[LPC1549] Fixed SPI frequency issue

Fixed SPI frequency issue when new frequency is not divided by system
clock.
Optimized power/clock setting code.
Some code refactoring.
pull/408/head
Toyomasa Watarai 2014-07-20 23:04:43 +09:00
parent 787da10f72
commit 5a49448226
1 changed files with 54 additions and 47 deletions

View File

@ -43,7 +43,8 @@ static const SWM_Map SWM_SPI_MISO[] = {
// bit flags for used SPIs
static unsigned char spi_used = 0;
static int get_available_spi(void) {
static int get_available_spi(void)
{
int i;
for (i=0; i<2; i++) {
if ((spi_used & (1 << i)) == 0)
@ -55,7 +56,8 @@ static int get_available_spi(void) {
static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
int spi_n = get_available_spi();
if (spi_n == -1) {
error("No available SPI");
@ -63,24 +65,24 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
obj->spi_n = spi_n;
spi_used |= (1 << spi_n);
obj->spi = (spi_n) ? (LPC_SPI0_Type *)(LPC_SPI1_BASE) : (LPC_SPI0_Type *)(LPC_SPI0_BASE);
const SWM_Map *swm;
uint32_t regVal;
if (sclk != NC) {
swm = &SWM_SPI_SCLK[obj->spi_n];
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
LPC_SWM->PINASSIGN[swm->n] = regVal | (sclk << swm->offset);
}
if (mosi != NC) {
swm = &SWM_SPI_MOSI[obj->spi_n];
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
LPC_SWM->PINASSIGN[swm->n] = regVal | (mosi << swm->offset);
}
if (miso != NC) {
swm = &SWM_SPI_MISO[obj->spi_n];
regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
@ -95,22 +97,12 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
// clear interrupts
obj->spi->INTENCLR = 0x3f;
// enable power and clocking
switch (obj->spi_n) {
case 0:
LPC_SYSCON->SYSAHBCLKCTRL1 |= (0x1<<9);
LPC_SYSCON->PRESETCTRL1 |= (0x1<<9);
LPC_SYSCON->PRESETCTRL1 &= ~(0x1<<9);
break;
case 1:
LPC_SYSCON->SYSAHBCLKCTRL1 |= (0x1<<10);
LPC_SYSCON->PRESETCTRL1 |= (0x1<<10);
LPC_SYSCON->PRESETCTRL1 &= ~(0x1<<10);
break;
}
// enable power and clocking
LPC_SYSCON->SYSAHBCLKCTRL1 |= (0x1 << (obj->spi_n + 9));
LPC_SYSCON->PRESETCTRL1 |= (0x1 << (obj->spi_n + 9));
LPC_SYSCON->PRESETCTRL1 &= ~(0x1 << (obj->spi_n + 9));
// set default format and frequency
if (ssel == NC) {
spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master
@ -118,96 +110,111 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave
}
spi_frequency(obj, 1000000);
// enable the spi channel
spi_enable(obj);
}
void spi_free(spi_t *obj) {}
void spi_free(spi_t *obj)
{
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
spi_disable(obj);
MBED_ASSERT((bits >= 1 && bits <= 16) && (mode >= 0 && mode <= 3));
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
// set it up
int LEN = bits - 1; // LEN - Data Length
int CPOL = (polarity) ? 1 : 0; // CPOL - Clock Polarity select
int CPHA = (phase) ? 1 : 0; // CPHA - Clock Phase select
uint32_t tmp = obj->spi->CFG;
tmp &= ~((1 << 5) | (1 << 4) | (1 << 2));
tmp |= (CPOL << 5) | (CPHA << 4) | ((slave ? 0 : 1) << 2);
obj->spi->CFG = tmp;
// select frame length
tmp = obj->spi->TXDATCTL;
tmp &= ~(0xf << 24);
tmp |= (LEN << 24);
obj->spi->TXDATCTL = tmp;
spi_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
void spi_frequency(spi_t *obj, int hz)
{
spi_disable(obj);
uint32_t PCLK = SystemCoreClock;
obj->spi->DIV = PCLK/hz - 1;
// rise DIV value if it cannot be divided
obj->spi->DIV = (SystemCoreClock + (hz - 1))/hz - 1;
obj->spi->DLY = 0;
spi_enable(obj);
}
static inline void spi_disable(spi_t *obj) {
static inline void spi_disable(spi_t *obj)
{
obj->spi->CFG &= ~(1 << 0);
}
static inline void spi_enable(spi_t *obj) {
static inline void spi_enable(spi_t *obj)
{
obj->spi->CFG |= (1 << 0);
}
static inline int spi_readable(spi_t *obj) {
static inline int spi_readable(spi_t *obj)
{
return obj->spi->STAT & (1 << 0);
}
static inline int spi_writeable(spi_t *obj) {
static inline int spi_writeable(spi_t *obj)
{
return obj->spi->STAT & (1 << 1);
}
static inline void spi_write(spi_t *obj, int value) {
static inline void spi_write(spi_t *obj, int value)
{
while (!spi_writeable(obj));
// end of transfer
obj->spi->TXDATCTL |= (1 << 20);
obj->spi->TXDAT = value;
}
static inline int spi_read(spi_t *obj) {
static inline int spi_read(spi_t *obj)
{
while (!spi_readable(obj));
return obj->spi->RXDAT;
}
int spi_busy(spi_t *obj) {
int spi_busy(spi_t *obj)
{
// checking RXOV(Receiver Overrun interrupt flag)
return obj->spi->STAT & (1 << 2);
}
}
int spi_master_write(spi_t *obj, int value) {
int spi_master_write(spi_t *obj, int value)
{
spi_write(obj, value);
return spi_read(obj);
}
int spi_slave_receive(spi_t *obj) {
int spi_slave_receive(spi_t *obj)
{
return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}
int spi_slave_read(spi_t *obj) {
int spi_slave_read(spi_t *obj)
{
return obj->spi->RXDAT;
}
void spi_slave_write(spi_t *obj, int value) {
void spi_slave_write(spi_t *obj, int value)
{
while (spi_writeable(obj) == 0) ;
obj->spi->TXDAT = value;
}