, out3, out4; /* Temporary variables to hold output data */
q31_t mul1, mul2, mul3, mul4; /* Temporary variables to hold intermediate data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read complex number both real and imaginary from complex input buffer */
inA1 = *__SIMD32(pSrcCmplx)++;
/* read two real values at a time from real input buffer */
inB1 = *__SIMD32(pSrcReal)++;
/* read complex number both real and imaginary from complex input buffer */
inA2 = *__SIMD32(pSrcCmplx)++;
/* multiply complex number with real numbers */
#ifndef ARM_MATH_BIG_ENDIAN
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
#else
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
/* saturate the result */
out1 = (q15_t) __SSAT(mul1 >> 15u, 16);
out2 = (q15_t) __SSAT(mul2 >> 15u, 16);
out3 = (q15_t) __SSAT(mul3 >> 15u, 16);
out4 = (q15_t) __SSAT(mul4 >> 15u, 16);
/* pack real and imaginary outputs and store them to destination */
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
inA1 = *__SIMD32(pSrcCmplx)++;
inB1 = *__SIMD32(pSrcReal)++;
inA2 = *__SIMD32(pSrcCmplx)++;
#ifndef ARM_MATH_BIG_ENDIAN
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
#else
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
out1 = (q15_t) __SSAT(mul1 >> 15u, 16);
out2 = (q15_t) __SSAT(mul2 >> 15u, 16);
out3 = (q15_t) __SSAT(mul3 >> 15u, 16);
out4 = (q15_t) __SSAT(mul4 >> 15u, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagOut = imagA * realB. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,215 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q31.c
*
* Description: Q31 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q31 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_cmplx_mult_real_q31(
q31_t * pSrcCmplx,
q31_t * pSrcReal,
q31_t * pCmplxDst,
uint32_t numSamples)
{
q31_t inA1; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
q31_t inA2, inA3, inA4; /* Temporary variables to hold input data */
q31_t inB1, inB2; /* Temporary variabels to hold input data */
q31_t out1, out2, out3, out4; /* Temporary variables to hold output data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
inB2 = *pSrcReal++;
/* read imaginary input from complex input buffer */
inA3 = *pSrcCmplx++;
inA4 = *pSrcCmplx++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
out3 = ((q63_t) inA3 * inB2) >> 32;
out4 = ((q63_t) inA4 * inB2) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
out3 = out3 << 1;
out4 = out4 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
*pCmplxDst++ = out3;
*pCmplxDst++ = out4;
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
inB2 = *pSrcReal++;
/* read imaginary input from complex input buffer */
inA3 = *pSrcCmplx++;
inA4 = *pSrcCmplx++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
out3 = ((q63_t) inA3 * inB2) >> 32;
out4 = ((q63_t) inA4 * inB2) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
out3 = out3 << 1;
out4 = out4 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
*pCmplxDst++ = out3;
*pCmplxDst++ = out4;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagReal = imagA * realB. */
inA1 = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,79 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_f32.c
*
* Description: Floating-point PID Control initialization function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the floating-point PID Control.
* @param[in,out] *S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag)
{
/* Derived coefficient A0 */
S->A0 = S->Kp + S->Ki + S->Kd;
/* Derived coefficient A1 */
S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd);
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,114 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q15.c
*
* Description: Q15 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @details
* @param[in,out] *S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd);
/* Derived coefficients and pack into A1 */
#ifndef ARM_MATH_BIG_ENDIAN
S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16);
#else
S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#else
/* Run the below code for Cortex-M0 */
q31_t temp; /*to store the sum */
/* Derived coefficient A0 */
temp = S->Kp + S->Ki + S->Kd;
S->A0 = (q15_t) __SSAT(temp, 16);
/* Derived coefficients and pack into A1 */
temp = -(S->Kd + S->Kd + S->Kp);
S->A1 = (q15_t) __SSAT(temp, 16);
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,99 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q31.c
*
* Description: Q31 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the Q31 PID Control.
* @param[in,out] *S points to an instance of the Q31 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd);
/* Derived coefficient A1 */
S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp);
#else
/* Run the below code for Cortex-M0 */
q31_t temp;
/* Derived coefficient A0 */
temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki);
S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd);
/* Derived coefficient A1 */
temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd);
S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp);
#endif /* #ifndef ARM_MATH_CM0 */
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q31_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,57 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_f32.c
*
* Description: Floating-point PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the floating-point PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,56 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_q15.c
*
* Description: Q15 PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the Q15 PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S)
{
/* Reset state to zero, The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
/**
* @} end of PID group
*/

Some files were not shown because too many files have changed in this diff Show More