Merge pull request #281 from bcostm/master

[NUCLEO_L152RE/F103RB] Add LSE configuration for RTC
pull/283/head^2
Bogdan Marinescu 2014-04-29 11:05:21 +01:00
commit 5bf985ebc6
35 changed files with 865 additions and 847 deletions

View File

@ -147,6 +147,10 @@
#define HSI_VALUE ((uint32_t)8000000) /*!< Value of the Internal oscillator in Hz*/ #define HSI_VALUE ((uint32_t)8000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */ #endif /* HSI_VALUE */
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768) /*!< Value of the External Low Speed oscillator in Hz */
#endif
/** /**
* @brief STM32F10x Standard Peripheral Library version number * @brief STM32F10x Standard Peripheral Library version number
*/ */

View File

@ -94,6 +94,8 @@ extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Cloc
extern void SystemInit(void); extern void SystemInit(void);
extern void SystemCoreClockUpdate(void); extern void SystemCoreClockUpdate(void);
extern void SetSysClock(void);
/** /**
* @} * @}
*/ */

View File

@ -26,13 +26,13 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "analogin_api.h" #include "analogin_api.h"
#include "wait_api.h"
#if DEVICE_ANALOGIN #if DEVICE_ANALOGIN
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
#include "wait_api.h"
static const PinMap PinMap_ADC[] = { static const PinMap PinMap_ADC[] = {
{PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)}, // ADC12_IN0 {PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)}, // ADC12_IN0
@ -57,15 +57,14 @@ static const PinMap PinMap_ADC[] = {
int adc_inited = 0; int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin) { void analogin_init(analogin_t *obj, PinName pin) {
ADC_TypeDef *adc;
ADC_TypeDef *adc;
ADC_InitTypeDef ADC_InitStructure; ADC_InitTypeDef ADC_InitStructure;
// Get the peripheral name from the pin and assign it to the object // Get the peripheral name from the pin and assign it to the object
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
if (obj->adc == (ADCName)NC) { if (obj->adc == (ADCName)NC) {
error("ADC pin mapping failed"); error("ADC pin mapping failed");
} }
// Configure GPIO // Configure GPIO
@ -100,87 +99,87 @@ void analogin_init(analogin_t *obj, PinName pin) {
// Calibrate ADC // Calibrate ADC
ADC_ResetCalibration(adc); ADC_ResetCalibration(adc);
while(ADC_GetResetCalibrationStatus(adc)); while (ADC_GetResetCalibrationStatus(adc));
ADC_StartCalibration(adc); ADC_StartCalibration(adc);
while(ADC_GetCalibrationStatus(adc)); while (ADC_GetCalibrationStatus(adc));
} }
} }
static inline uint16_t adc_read(analogin_t *obj) { static inline uint16_t adc_read(analogin_t *obj) {
// Get ADC registers structure address // Get ADC registers structure address
ADC_TypeDef *adc = (ADC_TypeDef *)(obj->adc); ADC_TypeDef *adc = (ADC_TypeDef *)(obj->adc);
int channel = 0; int channel = 0;
// Configure ADC channel // Configure ADC channel
switch (obj->pin) { switch (obj->pin) {
case PA_0: case PA_0:
channel = 0; channel = 0;
break; break;
case PA_1: case PA_1:
channel = 1; channel = 1;
break; break;
case PA_2: case PA_2:
channel = 2; channel = 2;
break; break;
case PA_3: case PA_3:
channel = 3; channel = 3;
break; break;
case PA_4: case PA_4:
channel = 4; channel = 4;
break; break;
case PA_5: case PA_5:
channel = 5; channel = 5;
break; break;
case PA_6: case PA_6:
channel = 6; channel = 6;
break; break;
case PA_7: case PA_7:
channel = 7; channel = 7;
break; break;
case PB_0: case PB_0:
channel = 8; channel = 8;
break; break;
case PB_1: case PB_1:
channel = 9; channel = 9;
break; break;
case PC_0: case PC_0:
channel = 10; channel = 10;
break; break;
case PC_1: case PC_1:
channel = 11; channel = 11;
break; break;
case PC_2: case PC_2:
channel = 12; channel = 12;
break; break;
case PC_3: case PC_3:
channel = 13; channel = 13;
break; break;
case PC_4: case PC_4:
channel = 14; channel = 14;
break; break;
case PC_5: case PC_5:
channel = 15; channel = 15;
break; break;
default: default:
return 0; return 0;
} }
ADC_RegularChannelConfig(adc, channel, 1, ADC_SampleTime_7Cycles5); ADC_RegularChannelConfig(adc, channel, 1, ADC_SampleTime_7Cycles5);
ADC_SoftwareStartConvCmd(adc, ENABLE); // Start conversion ADC_SoftwareStartConvCmd(adc, ENABLE); // Start conversion
while(ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion while (ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion
return(ADC_GetConversionValue(adc)); // Get conversion value return (ADC_GetConversionValue(adc)); // Get conversion value
} }
uint16_t analogin_read_u16(analogin_t *obj) { uint16_t analogin_read_u16(analogin_t *obj) {
return(adc_read(obj)); return (adc_read(obj));
} }
float analogin_read(analogin_t *obj) { float analogin_read(analogin_t *obj) {
uint16_t value = adc_read(obj); uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range return (float)value * (1.0f / (float)0xFFF); // 12 bits range
} }
#endif #endif

View File

@ -37,15 +37,15 @@
#define DEVICE_INTERRUPTIN 1 #define DEVICE_INTERRUPTIN 1
#define DEVICE_ANALOGIN 1 #define DEVICE_ANALOGIN 1
#define DEVICE_ANALOGOUT 0 #define DEVICE_ANALOGOUT 0 // Not present on this device
#define DEVICE_SERIAL 1 #define DEVICE_SERIAL 1
#define DEVICE_I2C 1 #define DEVICE_I2C 1
#define DEVICE_I2CSLAVE 0 #define DEVICE_I2CSLAVE 0 // Not yet supported
#define DEVICE_SPI 1 #define DEVICE_SPI 1
#define DEVICE_SPISLAVE 0 #define DEVICE_SPISLAVE 0 // Not yet supported
#define DEVICE_RTC 1 #define DEVICE_RTC 1
@ -63,7 +63,7 @@
#define DEVICE_STDIO_MESSAGES 1 #define DEVICE_STDIO_MESSAGES 1
//#define DEVICE_ERROR_RED 0 #define DEVICE_ERROR_RED 0
#include "objects.h" #include "objects.h"

View File

@ -65,8 +65,7 @@ void gpio_mode(gpio_t *obj, PinMode mode) {
void gpio_dir(gpio_t *obj, PinDirection direction) { void gpio_dir(gpio_t *obj, PinDirection direction) {
if (direction == PIN_OUTPUT) { if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_Out_PP, 0)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_Out_PP, 0));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0));
} }
} }

View File

@ -29,7 +29,6 @@
*/ */
#include <stddef.h> #include <stddef.h>
#include "cmsis.h" #include "cmsis.h"
#include "gpio_irq_api.h" #include "gpio_irq_api.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
@ -53,8 +52,7 @@ static void handle_interrupt_in(uint32_t irq_index) {
uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]); uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]);
// Clear interrupt flag // Clear interrupt flag
if (EXTI_GetITStatus(pin) != RESET) if (EXTI_GetITStatus(pin) != RESET) {
{
EXTI_ClearITPendingBit(pin); EXTI_ClearITPendingBit(pin);
} }
@ -63,20 +61,33 @@ static void handle_interrupt_in(uint32_t irq_index) {
// Check which edge has generated the irq // Check which edge has generated the irq
if ((gpio->IDR & pin) == 0) { if ((gpio->IDR & pin) == 0) {
irq_handler(channel_ids[irq_index], IRQ_FALL); irq_handler(channel_ids[irq_index], IRQ_FALL);
} } else {
else {
irq_handler(channel_ids[irq_index], IRQ_RISE); irq_handler(channel_ids[irq_index], IRQ_RISE);
} }
} }
// The irq_index is passed to the function // The irq_index is passed to the function
static void gpio_irq0(void) {handle_interrupt_in(0);} // EXTI line 0 static void gpio_irq0(void) {
static void gpio_irq1(void) {handle_interrupt_in(1);} // EXTI line 1 handle_interrupt_in(0); // EXTI line 0
static void gpio_irq2(void) {handle_interrupt_in(2);} // EXTI line 2 }
static void gpio_irq3(void) {handle_interrupt_in(3);} // EXTI line 3 static void gpio_irq1(void) {
static void gpio_irq4(void) {handle_interrupt_in(4);} // EXTI line 4 handle_interrupt_in(1); // EXTI line 1
static void gpio_irq5(void) {handle_interrupt_in(5);} // EXTI lines 5 to 9 }
static void gpio_irq6(void) {handle_interrupt_in(6);} // EXTI lines 10 to 15 static void gpio_irq2(void) {
handle_interrupt_in(2); // EXTI line 2
}
static void gpio_irq3(void) {
handle_interrupt_in(3); // EXTI line 3
}
static void gpio_irq4(void) {
handle_interrupt_in(4); // EXTI line 4
}
static void gpio_irq5(void) {
handle_interrupt_in(5); // EXTI lines 5 to 9
}
static void gpio_irq6(void) {
handle_interrupt_in(6); // EXTI lines 10 to 15
}
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
@ -205,8 +216,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or RISE
else { // NONE or RISE
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
obj->event = EDGE_RISE; obj->event = EDGE_RISE;
} }
@ -216,8 +226,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or FALL
else { // NONE or FALL
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
obj->event = EDGE_FALL; obj->event = EDGE_FALL;
} }
@ -225,8 +234,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if (enable) { if (enable) {
EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_InitStructure.EXTI_LineCmd = ENABLE;
} } else {
else {
EXTI_InitStructure.EXTI_LineCmd = DISABLE; EXTI_InitStructure.EXTI_LineCmd = DISABLE;
} }

View File

@ -50,8 +50,7 @@ typedef struct {
static inline void gpio_write(gpio_t *obj, int value) { static inline void gpio_write(gpio_t *obj, int value) {
if (value) { if (value) {
*obj->reg_set = obj->mask; *obj->reg_set = obj->mask;
} } else {
else {
*obj->reg_clr = obj->mask; *obj->reg_clr = obj->mask;
} }
} }

View File

@ -118,7 +118,6 @@ inline int i2c_start(i2c_t *obj) {
// Wait the START condition has been correctly sent // Wait the START condition has been correctly sent
timeout = FLAG_TIMEOUT; timeout = FLAG_TIMEOUT;
//while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_MODE_SELECT) == ERROR) {
while (I2C_GetFlagStatus(i2c, I2C_FLAG_SB) == RESET) { while (I2C_GetFlagStatus(i2c, I2C_FLAG_SB) == RESET) {
timeout--; timeout--;
if (timeout == 0) { if (timeout == 0) {
@ -145,17 +144,6 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
if (length == 0) return 0; if (length == 0) return 0;
/*
// Wait until the bus is not busy anymore
timeout = LONG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_FLAG_BUSY) == SET) {
timeout--;
if (timeout == 0) {
return 0;
}
}
*/
i2c_start(obj); i2c_start(obj);
// Send slave address for read // Send slave address for read
@ -194,17 +182,6 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int timeout; int timeout;
int count; int count;
/*
// Wait until the bus is not busy anymore
timeout = LONG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_FLAG_BUSY) == SET) {
timeout--;
if (timeout == 0) {
return 0;
}
}
*/
i2c_start(obj); i2c_start(obj);
// Send slave address for write // Send slave address for write
@ -269,9 +246,8 @@ int i2c_byte_write(i2c_t *obj, int data) {
// Wait until the byte is transmitted // Wait until the byte is transmitted
timeout = FLAG_TIMEOUT; timeout = FLAG_TIMEOUT;
//while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR) {
while ((I2C_GetFlagStatus(i2c, I2C_FLAG_TXE) == RESET) && while ((I2C_GetFlagStatus(i2c, I2C_FLAG_TXE) == RESET) &&
(I2C_GetFlagStatus(i2c, I2C_FLAG_BTF) == RESET)) { (I2C_GetFlagStatus(i2c, I2C_FLAG_BTF) == RESET)) {
timeout--; timeout--;
if (timeout == 0) { if (timeout == 0) {
return 0; return 0;
@ -319,8 +295,7 @@ void i2c_slave_mode(i2c_t *obj, int enable_slave) {
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver) #define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
int i2c_slave_receive(i2c_t *obj) { int i2c_slave_receive(i2c_t *obj) {
// TO BE DONE return (0);
return(0);
} }
int i2c_slave_read(i2c_t *obj, char *data, int length) { int i2c_slave_read(i2c_t *obj, char *data, int length) {

View File

@ -34,16 +34,16 @@
// Alternate-function mapping // Alternate-function mapping
#define AF_NUM (10) #define AF_NUM (10)
static const uint32_t AF_mapping[AF_NUM] = { static const uint32_t AF_mapping[AF_NUM] = {
0, // 0 = No AF 0, // 0 = No AF
GPIO_Remap_SPI1, // 1 GPIO_Remap_SPI1, // 1
GPIO_Remap_I2C1, // 2 GPIO_Remap_I2C1, // 2
GPIO_Remap_USART1, // 3 GPIO_Remap_USART1, // 3
GPIO_Remap_USART2, // 4 GPIO_Remap_USART2, // 4
GPIO_PartialRemap_USART3, // 5 GPIO_PartialRemap_USART3, // 5
GPIO_PartialRemap_TIM1, // 6 GPIO_PartialRemap_TIM1, // 6
GPIO_PartialRemap_TIM3, // 7 GPIO_PartialRemap_TIM3, // 7
GPIO_FullRemap_TIM2, // 8 GPIO_FullRemap_TIM2, // 8
GPIO_FullRemap_TIM3 // 9 GPIO_FullRemap_TIM3 // 9
}; };
// Enable GPIO clock and return GPIO base address // Enable GPIO clock and return GPIO base address
@ -133,28 +133,27 @@ void pin_mode(PinName pin, PinMode mode) {
// Configure open-drain and pull-up/down // Configure open-drain and pull-up/down
switch (mode) { switch (mode) {
case PullNone: case PullNone:
return; return;
case PullUp: case PullUp:
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
break; break;
case PullDown: case PullDown:
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
break; break;
case OpenDrain: case OpenDrain:
if (pin_index < 8) { if (pin_index < 8) {
if ((gpio->CRL & (0x03 << (pin_index * 4))) > 0) { // MODE bits = Output mode if ((gpio->CRL & (0x03 << (pin_index * 4))) > 0) { // MODE bits = Output mode
gpio->CRL |= (0x04 << (pin_index * 4)); // Set open-drain gpio->CRL |= (0x04 << (pin_index * 4)); // Set open-drain
}
} else {
if ((gpio->CRH & (0x03 << ((pin_index % 8) * 4))) > 0) { // MODE bits = Output mode
gpio->CRH |= (0x04 << ((pin_index % 8) * 4)); // Set open-drain
}
} }
} return;
else { default:
if ((gpio->CRH & (0x03 << ((pin_index % 8) * 4))) > 0) { // MODE bits = Output mode break;
gpio->CRH |= (0x04 << ((pin_index % 8) * 4)); // Set open-drain
}
}
return;
default:
break;
} }
// Configure GPIO // Configure GPIO

View File

@ -28,18 +28,19 @@
******************************************************************************* *******************************************************************************
*/ */
#include "port_api.h" #include "port_api.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
#include "pinmap.h" #include "pinmap.h"
#include "gpio_api.h" #include "gpio_api.h"
#include "error.h" #include "error.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...) // high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...)
// low nibble = pin number // low nibble = pin number
PinName port_pin(PortName port, int pin_n) { PinName port_pin(PortName port, int pin_n) {
return (PinName)(pin_n + (port << 4)); return (PinName)(pin_n + (port << 4));
} }
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) { void port_init(port_t *obj, PortName port, int mask, PinDirection dir) {
@ -66,8 +67,7 @@ void port_dir(port_t *obj, PinDirection dir) {
if (obj->mask & (1 << i)) { // If the pin is used if (obj->mask & (1 << i)) { // If the pin is used
if (dir == PIN_OUTPUT) { if (dir == PIN_OUTPUT) {
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_Out_PP, 0)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_Out_PP, 0));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0));
} }
} }
@ -90,8 +90,7 @@ void port_write(port_t *obj, int value) {
int port_read(port_t *obj) { int port_read(port_t *obj) {
if (obj->direction == PIN_OUTPUT) { if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask); return (*obj->reg_out & obj->mask);
} } else { // PIN_INPUT
else { // PIN_INPUT
return (*obj->reg_in & obj->mask); return (*obj->reg_in & obj->mask);
} }
} }

View File

@ -29,6 +29,8 @@
*/ */
#include "pwmout_api.h" #include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
@ -40,7 +42,7 @@ static const PinMap PinMap_PWM[] = {
{PA_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH4 - Default (warning: not connected on D0 per default) {PA_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH4 - Default (warning: not connected on D0 per default)
{PA_6, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH1 - Default {PA_6, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH1 - Default
{PA_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH2 - Default {PA_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH2 - Default
//{PA_7, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH1N - GPIO_PartialRemap_TIM1 // {PA_7, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH1N - GPIO_PartialRemap_TIM1
{PA_8, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH1 - Default {PA_8, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH1 - Default
{PA_9, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH2 - Default {PA_9, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH2 - Default
{PA_10, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH3 - Default {PA_10, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH3 - Default
@ -48,16 +50,16 @@ static const PinMap PinMap_PWM[] = {
{PA_15, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH1_ETR - GPIO_FullRemap_TIM2 {PA_15, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH1_ETR - GPIO_FullRemap_TIM2
{PB_0, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH3 - Default {PB_0, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH3 - Default
//{PB_0, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH2N - GPIO_PartialRemap_TIM1 // {PB_0, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH2N - GPIO_PartialRemap_TIM1
{PB_1, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH4 - Default {PB_1, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH4 - Default
//{PB_1, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH3N - GPIO_PartialRemap_TIM1 // {PB_1, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM1_CH3N - GPIO_PartialRemap_TIM1
{PB_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH2 - GPIO_FullRemap_TIM2 {PB_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH2 - GPIO_FullRemap_TIM2
{PB_4, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3_CH1 - GPIO_PartialRemap_TIM3 {PB_4, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3_CH1 - GPIO_PartialRemap_TIM3
{PB_5, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3_CH2 - GPIO_PartialRemap_TIM3 {PB_5, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3_CH2 - GPIO_PartialRemap_TIM3
//{PB_6, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH1 - Default (used by ticker) // {PB_6, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH1 - Default (used by ticker)
//{PB_7, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH2 - Default (used by ticker) // {PB_7, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH2 - Default (used by ticker)
//{PB_8, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH3 - Default (used by ticker) // {PB_8, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH3 - Default (used by ticker)
//{PB_9, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH4 - Default (used by ticker) // {PB_9, PWM_4, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM4_CH4 - Default (used by ticker)
{PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH3 - GPIO_FullRemap_TIM2 {PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH3 - GPIO_FullRemap_TIM2
{PB_11, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH4 - GPIO_FullRemap_TIM2 {PB_11, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 8)}, // TIM2_CH4 - GPIO_FullRemap_TIM2
{PB_13, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH1N - Default {PB_13, PWM_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM1_CH1N - Default
@ -126,14 +128,14 @@ void pwmout_write(pwmout_t* obj, float value) {
case PA_8: case PA_8:
case PA_15: case PA_15:
case PB_4: case PB_4:
//case PB_6: //case PB_6:
case PC_6: case PC_6:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable); TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC1Init(tim, &TIM_OCInitStructure); TIM_OC1Init(tim, &TIM_OCInitStructure);
break; break;
// Channels 1N // Channels 1N
//case PA_7: //case PA_7:
case PB_13: case PB_13:
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable); TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
@ -145,14 +147,14 @@ void pwmout_write(pwmout_t* obj, float value) {
case PA_9: case PA_9:
case PB_3: case PB_3:
case PB_5: case PB_5:
//case PB_7: //case PB_7:
case PC_7: case PC_7:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC2Init(tim, &TIM_OCInitStructure); TIM_OC2Init(tim, &TIM_OCInitStructure);
break; break;
// Channels 2N // Channels 2N
//case PB_0: //case PB_0:
case PB_14: case PB_14:
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
@ -162,7 +164,7 @@ void pwmout_write(pwmout_t* obj, float value) {
case PA_2: case PA_2:
case PA_10: case PA_10:
case PB_0: case PB_0:
//case PB_8: //case PB_8:
case PB_10: case PB_10:
case PC_8: case PC_8:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
@ -170,7 +172,7 @@ void pwmout_write(pwmout_t* obj, float value) {
TIM_OC3Init(tim, &TIM_OCInitStructure); TIM_OC3Init(tim, &TIM_OCInitStructure);
break; break;
// Channels 3N // Channels 3N
//case PB_1: //case PB_1:
case PB_15: case PB_15:
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable); TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
@ -180,7 +182,7 @@ void pwmout_write(pwmout_t* obj, float value) {
case PA_3: case PA_3:
case PA_11: case PA_11:
case PB_1: case PB_1:
//case PB_9: //case PB_9:
case PB_11: case PB_11:
case PC_9: case PC_9:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
@ -219,10 +221,10 @@ void pwmout_period_us(pwmout_t* obj, int us) {
obj->period = us; obj->period = us;
TIM_TimeBaseStructure.TIM_Period = obj->period - 1; TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure); TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);
// Set duty cycle again // Set duty cycle again
@ -244,3 +246,5 @@ void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
float value = (float)us / (float)obj->period; float value = (float)us / (float)obj->period;
pwmout_write(obj, value); pwmout_write(obj, value);
} }
#endif

View File

@ -29,26 +29,48 @@
*/ */
#include "rtc_api.h" #include "rtc_api.h"
#if DEVICE_RTC
#include "wait_api.h"
#define LSE_STARTUP_TIMEOUT ((uint16_t)700) // delay in ms
static int rtc_inited = 0; static int rtc_inited = 0;
void rtc_init(void) { void rtc_init(void) {
uint32_t StartUpCounter = 0;
uint32_t LSEStatus = 0;
uint32_t rtc_freq = 0;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); // Enable PWR and Backup clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); // Enable PWR and Backup clock
PWR_BackupAccessCmd(ENABLE); // Allow access to Backup Domain PWR_BackupAccessCmd(ENABLE); // Allow access to Backup Domain
BKP_DeInit(); // Reset Backup Domain BKP_DeInit(); // Reset Backup Domain
// Uncomment these lines if you use the LSE // Enable LSE clock
// Enable LSE and wait till it's ready RCC_LSEConfig(RCC_LSE_ON);
//RCC_LSEConfig(RCC_LSE_ON);
//while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) {}
//RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // Select LSE as RTC Clock Source
// Uncomment these lines if you use the LSI // Wait till LSE is ready
// Enable LSI and wait till it's ready do {
RCC_LSICmd(ENABLE); LSEStatus = RCC_GetFlagStatus(RCC_FLAG_LSERDY);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {} wait_ms(1);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select LSI as RTC Clock Source StartUpCounter++;
} while ((LSEStatus == 0) && (StartUpCounter <= LSE_STARTUP_TIMEOUT));
if (StartUpCounter > LSE_STARTUP_TIMEOUT) {
// The LSE has not started, use LSI instead.
// The RTC Clock may vary due to LSI frequency dispersion.
RCC_LSEConfig(RCC_LSE_OFF);
RCC_LSICmd(ENABLE); // Enable LSI
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {} // Wait until ready
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select the RTC Clock Source
rtc_freq = 40000; // [TODO] To be measured precisely using a timer input capture
} else {
// The LSE has correctly started
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // Select the RTC Clock Source
rtc_freq = LSE_VALUE;
}
RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock
@ -57,9 +79,7 @@ void rtc_init(void) {
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
// Set RTC period to 1 sec // Set RTC period to 1 sec
// For LSE: prescaler = RTCCLK/RTC period = 32768Hz/1Hz = 32768 RTC_SetPrescaler(rtc_freq - 1);
// For LSI: prescaler = RTCCLK/RTC period = 40000Hz/1Hz = 40000
RTC_SetPrescaler(39999);
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
@ -84,3 +104,5 @@ void rtc_write(time_t t) {
RTC_SetCounter(t); // Change the current time RTC_SetCounter(t); // Change the current time
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
} }
#endif

View File

@ -28,6 +28,9 @@
******************************************************************************* *******************************************************************************
*/ */
#include "serial_api.h" #include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
@ -122,7 +125,6 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
stdio_uart_inited = 1; stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t)); memcpy(&stdio_uart, obj, sizeof(serial_t));
} }
} }
void serial_free(serial_t *obj) { void serial_free(serial_t *obj) {
@ -137,29 +139,27 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 8) { if (data_bits == 8) {
obj->databits = USART_WordLength_8b; obj->databits = USART_WordLength_8b;
} } else {
else {
obj->databits = USART_WordLength_9b; obj->databits = USART_WordLength_9b;
} }
switch (parity) { switch (parity) {
case ParityOdd: case ParityOdd:
case ParityForced0: case ParityForced0:
obj->parity = USART_Parity_Odd; obj->parity = USART_Parity_Odd;
break; break;
case ParityEven: case ParityEven:
case ParityForced1: case ParityForced1:
obj->parity = USART_Parity_Even; obj->parity = USART_Parity_Even;
break; break;
default: // ParityNone default: // ParityNone
obj->parity = USART_Parity_No; obj->parity = USART_Parity_No;
break; break;
} }
if (stop_bits == 2) { if (stop_bits == 2) {
obj->stopbits = USART_StopBits_2; obj->stopbits = USART_StopBits_2;
} } else {
else {
obj->stopbits = USART_StopBits_1; obj->stopbits = USART_StopBits_1;
} }
@ -205,26 +205,25 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
if (obj->uart == UART_1) { if (obj->uart == UART_1) {
irq_n = USART1_IRQn; irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq; vector = (uint32_t)&uart1_irq;
} }
if (obj->uart == UART_2) { if (obj->uart == UART_2) {
irq_n = USART2_IRQn; irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq; vector = (uint32_t)&uart2_irq;
} }
if (obj->uart == UART_3) { if (obj->uart == UART_3) {
irq_n = USART3_IRQn; irq_n = USART3_IRQn;
vector = (uint32_t)&uart3_irq; vector = (uint32_t)&uart3_irq;
} }
if (enable) { if (enable) {
if (irq == RxIrq) { if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, ENABLE); USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TC, ENABLE); USART_ITConfig(usart, USART_IT_TC, ENABLE);
} }
@ -239,8 +238,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_ITConfig(usart, USART_IT_RXNE, DISABLE); USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
// Check if TxIrq is disabled too // Check if TxIrq is disabled too
if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TXE, DISABLE); USART_ITConfig(usart, USART_IT_TXE, DISABLE);
// Check if RxIrq is disabled too // Check if RxIrq is disabled too
if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
@ -300,3 +298,5 @@ void serial_break_set(serial_t *obj) {
void serial_break_clear(serial_t *obj) { void serial_break_clear(serial_t *obj) {
} }
#endif

View File

@ -28,13 +28,12 @@
******************************************************************************* *******************************************************************************
*/ */
#include "sleep_api.h" #include "sleep_api.h"
#if DEVICE_SLEEP
#include "cmsis.h" #include "cmsis.h"
// This function is in the system_stm32f10x.c file void sleep(void) {
extern void SetSysClock(void);
void sleep(void)
{
// Disable us_ticker update interrupt // Disable us_ticker update interrupt
TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE); TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);
@ -45,8 +44,7 @@ void sleep(void)
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);
} }
void deepsleep(void) void deepsleep(void) {
{
// Disable us_ticker update interrupt // Disable us_ticker update interrupt
TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE); TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);
@ -62,3 +60,5 @@ void deepsleep(void)
// Re-enable us_ticker update interrupt // Re-enable us_ticker update interrupt
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);
} }
#endif

View File

@ -122,8 +122,7 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
if (ssel == NC) { // Master if (ssel == NC) { // Master
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else { // Slave
else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL); pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
@ -141,35 +140,33 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
// Save new values // Save new values
if (bits == 8) { if (bits == 8) {
obj->bits = SPI_DataSize_8b; obj->bits = SPI_DataSize_8b;
} } else {
else {
obj->bits = SPI_DataSize_16b; obj->bits = SPI_DataSize_16b;
} }
switch (mode) { switch (mode) {
case 0: case 0:
obj->cpol = SPI_CPOL_Low; obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_1Edge; obj->cpha = SPI_CPHA_1Edge;
break; break;
case 1: case 1:
obj->cpol = SPI_CPOL_Low; obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_2Edge; obj->cpha = SPI_CPHA_2Edge;
break; break;
case 2: case 2:
obj->cpol = SPI_CPOL_High; obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_1Edge; obj->cpha = SPI_CPHA_1Edge;
break; break;
default: default:
obj->cpol = SPI_CPOL_High; obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_2Edge; obj->cpha = SPI_CPHA_2Edge;
break; break;
} }
if (slave == 0) { if (slave == 0) {
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else {
else {
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Hard; obj->nss = SPI_NSS_Hard;
} }
@ -182,26 +179,19 @@ void spi_frequency(spi_t *obj, int hz) {
// Values depend of PCLK2: 64 MHz if HSI is used, 72 MHz if HSE is used // Values depend of PCLK2: 64 MHz if HSI is used, 72 MHz if HSE is used
if (hz < 500000) { if (hz < 500000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 250 kHz - 281 kHz obj->br_presc = SPI_BaudRatePrescaler_256; // 250 kHz - 281 kHz
} } else if ((hz >= 500000) && (hz < 1000000)) {
else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BaudRatePrescaler_128; // 500 kHz - 563 kHz obj->br_presc = SPI_BaudRatePrescaler_128; // 500 kHz - 563 kHz
} } else if ((hz >= 1000000) && (hz < 2000000)) {
else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 1 MHz - 1.13 MHz obj->br_presc = SPI_BaudRatePrescaler_64; // 1 MHz - 1.13 MHz
} } else if ((hz >= 2000000) && (hz < 4000000)) {
else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BaudRatePrescaler_32; // 2 MHz - 2.25 MHz obj->br_presc = SPI_BaudRatePrescaler_32; // 2 MHz - 2.25 MHz
} } else if ((hz >= 4000000) && (hz < 8000000)) {
else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 4 MHz - 4.5 MHz obj->br_presc = SPI_BaudRatePrescaler_16; // 4 MHz - 4.5 MHz
} } else if ((hz >= 8000000) && (hz < 16000000)) {
else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BaudRatePrescaler_8; // 8 MHz - 9 MHz obj->br_presc = SPI_BaudRatePrescaler_8; // 8 MHz - 9 MHz
} } else if ((hz >= 16000000) && (hz < 32000000)) {
else if ((hz >= 16000000) && (hz < 32000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 16 MHz - 18 MHz obj->br_presc = SPI_BaudRatePrescaler_4; // 16 MHz - 18 MHz
} } else { // >= 32000000
else { // >= 32000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 32 MHz - 36 MHz obj->br_presc = SPI_BaudRatePrescaler_2; // 32 MHz - 36 MHz
} }
} }
@ -210,26 +200,19 @@ void spi_frequency(spi_t *obj, int hz) {
// Values depend of PCLK1: 32 MHz if HSI is used, 36 MHz if HSE is used // Values depend of PCLK1: 32 MHz if HSI is used, 36 MHz if HSE is used
if (hz < 250000) { if (hz < 250000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz - 141 kHz obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz - 141 kHz
} } else if ((hz >= 250000) && (hz < 500000)) {
else if ((hz >= 250000) && (hz < 500000)) {
obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz - 281 kHz obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz - 281 kHz
} } else if ((hz >= 500000) && (hz < 1000000)) {
else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz - 563 kHz obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz - 563 kHz
} } else if ((hz >= 1000000) && (hz < 2000000)) {
else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz - 1.13 MHz obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz - 1.13 MHz
} } else if ((hz >= 2000000) && (hz < 4000000)) {
else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz - 2.25 MHz obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz - 2.25 MHz
} } else if ((hz >= 4000000) && (hz < 8000000)) {
else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz - 4.5 MHz obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz - 4.5 MHz
} } else if ((hz >= 8000000) && (hz < 16000000)) {
else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz - 9 MHz obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz - 9 MHz
} } else { // >= 16000000
else { // >= 16000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz - 18 MHz obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz - 18 MHz
} }
} }

View File

@ -59,14 +59,12 @@ static void tim_irq_handler(void) {
if (oc_rem_part > 0) { if (oc_rem_part > 0) {
set_compare(oc_rem_part); // Finish the remaining time left set_compare(oc_rem_part); // Finish the remaining time left
oc_rem_part = 0; oc_rem_part = 0;
} } else {
else {
if (oc_int_part > 0) { if (oc_int_part > 0) {
set_compare(0xFFFF); set_compare(0xFFFF);
oc_rem_part = cval; // To finish the counter loop the next time oc_rem_part = cval; // To finish the counter loop the next time
oc_int_part--; oc_int_part--;
} } else {
else {
us_ticker_irq_handler(); us_ticker_irq_handler();
} }
} }
@ -79,7 +77,7 @@ void us_ticker_init(void) {
if (us_ticker_inited) return; if (us_ticker_inited) return;
us_ticker_inited = 1; us_ticker_inited = 1;
// Enable Timer clock // Enable timer clock
TIM_MST_RCC; TIM_MST_RCC;
// Configure time base // Configure time base
@ -129,8 +127,7 @@ void us_ticker_set_interrupt(unsigned int timestamp) {
if (delta <= 0) { // This event was in the past if (delta <= 0) { // This event was in the past
us_ticker_irq_handler(); us_ticker_irq_handler();
} } else {
else {
oc_int_part = (uint32_t)(delta >> 16); oc_int_part = (uint32_t)(delta >> 16);
oc_rem_part = (uint16_t)(delta & 0xFFFF); oc_rem_part = (uint16_t)(delta & 0xFFFF);
if (oc_rem_part <= (0xFFFF - cval)) { if (oc_rem_part <= (0xFFFF - cval)) {

View File

@ -26,13 +26,13 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "analogin_api.h" #include "analogin_api.h"
#include "wait_api.h"
#if DEVICE_ANALOGIN #if DEVICE_ANALOGIN
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
#include "wait_api.h"
static const PinMap PinMap_ADC[] = { static const PinMap PinMap_ADC[] = {
{PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN0 {PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN0
@ -68,7 +68,7 @@ void analogin_init(analogin_t *obj, PinName pin) {
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
if (obj->adc == (ADCName)NC) { if (obj->adc == (ADCName)NC) {
error("ADC pin mapping failed"); error("ADC pin mapping failed");
} }
// Configure GPIO // Configure GPIO
@ -103,92 +103,92 @@ void analogin_init(analogin_t *obj, PinName pin) {
} }
static inline uint16_t adc_read(analogin_t *obj) { static inline uint16_t adc_read(analogin_t *obj) {
// Get ADC registers structure address // Get ADC registers structure address
ADC_TypeDef *adc = (ADC_TypeDef *)(obj->adc); ADC_TypeDef *adc = (ADC_TypeDef *)(obj->adc);
uint8_t channel = 0; uint8_t channel = 0;
// Configure ADC channel // Configure ADC channel
switch (obj->pin) { switch (obj->pin) {
case PA_0: case PA_0:
channel = ADC_Channel_0; channel = ADC_Channel_0;
break; break;
case PA_1: case PA_1:
channel = ADC_Channel_1; channel = ADC_Channel_1;
break; break;
case PA_2: case PA_2:
channel = ADC_Channel_2; channel = ADC_Channel_2;
break; break;
case PA_3: case PA_3:
channel = ADC_Channel_3; channel = ADC_Channel_3;
break; break;
case PA_4: case PA_4:
channel = ADC_Channel_4; channel = ADC_Channel_4;
break; break;
case PA_5: case PA_5:
channel = ADC_Channel_5; channel = ADC_Channel_5;
break; break;
case PA_6: case PA_6:
channel = ADC_Channel_6; channel = ADC_Channel_6;
break; break;
case PA_7: case PA_7:
channel = ADC_Channel_7; channel = ADC_Channel_7;
break; break;
case PB_0: case PB_0:
channel = ADC_Channel_8; channel = ADC_Channel_8;
break; break;
case PB_1: case PB_1:
channel = ADC_Channel_9; channel = ADC_Channel_9;
break; break;
case PB_12: case PB_12:
channel = ADC_Channel_18; channel = ADC_Channel_18;
break; break;
case PB_13: case PB_13:
channel = ADC_Channel_19; channel = ADC_Channel_19;
break; break;
case PB_14: case PB_14:
channel = ADC_Channel_20; channel = ADC_Channel_20;
break; break;
case PB_15: case PB_15:
channel = ADC_Channel_21; channel = ADC_Channel_21;
break; break;
case PC_0: case PC_0:
channel = ADC_Channel_10; channel = ADC_Channel_10;
break; break;
case PC_1: case PC_1:
channel = ADC_Channel_11; channel = ADC_Channel_11;
break; break;
case PC_2: case PC_2:
channel = ADC_Channel_12; channel = ADC_Channel_12;
break; break;
case PC_3: case PC_3:
channel = ADC_Channel_13; channel = ADC_Channel_13;
break; break;
case PC_4: case PC_4:
channel = ADC_Channel_14; channel = ADC_Channel_14;
break; break;
case PC_5: case PC_5:
channel = ADC_Channel_15; channel = ADC_Channel_15;
break; break;
default: default:
return 0; return 0;
} }
ADC_RegularChannelConfig(adc, channel, 1, ADC_SampleTime_4Cycles); ADC_RegularChannelConfig(adc, channel, 1, ADC_SampleTime_4Cycles);
ADC_SoftwareStartConv(adc); // Start conversion ADC_SoftwareStartConv(adc); // Start conversion
while(ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion while (ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion
return(ADC_GetConversionValue(adc)); // Get conversion value return (ADC_GetConversionValue(adc)); // Get conversion value
} }
uint16_t analogin_read_u16(analogin_t *obj) { uint16_t analogin_read_u16(analogin_t *obj) {
return(adc_read(obj)); return (adc_read(obj));
} }
float analogin_read(analogin_t *obj) { float analogin_read(analogin_t *obj) {
uint16_t value = adc_read(obj); uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range return (float)value * (1.0f / (float)0xFFF); // 12 bits range
} }
#endif #endif

View File

@ -112,10 +112,9 @@ void analogout_write(dac_t *obj, float value) {
void analogout_write_u16(dac_t *obj, uint16_t value) { void analogout_write_u16(dac_t *obj, uint16_t value) {
if (value > (uint16_t)RANGE_12BIT) { if (value > (uint16_t)RANGE_12BIT) {
dac_write(obj, (uint16_t)RANGE_12BIT); // Max value dac_write(obj, (uint16_t)RANGE_12BIT); // Max value
} } else {
else { dac_write(obj, value);
dac_write(obj, value);
} }
} }

View File

@ -65,8 +65,7 @@ void gpio_mode(gpio_t *obj, PinMode mode) {
void gpio_dir(gpio_t *obj, PinDirection direction) { void gpio_dir(gpio_t *obj, PinDirection direction) {
if (direction == PIN_OUTPUT) { if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
} }
} }

View File

@ -29,7 +29,6 @@
*/ */
#include <stddef.h> #include <stddef.h>
#include "cmsis.h" #include "cmsis.h"
#include "gpio_irq_api.h" #include "gpio_irq_api.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
@ -53,8 +52,7 @@ static void handle_interrupt_in(uint32_t irq_index) {
uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]); uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]);
// Clear interrupt flag // Clear interrupt flag
if (EXTI_GetITStatus(pin) != RESET) if (EXTI_GetITStatus(pin) != RESET) {
{
EXTI_ClearITPendingBit(pin); EXTI_ClearITPendingBit(pin);
} }
@ -63,20 +61,33 @@ static void handle_interrupt_in(uint32_t irq_index) {
// Check which edge has generated the irq // Check which edge has generated the irq
if ((gpio->IDR & pin) == 0) { if ((gpio->IDR & pin) == 0) {
irq_handler(channel_ids[irq_index], IRQ_FALL); irq_handler(channel_ids[irq_index], IRQ_FALL);
} } else {
else {
irq_handler(channel_ids[irq_index], IRQ_RISE); irq_handler(channel_ids[irq_index], IRQ_RISE);
} }
} }
// The irq_index is passed to the function // The irq_index is passed to the function
static void gpio_irq0(void) {handle_interrupt_in(0);} // EXTI line 0 static void gpio_irq0(void) {
static void gpio_irq1(void) {handle_interrupt_in(1);} // EXTI line 1 handle_interrupt_in(0); // EXTI line 0
static void gpio_irq2(void) {handle_interrupt_in(2);} // EXTI line 2 }
static void gpio_irq3(void) {handle_interrupt_in(3);} // EXTI line 3 static void gpio_irq1(void) {
static void gpio_irq4(void) {handle_interrupt_in(4);} // EXTI line 4 handle_interrupt_in(1); // EXTI line 1
static void gpio_irq5(void) {handle_interrupt_in(5);} // EXTI lines 5 to 9 }
static void gpio_irq6(void) {handle_interrupt_in(6);} // EXTI lines 10 to 15 static void gpio_irq2(void) {
handle_interrupt_in(2); // EXTI line 2
}
static void gpio_irq3(void) {
handle_interrupt_in(3); // EXTI line 3
}
static void gpio_irq4(void) {
handle_interrupt_in(4); // EXTI line 4
}
static void gpio_irq5(void) {
handle_interrupt_in(5); // EXTI lines 5 to 9
}
static void gpio_irq6(void) {
handle_interrupt_in(6); // EXTI lines 10 to 15
}
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
@ -205,8 +216,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or RISE
else { // NONE or RISE
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
obj->event = EDGE_RISE; obj->event = EDGE_RISE;
} }
@ -216,8 +226,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or FALL
else { // NONE or FALL
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
obj->event = EDGE_FALL; obj->event = EDGE_FALL;
} }
@ -225,8 +234,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if (enable) { if (enable) {
EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_InitStructure.EXTI_LineCmd = ENABLE;
} } else {
else {
EXTI_InitStructure.EXTI_LineCmd = DISABLE; EXTI_InitStructure.EXTI_LineCmd = DISABLE;
} }

View File

@ -50,8 +50,7 @@ typedef struct {
static inline void gpio_write(gpio_t *obj, int value) { static inline void gpio_write(gpio_t *obj, int value) {
if (value) { if (value) {
*obj->reg_set = obj->mask; *obj->reg_set = obj->mask;
} } else {
else {
*obj->reg_clr = obj->mask; *obj->reg_clr = obj->mask;
} }
} }

View File

@ -147,8 +147,7 @@ inline int i2c_stop(i2c_t *obj) {
} }
temp = i2c->SR1; temp = i2c->SR1;
I2C_Cmd(i2c, ENABLE); I2C_Cmd(i2c, ENABLE);
} } else {
else {
I2C_GenerateSTOP(i2c, ENABLE); I2C_GenerateSTOP(i2c, ENABLE);
} }
@ -266,7 +265,7 @@ int i2c_byte_write(i2c_t *obj, int data) {
// Wait until the byte is transmitted // Wait until the byte is transmitted
timeout = FLAG_TIMEOUT; timeout = FLAG_TIMEOUT;
while ((I2C_GetFlagStatus(i2c, I2C_FLAG_TXE) == RESET) && while ((I2C_GetFlagStatus(i2c, I2C_FLAG_TXE) == RESET) &&
(I2C_GetFlagStatus(i2c, I2C_FLAG_BTF) == RESET)) { (I2C_GetFlagStatus(i2c, I2C_FLAG_BTF) == RESET)) {
timeout--; timeout--;
if (timeout == 0) { if (timeout == 0) {
return 0; return 0;
@ -314,7 +313,7 @@ void i2c_slave_mode(i2c_t *obj, int enable_slave) {
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver) #define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
int i2c_slave_receive(i2c_t *obj) { int i2c_slave_receive(i2c_t *obj) {
return(0); return (0);
} }
int i2c_slave_read(i2c_t *obj, char *data, int length) { int i2c_slave_read(i2c_t *obj, char *data, int length) {

View File

@ -25,8 +25,7 @@
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "cmsis.h"
extern void SystemCoreClockUpdate(void);
// This function is called after RAM initialization and before main. // This function is called after RAM initialization and before main.
void mbed_sdk_init() { void mbed_sdk_init() {

View File

@ -28,18 +28,19 @@
******************************************************************************* *******************************************************************************
*/ */
#include "port_api.h" #include "port_api.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
#include "pinmap.h" #include "pinmap.h"
#include "gpio_api.h" #include "gpio_api.h"
#include "error.h" #include "error.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...) // high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...)
// low nibble = pin number // low nibble = pin number
PinName port_pin(PortName port, int pin_n) { PinName port_pin(PortName port, int pin_n) {
return (PinName)(pin_n + (port << 4)); return (PinName)(pin_n + (port << 4));
} }
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) { void port_init(port_t *obj, PortName port, int mask, PinDirection dir) {
@ -66,8 +67,7 @@ void port_dir(port_t *obj, PinDirection dir) {
if (obj->mask & (1 << i)) { // If the pin is used if (obj->mask & (1 << i)) { // If the pin is used
if (dir == PIN_OUTPUT) { if (dir == PIN_OUTPUT) {
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
} }
} }
@ -90,8 +90,7 @@ void port_write(port_t *obj, int value) {
int port_read(port_t *obj) { int port_read(port_t *obj) {
if (obj->direction == PIN_OUTPUT) { if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask); return (*obj->reg_out & obj->mask);
} } else { // PIN_INPUT
else { // PIN_INPUT
return (*obj->reg_in & obj->mask); return (*obj->reg_in & obj->mask);
} }
} }

View File

@ -29,25 +29,27 @@
*/ */
#include "pwmout_api.h" #include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
// TIM5 cannot be used because already used by the us_ticker // TIM5 cannot be used because already used by the us_ticker
static const PinMap PinMap_PWM[] = { static const PinMap PinMap_PWM[] = {
//{PA_0, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH1 // {PA_0, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH1
{PA_1, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH2 {PA_1, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH2
//{PA_1, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH1 // {PA_1, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH1
{PA_2, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH3 {PA_2, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH3
//{PA_2, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH3 // {PA_2, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH3
//{PA_2, PWM_9, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM9)}, // TIM9_CH1 // {PA_2, PWM_9, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM9)}, // TIM9_CH1
{PA_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH4 {PA_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH4
//{PA_3, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH4 // {PA_3, PWM_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM5)}, // TIM5_CH4
//{PA_3, PWM_9, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM9)}, // TIM9_CH2 // {PA_3, PWM_9, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM9)}, // TIM9_CH2
{PA_6, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH1 {PA_6, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH1
//{PA_6, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1 // {PA_6, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1
{PA_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH2 {PA_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH2
//{PA_7, PWM_11, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM11)}, // TIM11_CH1 // {PA_7, PWM_11, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM11)}, // TIM11_CH1
{PB_0, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH3 {PB_0, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH3
{PB_1, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH4 {PB_1, PWM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM3)}, // TIM3_CH4
{PB_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH2 {PB_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH2
@ -56,9 +58,9 @@ static const PinMap PinMap_PWM[] = {
{PB_6, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH1 {PB_6, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH1
{PB_7, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH2 {PB_7, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH2
{PB_8, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH3 {PB_8, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH3
//{PB_8, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1 // {PB_8, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1
{PB_9, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH4 {PB_9, PWM_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM4)}, // TIM4_CH4
//{PB_9, PWM_11, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM11)}, // TIM11_CH1 // {PB_9, PWM_11, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM11)}, // TIM11_CH1
{PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH3 {PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH3
{PB_11, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH4 {PB_11, PWM_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM2)}, // TIM2_CH4
{PB_12, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1 {PB_12, PWM_10, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_TIM10)}, // TIM10_CH1
@ -124,15 +126,15 @@ void pwmout_write(pwmout_t* obj, float value) {
// Configure the channels // Configure the channels
switch (obj->pin) { switch (obj->pin) {
// Channels 1 // Channels 1
//case PA_0: //case PA_0:
//case PA_1: //case PA_1:
//case PA_2: //case PA_2:
case PA_6: case PA_6:
//case PA_7: //case PA_7:
case PB_4: case PB_4:
case PB_6: case PB_6:
//case PB_8: //case PB_8:
//case PB_9: //case PB_9:
case PB_12: case PB_12:
case PB_13: case PB_13:
case PB_15: case PB_15:
@ -142,7 +144,7 @@ void pwmout_write(pwmout_t* obj, float value) {
break; break;
// Channels 2 // Channels 2
case PA_1: case PA_1:
//case PA_3: //case PA_3:
case PA_7: case PA_7:
case PB_3: case PB_3:
case PB_5: case PB_5:
@ -225,3 +227,5 @@ void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
float value = (float)us / (float)obj->period; float value = (float)us / (float)obj->period;
pwmout_write(obj, value); pwmout_write(obj, value);
} }
#endif

View File

@ -29,35 +29,62 @@
*/ */
#include "rtc_api.h" #include "rtc_api.h"
#if DEVICE_RTC
#include "wait_api.h"
#define LSE_STARTUP_TIMEOUT ((uint16_t)400) // delay in ms
static int rtc_inited = 0; static int rtc_inited = 0;
void rtc_init(void) { void rtc_init(void) {
uint32_t StartUpCounter = 0;
uint32_t LSEStatus = 0;
uint32_t rtc_freq = 0;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); // Enable PWR clock RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); // Enable PWR clock
PWR_RTCAccessCmd(ENABLE); // Enable access to RTC PWR_RTCAccessCmd(ENABLE); // Enable access to Backup domain
// Note: the LSI is used as RTC source clock // Reset RTC and Backup registers
// The RTC Clock may vary due to LSI frequency dispersion. RCC_RTCResetCmd(ENABLE);
RCC_RTCResetCmd(DISABLE);
RCC_LSICmd(ENABLE); // Enable LSI // Enable LSE clock
RCC_LSEConfig(RCC_LSE_ON);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {} // Wait until ready // Wait till LSE is ready
do {
LSEStatus = RCC_GetFlagStatus(RCC_FLAG_LSERDY);
wait_ms(1);
StartUpCounter++;
} while ((LSEStatus == 0) && (StartUpCounter <= LSE_STARTUP_TIMEOUT));
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select LSI as RTC Clock Source if (StartUpCounter > LSE_STARTUP_TIMEOUT) {
// The LSE has not started, use LSI instead.
// The RTC Clock may vary due to LSI frequency dispersion.
RCC_LSEConfig(RCC_LSE_OFF);
RCC_LSICmd(ENABLE); // Enable LSI
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {} // Wait until ready
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select the RTC Clock Source
rtc_freq = 40000; // [TODO] To be measured precisely using a timer input capture
} else {
// The LSE has correctly started
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // Select the RTC Clock Source
rtc_freq = LSE_VALUE;
}
RTC_InitTypeDef RTC_InitStructure;
RTC_InitStructure.RTC_AsynchPrediv = 127;
RTC_InitStructure.RTC_SynchPrediv = (rtc_freq / 128) - 1;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock
RTC_WaitForSynchro(); // Wait for RTC registers synchronization RTC_WaitForSynchro(); // Wait for RTC registers synchronization
uint32_t lsi_freq = 40000; // [TODO] To be measured precisely using a timer input capture PWR_RTCAccessCmd(DISABLE); // Disable access to Backup domain
RTC_InitTypeDef RTC_InitStructure;
RTC_InitStructure.RTC_AsynchPrediv = 127;
RTC_InitStructure.RTC_SynchPrediv = (lsi_freq / 128) - 1;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
PWR_RTCAccessCmd(DISABLE); // Disable access to RTC
rtc_inited = 1; rtc_inited = 1;
} }
@ -130,8 +157,10 @@ void rtc_write(time_t t) {
timeStruct.RTC_H12 = RTC_HourFormat_24; timeStruct.RTC_H12 = RTC_HourFormat_24;
// Change the RTC current date/time // Change the RTC current date/time
PWR_RTCAccessCmd(ENABLE); // Enable access to RTC PWR_RTCAccessCmd(ENABLE); // Enable access to Backup domain
RTC_SetDate(RTC_Format_BIN, &dateStruct); RTC_SetDate(RTC_Format_BIN, &dateStruct);
RTC_SetTime(RTC_Format_BIN, &timeStruct); RTC_SetTime(RTC_Format_BIN, &timeStruct);
PWR_RTCAccessCmd(DISABLE); // Disable access to RTC PWR_RTCAccessCmd(DISABLE); // Disable access to Backup domain
} }
#endif

View File

@ -28,6 +28,9 @@
******************************************************************************* *******************************************************************************
*/ */
#include "serial_api.h" #include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "error.h" #include "error.h"
@ -38,7 +41,7 @@ static const PinMap PinMap_UART_TX[] = {
{PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)}, {PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)},
{PB_6, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)}, {PB_6, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)},
{PB_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)}, {PB_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)},
//{PC_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)}, // {PC_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)},
{PC_10, UART_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART4)}, {PC_10, UART_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART4)},
{PC_12, UART_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART5)}, {PC_12, UART_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART5)},
{NC, NC, 0} {NC, NC, 0}
@ -49,7 +52,7 @@ static const PinMap PinMap_UART_RX[] = {
{PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)}, {PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)},
{PB_7, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)}, {PB_7, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART1)},
{PB_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)}, {PB_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)},
//{PC_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)}, // {PC_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_USART3)},
{PC_11, UART_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART4)}, {PC_11, UART_4, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART4)},
{PD_2, UART_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART5)}, {PD_2, UART_5, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_UART5)},
{NC, NC, 0} {NC, NC, 0}
@ -150,29 +153,27 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 8) { if (data_bits == 8) {
obj->databits = USART_WordLength_8b; obj->databits = USART_WordLength_8b;
} } else {
else {
obj->databits = USART_WordLength_9b; obj->databits = USART_WordLength_9b;
} }
switch (parity) { switch (parity) {
case ParityOdd: case ParityOdd:
case ParityForced0: case ParityForced0:
obj->parity = USART_Parity_Odd; obj->parity = USART_Parity_Odd;
break; break;
case ParityEven: case ParityEven:
case ParityForced1: case ParityForced1:
obj->parity = USART_Parity_Even; obj->parity = USART_Parity_Even;
break; break;
default: // ParityNone default: // ParityNone
obj->parity = USART_Parity_No; obj->parity = USART_Parity_No;
break; break;
} }
if (stop_bits == 2) { if (stop_bits == 2) {
obj->stopbits = USART_StopBits_2; obj->stopbits = USART_StopBits_2;
} } else {
else {
obj->stopbits = USART_StopBits_1; obj->stopbits = USART_StopBits_1;
} }
@ -197,11 +198,21 @@ static void uart_irq(USART_TypeDef* usart, int id) {
} }
} }
static void uart1_irq(void) {uart_irq((USART_TypeDef*)UART_1, 0);} static void uart1_irq(void) {
static void uart2_irq(void) {uart_irq((USART_TypeDef*)UART_2, 1);} uart_irq((USART_TypeDef*)UART_1, 0);
static void uart3_irq(void) {uart_irq((USART_TypeDef*)UART_3, 2);} }
static void uart4_irq(void) {uart_irq((USART_TypeDef*)UART_4, 3);} static void uart2_irq(void) {
static void uart5_irq(void) {uart_irq((USART_TypeDef*)UART_5, 4);} uart_irq((USART_TypeDef*)UART_2, 1);
}
static void uart3_irq(void) {
uart_irq((USART_TypeDef*)UART_3, 2);
}
static void uart4_irq(void) {
uart_irq((USART_TypeDef*)UART_4, 3);
}
static void uart5_irq(void) {
uart_irq((USART_TypeDef*)UART_5, 4);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler; irq_handler = handler;
@ -214,36 +225,35 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
if (obj->uart == UART_1) { if (obj->uart == UART_1) {
irq_n = USART1_IRQn; irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq; vector = (uint32_t)&uart1_irq;
} }
if (obj->uart == UART_2) { if (obj->uart == UART_2) {
irq_n = USART2_IRQn; irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq; vector = (uint32_t)&uart2_irq;
} }
if (obj->uart == UART_3) { if (obj->uart == UART_3) {
irq_n = USART3_IRQn; irq_n = USART3_IRQn;
vector = (uint32_t)&uart3_irq; vector = (uint32_t)&uart3_irq;
} }
if (obj->uart == UART_4) { if (obj->uart == UART_4) {
irq_n = UART4_IRQn; irq_n = UART4_IRQn;
vector = (uint32_t)&uart4_irq; vector = (uint32_t)&uart4_irq;
} }
if (obj->uart == UART_5) { if (obj->uart == UART_5) {
irq_n = UART5_IRQn; irq_n = UART5_IRQn;
vector = (uint32_t)&uart5_irq; vector = (uint32_t)&uart5_irq;
} }
if (enable) { if (enable) {
if (irq == RxIrq) { if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, ENABLE); USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TC, ENABLE); USART_ITConfig(usart, USART_IT_TC, ENABLE);
} }
@ -258,8 +268,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_ITConfig(usart, USART_IT_RXNE, DISABLE); USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
// Check if TxIrq is disabled too // Check if TxIrq is disabled too
if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TXE, DISABLE); USART_ITConfig(usart, USART_IT_TXE, DISABLE);
// Check if RxIrq is disabled too // Check if RxIrq is disabled too
if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
@ -319,3 +328,5 @@ void serial_break_set(serial_t *obj) {
void serial_break_clear(serial_t *obj) { void serial_break_clear(serial_t *obj) {
} }
#endif

View File

@ -28,14 +28,13 @@
******************************************************************************* *******************************************************************************
*/ */
#include "sleep_api.h" #include "sleep_api.h"
#if DEVICE_SLEEP
#include "cmsis.h" #include "cmsis.h"
// This function is in the system_stm32l1xx.c file
extern void SetSysClock(void);
// MCU SLEEP mode // MCU SLEEP mode
void sleep(void) void sleep(void) {
{
// Enable PWR clock // Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
@ -44,8 +43,7 @@ void sleep(void)
} }
// MCU STOP mode (Regulator in LP mode, LSI, HSI and HSE OFF) // MCU STOP mode (Regulator in LP mode, LSI, HSI and HSE OFF)
void deepsleep(void) void deepsleep(void) {
{
// Enable PWR clock // Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
@ -58,3 +56,5 @@ void deepsleep(void)
// After wake-up from STOP reconfigure the PLL // After wake-up from STOP reconfigure the PLL
SetSysClock(); SetSysClock();
} }
#endif

View File

@ -40,7 +40,7 @@ static const PinMap PinMap_SPI_MOSI[] = {
{PA_7, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_7, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
{PA_12, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_12, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
{PB_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PB_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//{PB_5, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, // {PB_5, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{PB_15, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)}, {PB_15, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
{PC_12, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, {PC_12, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{NC, NC, 0} {NC, NC, 0}
@ -50,7 +50,7 @@ static const PinMap PinMap_SPI_MISO[] = {
{PA_6, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_6, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
{PA_11, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_11, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
{PB_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PB_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//{PB_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, // {PB_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{PB_14, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)}, {PB_14, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
{PC_11, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, {PC_11, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{NC, NC, 0} {NC, NC, 0}
@ -59,7 +59,7 @@ static const PinMap PinMap_SPI_MISO[] = {
static const PinMap PinMap_SPI_SCLK[] = { static const PinMap PinMap_SPI_SCLK[] = {
{PA_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
{PB_3, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PB_3, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//{PB_3, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, // {PB_3, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{PB_13, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)}, {PB_13, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
{PC_10, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, {PC_10, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{NC, NC, 0} {NC, NC, 0}
@ -67,9 +67,9 @@ static const PinMap PinMap_SPI_SCLK[] = {
static const PinMap PinMap_SPI_SSEL[] = { static const PinMap PinMap_SPI_SSEL[] = {
{PA_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//{PA_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, // {PA_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{PA_15, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)}, {PA_15, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//{PA_15, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)}, // {PA_15, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
{PB_12, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)}, {PB_12, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
{NC, NC, 0} {NC, NC, 0}
}; };
@ -135,8 +135,7 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
if (ssel == NC) { // Master if (ssel == NC) { // Master
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else { // Slave
else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL); pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
@ -154,35 +153,33 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
// Save new values // Save new values
if (bits == 8) { if (bits == 8) {
obj->bits = SPI_DataSize_8b; obj->bits = SPI_DataSize_8b;
} } else {
else {
obj->bits = SPI_DataSize_16b; obj->bits = SPI_DataSize_16b;
} }
switch (mode) { switch (mode) {
case 0: case 0:
obj->cpol = SPI_CPOL_Low; obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_1Edge; obj->cpha = SPI_CPHA_1Edge;
break; break;
case 1: case 1:
obj->cpol = SPI_CPOL_Low; obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_2Edge; obj->cpha = SPI_CPHA_2Edge;
break; break;
case 2: case 2:
obj->cpol = SPI_CPOL_High; obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_1Edge; obj->cpha = SPI_CPHA_1Edge;
break; break;
default: default:
obj->cpol = SPI_CPOL_High; obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_2Edge; obj->cpha = SPI_CPHA_2Edge;
break; break;
} }
if (slave == 0) { if (slave == 0) {
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else {
else {
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Hard; obj->nss = SPI_NSS_Hard;
} }
@ -195,52 +192,37 @@ void spi_frequency(spi_t *obj, int hz) {
if (SystemCoreClock == 32000000) { // HSI if (SystemCoreClock == 32000000) { // HSI
if (hz < 250000) { if (hz < 250000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz
} } else if ((hz >= 250000) && (hz < 500000)) {
else if ((hz >= 250000) && (hz < 500000)) {
obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz
} } else if ((hz >= 500000) && (hz < 1000000)) {
else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz
} } else if ((hz >= 1000000) && (hz < 2000000)) {
else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz
} } else if ((hz >= 2000000) && (hz < 4000000)) {
else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz
} } else if ((hz >= 4000000) && (hz < 8000000)) {
else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz
} } else if ((hz >= 8000000) && (hz < 16000000)) {
else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz
} } else { // >= 16000000
else { // >= 16000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz
} }
} } else { // 24 MHz - HSE
else { // 24 MHz - HSE
if (hz < 180000) { if (hz < 180000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 94 kHz obj->br_presc = SPI_BaudRatePrescaler_256; // 94 kHz
} } else if ((hz >= 180000) && (hz < 350000)) {
else if ((hz >= 180000) && (hz < 350000)) {
obj->br_presc = SPI_BaudRatePrescaler_128; // 188 kHz obj->br_presc = SPI_BaudRatePrescaler_128; // 188 kHz
} } else if ((hz >= 350000) && (hz < 750000)) {
else if ((hz >= 350000) && (hz < 750000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 375 kHz obj->br_presc = SPI_BaudRatePrescaler_64; // 375 kHz
} } else if ((hz >= 750000) && (hz < 1000000)) {
else if ((hz >= 750000) && (hz < 1000000)) {
obj->br_presc = SPI_BaudRatePrescaler_32; // 750 kHz obj->br_presc = SPI_BaudRatePrescaler_32; // 750 kHz
} } else if ((hz >= 1000000) && (hz < 3000000)) {
else if ((hz >= 1000000) && (hz < 3000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 1.5 MHz obj->br_presc = SPI_BaudRatePrescaler_16; // 1.5 MHz
} } else if ((hz >= 3000000) && (hz < 6000000)) {
else if ((hz >= 3000000) && (hz < 6000000)) {
obj->br_presc = SPI_BaudRatePrescaler_8; // 3 MHz obj->br_presc = SPI_BaudRatePrescaler_8; // 3 MHz
} } else if ((hz >= 6000000) && (hz < 12000000)) {
else if ((hz >= 6000000) && (hz < 12000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 6 MHz obj->br_presc = SPI_BaudRatePrescaler_4; // 6 MHz
} } else { // >= 12000000
else { // >= 12000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 12 MHz obj->br_presc = SPI_BaudRatePrescaler_2; // 12 MHz
} }
} }