MCUXpresso: Update Kinetis SPI SDK drivers

Added dummy data setup API to allow users to configure
the dummy data to be transferred.

Signed-off-by: Mahesh Mahadevan <mahesh.mahadevan@nxp.com>
pull/11308/head
Mahesh Mahadevan 2019-08-16 14:18:36 -05:00 committed by adbridge
parent 6b846f8fea
commit 5691fc3b76
8 changed files with 1235 additions and 575 deletions

View File

@ -1,38 +1,22 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_spi.h" #include "fsl_spi.h"
/******************************************************************************* /*******************************************************************************
* Definitons * Definitions
******************************************************************************/ ******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spi"
#endif
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */ /*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _spi_transfer_states_t enum _spi_transfer_states_t
{ {
@ -46,12 +30,6 @@ typedef void (*spi_isr_t)(SPI_Type *base, spi_master_handle_t *spiHandle);
/******************************************************************************* /*******************************************************************************
* Prototypes * Prototypes
******************************************************************************/ ******************************************************************************/
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base);
/*! /*!
* @brief Sends a buffer of data bytes in non-blocking way. * @brief Sends a buffer of data bytes in non-blocking way.
@ -71,6 +49,14 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
*/ */
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size); static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
/*!
* @brief Get the waterrmark value for this SPI instance.
*
* @param base SPI base pointer
* @return Watermark value for the SPI instance.
*/
static uint8_t SPI_GetWatermark(SPI_Type *base);
/*! /*!
* @brief Send a piece of data for SPI. * @brief Send a piece of data for SPI.
* *
@ -78,6 +64,7 @@ static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
* and write the data into it. At the same time, this function updates the values in * and write the data into it. At the same time, this function updates the values in
* master handle structure. * master handle structure.
* *
* @param base SPI base pointer
* @param handle Pointer to SPI master handle structure. * @param handle Pointer to SPI master handle structure.
*/ */
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle); static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle);
@ -89,9 +76,18 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle);
* and write the data to destination address. At the same time, this function updates * and write the data to destination address. At the same time, this function updates
* the values in master handle structure. * the values in master handle structure.
* *
* @param base SPI base pointer
* @param handle Pointer to SPI master handle structure. * @param handle Pointer to SPI master handle structure.
*/ */
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle); static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle);
/*!
* @brief Common IRQ handler for SPI.
*
* @param base SPI base pointer.
* @param instance SPI instance number.
*/
static void SPI_CommonIRQHandler(SPI_Type *base, uint32_t instance);
/******************************************************************************* /*******************************************************************************
* Variables * Variables
******************************************************************************/ ******************************************************************************/
@ -101,21 +97,31 @@ static spi_master_handle_t *s_spiHandle[FSL_FEATURE_SOC_SPI_COUNT];
static SPI_Type *const s_spiBases[] = SPI_BASE_PTRS; static SPI_Type *const s_spiBases[] = SPI_BASE_PTRS;
/*! @brief IRQ name array */ /*! @brief IRQ name array */
static const IRQn_Type s_spiIRQ[] = SPI_IRQS; static const IRQn_Type s_spiIRQ[] = SPI_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Clock array name */ /*! @brief Clock array name */
static const clock_ip_name_t s_spiClock[] = SPI_CLOCKS; static const clock_ip_name_t s_spiClock[] = SPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointer to master IRQ handler for each instance. */ /*! @brief Pointer to master IRQ handler for each instance. */
static spi_isr_t s_spiIsr; static spi_isr_t s_spiMasterIsr;
static spi_isr_t s_spiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t g_spiDummyData[ARRAY_SIZE(s_spiBases)] = {0};
/******************************************************************************* /*******************************************************************************
* Code * Code
******************************************************************************/ ******************************************************************************/
/*!
* brief Get the instance for SPI module.
*
* param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base) uint32_t SPI_GetInstance(SPI_Type *base)
{ {
uint32_t instance; uint32_t instance;
/* Find the instance index from base address mappings. */ /* Find the instance index from base address mappings. */
for (instance = 0; instance < FSL_FEATURE_SOC_SPI_COUNT; instance++) for (instance = 0; instance < ARRAY_SIZE(s_spiBases); instance++)
{ {
if (s_spiBases[instance] == base) if (s_spiBases[instance] == base)
{ {
@ -123,15 +129,28 @@ uint32_t SPI_GetInstance(SPI_Type *base)
} }
} }
assert(instance < FSL_FEATURE_SOC_SPI_COUNT); assert(instance < ARRAY_SIZE(s_spiBases));
return instance; return instance;
} }
/*!
* brief Set up the dummy data.
*
* param base SPI peripheral address.
* param dummyData Data to be transferred when tx buffer is NULL.
*/
void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
{
uint32_t instance = SPI_GetInstance(base);
g_spiDummyData[instance] = dummyData;
}
static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size) static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
uint32_t instance = SPI_GetInstance(base);
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
/* Check if 16 bits or 8 bits */ /* Check if 16 bits or 8 bits */
@ -155,13 +174,13 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
base->DL = *buffer++; base->DL = *buffer++;
} }
#else #else
base->D = *buffer++; base->D = *buffer++;
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */ #endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
} }
/* Send dummy data */ /* Send dummy data */
else else
{ {
SPI_WriteData(base, SPI_DUMMYDATA); SPI_WriteData(base, ((uint32_t)g_spiDummyData[instance] << 8 | g_spiDummyData[instance]));
} }
i += bytesPerFrame; i += bytesPerFrame;
} }
@ -169,7 +188,7 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size) static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -205,18 +224,68 @@ static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
} }
} }
/* Get the watermark value of transfer. Please note that the entery width of FIFO is 16 bits. */
static uint8_t SPI_GetWatermark(SPI_Type *base)
{
uint8_t ret = 0;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
uint8_t rxSize = 0U;
/* Get the number to be sent if there is FIFO */
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
{
rxSize = (base->C3 & SPI_C3_RNFULLF_MARK_MASK) >> SPI_C3_RNFULLF_MARK_SHIFT;
if (rxSize == 0U)
{
ret = FSL_FEATURE_SPI_FIFO_SIZEn(base) * 3U / 4U;
}
else
{
ret = FSL_FEATURE_SPI_FIFO_SIZEn(base) / 2U;
}
}
/* If no FIFO, just set the watermark to 1 */
else
{
ret = 1U;
}
#else
ret = 1U;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
return ret;
}
static void SPI_SendInitialTransfer(SPI_Type *base, spi_master_handle_t *handle)
{
uint8_t bytestoTransfer = handle->bytePerFrame;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && (FSL_FEATURE_SPI_HAS_FIFO)
if (handle->watermark > 1)
{
/* In the first time to send data to FIFO, if transfer size is not larger than
* the FIFO size, send all data to FIFO, or send data to make the FIFO full.
* Besides, The FIFO's entry width is 16 bits, need to translate it to bytes.
*/
bytestoTransfer = MIN(handle->txRemainingBytes, (FSL_FEATURE_SPI_FIFO_SIZEn(base) * 2));
}
#endif
SPI_WriteNonBlocking(base, handle->txData, bytestoTransfer);
/* Update handle information */
if (handle->txData)
{
handle->txData += bytestoTransfer;
}
handle->txRemainingBytes -= bytestoTransfer;
}
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle) static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
{ {
uint8_t bytes = MIN((handle->watermark * 2U), handle->txRemainingBytes); uint8_t bytes = handle->bytePerFrame;
/* Read S register and ensure SPTEF is 1, otherwise the write would be ignored. */ /* Read S register and ensure SPTEF is 1, otherwise the write would be ignored. */
if (handle->watermark == 1U) if (handle->watermark == 1U)
{ {
if (bytes != 0U)
{
bytes = handle->bytePerFrame;
}
/* Send data */ /* Send data */
if (base->C1 & SPI_C1_MSTR_MASK) if (base->C1 & SPI_C1_MSTR_MASK)
{ {
@ -231,11 +300,11 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
} }
handle->txRemainingBytes -= bytes; handle->txRemainingBytes -= bytes;
} }
} }
else else
{ {
/* As a slave, send data until SPTEF cleared */ /* As a slave, send data until SPTEF cleared */
while ((base->S & SPI_S_SPTEF_MASK) && (handle->txRemainingBytes > 0)) while ((base->S & SPI_S_SPTEF_MASK) && (handle->txRemainingBytes >= bytes))
{ {
SPI_WriteNonBlocking(base, handle->txData, bytes); SPI_WriteNonBlocking(base, handle->txData, bytes);
@ -253,56 +322,96 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
/* If use FIFO */ /* If use FIFO */
else else
{ {
if (base->S & SPI_S_TNEAREF_MASK) /* The FIFO's entry width is 16 bits, need to translate it to bytes. */
{ uint8_t bytestoTransfer = handle->watermark * 2;
SPI_WriteNonBlocking(base, handle->txData, bytes);
/* Update handle information */ if (handle->txRemainingBytes < 8U)
if (handle->txData) {
{ bytestoTransfer = handle->txRemainingBytes;
handle->txData += bytes;
}
handle->txRemainingBytes -= bytes;
} }
SPI_WriteNonBlocking(base, handle->txData, bytestoTransfer);
/* Update handle information */
if (handle->txData)
{
handle->txData += bytestoTransfer;
}
handle->txRemainingBytes -= bytestoTransfer;
} }
#endif #endif
} }
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle) static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle)
{ {
uint8_t bytes = MIN((handle->watermark * 2U), handle->rxRemainingBytes); uint8_t bytes = handle->bytePerFrame;
uint8_t val = 1U;
/* Read S register and ensure SPRF is 1, otherwise the write would be ignored. */ /* Read S register and ensure SPRF is 1, otherwise the write would be ignored. */
if (handle->watermark == 1U) if (handle->watermark == 1U)
{ {
val = base->S & SPI_S_SPRF_MASK; if (base->S & SPI_S_SPRF_MASK)
if (bytes != 0U)
{ {
bytes = handle->bytePerFrame; SPI_ReadNonBlocking(base, handle->rxData, bytes);
/* Update information in handle */
if (handle->rxData)
{
handle->rxData += bytes;
}
handle->rxRemainingBytes -= bytes;
} }
} }
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && (FSL_FEATURE_SPI_HAS_FIFO)
if (val) /* If use FIFO */
else
{ {
SPI_ReadNonBlocking(base, handle->rxData, bytes); /* While rx fifo not empty and remaining data can also trigger the last interrupt */
while ((base->S & SPI_S_RFIFOEF_MASK) == 0U)
/* Update information in handle */
if (handle->rxData)
{ {
handle->rxData += bytes; SPI_ReadNonBlocking(base, handle->rxData, bytes);
/* Update information in handle */
if (handle->rxData)
{
handle->rxData += bytes;
}
handle->rxRemainingBytes -= bytes;
/* If the reamining data equals to watermark, leave to last interrupt */
if (handle->rxRemainingBytes == (handle->watermark * 2U))
{
break;
}
} }
handle->rxRemainingBytes -= bytes;
} }
#endif
} }
/*!
* brief Sets the SPI master configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit().
* User may use the initialized structure unchanged in SPI_MasterInit(), or modify
* some fields of the structure before calling SPI_MasterInit(). After calling this API,
* the master is ready to transfer.
* Example:
code
spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);
endcode
*
* param config pointer to master config structure
*/
void SPI_MasterGetDefaultConfig(spi_master_config_t *config) void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
{ {
config->enableMaster = true; /* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
config->enableMaster = true;
config->enableStopInWaitMode = false; config->enableStopInWaitMode = false;
config->polarity = kSPI_ClockPolarityActiveHigh; config->polarity = kSPI_ClockPolarityActiveHigh;
config->phase = kSPI_ClockPhaseFirstEdge; config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst; config->direction = kSPI_MsbFirst;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
config->dataMode = kSPI_8BitMode; config->dataMode = kSPI_8BitMode;
@ -313,17 +422,37 @@ void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
config->rxWatermark = kSPI_RxFifoOneHalfFull; config->rxWatermark = kSPI_RxFifoOneHalfFull;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
config->pinMode = kSPI_PinModeNormal; config->pinMode = kSPI_PinModeNormal;
config->outputMode = kSPI_SlaveSelectAutomaticOutput; config->outputMode = kSPI_SlaveSelectAutomaticOutput;
config->baudRate_Bps = 500000U; config->baudRate_Bps = 500000U;
} }
/*!
* brief Initializes the SPI with master configuration.
*
* The configuration structure can be filled by user from scratch, or be set with default
* values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
* Example
code
spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);
endcode
*
* param base SPI base pointer
* param config pointer to master configuration structure
* param srcClock_Hz Source clock frequency.
*/
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz) void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
{ {
assert(config && srcClock_Hz); assert(config && srcClock_Hz);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Open clock gate for SPI and open interrupt */ /* Open clock gate for SPI and open interrupt */
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable SPI before configuration */ /* Disable SPI before configuration */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
@ -354,6 +483,9 @@ void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t
/* Set baud rate */ /* Set baud rate */
SPI_MasterSetBaudRate(base, config->baudRate_Bps, srcClock_Hz); SPI_MasterSetBaudRate(base, config->baudRate_Bps, srcClock_Hz);
/* Set the dummy data, this data will usefull when tx buffer is NULL. */
SPI_SetDummyData(base, SPI_DUMMYDATA);
/* Enable SPI */ /* Enable SPI */
if (config->enableMaster) if (config->enableMaster)
{ {
@ -361,12 +493,28 @@ void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t
} }
} }
/*!
* brief Sets the SPI slave configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit().
* Modify some fields of the structure before calling SPI_SlaveInit().
* Example:
code
spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);
endcode
*
* param config pointer to slave configuration structure
*/
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config) void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
{ {
config->enableSlave = true; /* Initializes the configure structure to zero. */
config->polarity = kSPI_ClockPolarityActiveHigh; memset(config, 0, sizeof(*config));
config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst; config->enableSlave = true;
config->polarity = kSPI_ClockPolarityActiveHigh;
config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst;
config->enableStopInWaitMode = false; config->enableStopInWaitMode = false;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -377,14 +525,37 @@ void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
config->txWatermark = kSPI_TxFifoOneHalfEmpty; config->txWatermark = kSPI_TxFifoOneHalfEmpty;
config->rxWatermark = kSPI_RxFifoOneHalfFull; config->rxWatermark = kSPI_RxFifoOneHalfFull;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
config->pinMode = kSPI_PinModeNormal;
} }
/*!
* brief Initializes the SPI with slave configuration.
*
* The configuration structure can be filled by user from scratch or be set with
* default values by SPI_SlaveGetDefaultConfig().
* After calling this API, the slave is ready to transfer.
* Example
code
spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);
endcode
*
* param base SPI base pointer
* param config pointer to master configuration structure
*/
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config) void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
{ {
assert(config); assert(config);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Open clock gate for SPI and open interrupt */ /* Open clock gate for SPI and open interrupt */
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable SPI before configuration */ /* Disable SPI before configuration */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
@ -395,9 +566,11 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
/* Configure data mode if needed */ /* Configure data mode if needed */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
base->C2 = SPI_C2_SPIMODE(config->dataMode) | SPI_C2_SPISWAI(config->enableStopInWaitMode); base->C2 = SPI_C2_SPIMODE(config->dataMode) | SPI_C2_SPISWAI(config->enableStopInWaitMode) |
SPI_C2_BIDIROE(config->pinMode >> 1U) | SPI_C2_SPC0(config->pinMode & 1U);
#else #else
base->C2 = SPI_C2_SPISWAI(config->enableStopInWaitMode); base->C2 = SPI_C2_SPISWAI(config->enableStopInWaitMode) | SPI_C2_BIDIROE(config->pinMode >> 1U) |
SPI_C2_SPC0(config->pinMode & 1U);
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */ #endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
/* Set watermark */ /* Set watermark */
@ -409,6 +582,9 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
} }
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Set the dummy data, this data will usefull when tx buffer is NULL. */
SPI_SetDummyData(base, SPI_DUMMYDATA);
/* Enable SPI */ /* Enable SPI */
if (config->enableSlave) if (config->enableSlave)
{ {
@ -416,15 +592,31 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
} }
} }
/*!
* brief De-initializes the SPI.
*
* Calling this API resets the SPI module, gates the SPI clock.
* The SPI module can't work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
*
* param base SPI base pointer
*/
void SPI_Deinit(SPI_Type *base) void SPI_Deinit(SPI_Type *base)
{ {
/* Disable SPI module before shutting down */ /* Disable SPI module before shutting down */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Gate the clock */ /* Gate the clock */
CLOCK_DisableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_DisableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
} }
/*!
* brief Gets the status flag.
*
* param base SPI base pointer
* return SPI Status, use status flag to AND #_spi_flags could get the related status.
*/
uint32_t SPI_GetStatusFlags(SPI_Type *base) uint32_t SPI_GetStatusFlags(SPI_Type *base)
{ {
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
@ -441,6 +633,17 @@ uint32_t SPI_GetStatusFlags(SPI_Type *base)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Enables the interrupt for the SPI.
*
* param base SPI base pointer
* param mask SPI interrupt source. The parameter can be any combination of the following values:
* arg kSPI_RxFullAndModfInterruptEnable
* arg kSPI_TxEmptyInterruptEnable
* arg kSPI_MatchInterruptEnable
* arg kSPI_RxFifoNearFullInterruptEnable
* arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask) void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
{ {
/* Rx full interrupt */ /* Rx full interrupt */
@ -480,6 +683,17 @@ void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Disables the interrupt for the SPI.
*
* param base SPI base pointer
* param mask SPI interrupt source. The parameter can be any combination of the following values:
* arg kSPI_RxFullAndModfInterruptEnable
* arg kSPI_TxEmptyInterruptEnable
* arg kSPI_MatchInterruptEnable
* arg kSPI_RxFifoNearFullInterruptEnable
* arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask) void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
{ {
/* Rx full interrupt */ /* Rx full interrupt */
@ -518,6 +732,13 @@ void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Sets the baud rate for SPI transfer. This is only used in master.
*
* param base SPI base pointer
* param baudRate_Bps baud rate needed in Hz.
* param srcClock_Hz SPI source clock frequency in Hz.
*/
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz) void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{ {
uint32_t prescaler; uint32_t prescaler;
@ -535,7 +756,7 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
/* Set the maximum divisor bit settings for each of the following divisors */ /* Set the maximum divisor bit settings for each of the following divisors */
bestPrescaler = 7U; bestPrescaler = 7U;
bestDivisor = 8U; bestDivisor = 8U;
/* In all for loops, if min_diff = 0, the exit for loop*/ /* In all for loops, if min_diff = 0, the exit for loop*/
for (prescaler = 0; (prescaler <= 7) && min_diff; prescaler++) for (prescaler = 0; (prescaler <= 7) && min_diff; prescaler++)
@ -556,9 +777,9 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
if (min_diff > diff) if (min_diff > diff)
{ {
/* A better match found */ /* A better match found */
min_diff = diff; min_diff = diff;
bestPrescaler = prescaler; bestPrescaler = prescaler;
bestDivisor = rateDivisor; bestDivisor = rateDivisor;
} }
} }
@ -571,9 +792,18 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
base->BR = SPI_BR_SPR(bestDivisor) | SPI_BR_SPPR(bestPrescaler); base->BR = SPI_BR_SPR(bestDivisor) | SPI_BR_SPPR(bestPrescaler);
} }
/*!
* brief Sends a buffer of data bytes using a blocking method.
*
* note This function blocks via polling until all bytes have been sent.
*
* param base SPI base pointer
* param buffer The data bytes to send
* param size The number of data bytes to send
*/
void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size) void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -596,6 +826,12 @@ void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
} }
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
* brief Enables or disables the FIFO if there is a FIFO.
*
* param base SPI base pointer
* param enable True means enable FIFO, false means disable FIFO.
*/
void SPI_EnableFIFO(SPI_Type *base, bool enable) void SPI_EnableFIFO(SPI_Type *base, bool enable)
{ {
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U) if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U)
@ -612,6 +848,12 @@ void SPI_EnableFIFO(SPI_Type *base, bool enable)
} }
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/*!
* brief Writes a data into the SPI data register.
*
* param base SPI base pointer
* param data needs to be write.
*/
void SPI_WriteData(SPI_Type *base, uint16_t data) void SPI_WriteData(SPI_Type *base, uint16_t data)
{ {
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS) #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
@ -622,6 +864,12 @@ void SPI_WriteData(SPI_Type *base, uint16_t data)
#endif #endif
} }
/*!
* brief Gets a data from the SPI data register.
*
* param base SPI base pointer
* return Data in the register.
*/
uint16_t SPI_ReadData(SPI_Type *base) uint16_t SPI_ReadData(SPI_Type *base)
{ {
uint16_t val = 0; uint16_t val = 0;
@ -634,6 +882,14 @@ uint16_t SPI_ReadData(SPI_Type *base)
return val; return val;
} }
/*!
* brief Transfers a block of data using a polling method.
*
* param base SPI base pointer
* param xfer pointer to spi_xfer_config_t structure
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
*/
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer) status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
{ {
assert(xfer); assert(xfer);
@ -651,10 +907,6 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U; bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
#endif #endif
/* Disable SPI and then enable it, this is used to clear S register */
base->C1 &= ~SPI_C1_SPE_MASK;
base->C1 |= SPI_C1_SPE_MASK;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/* Disable FIFO, as the FIFO may cause data loss if the data size is not integer /* Disable FIFO, as the FIFO may cause data loss if the data size is not integer
@ -696,6 +948,17 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Initializes the SPI master handle.
*
* This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback Callback function.
* param userData User data.
*/
void SPI_MasterTransferCreateHandle(SPI_Type *base, void SPI_MasterTransferCreateHandle(SPI_Type *base,
spi_master_handle_t *handle, spi_master_handle_t *handle,
spi_master_callback_t callback, spi_master_callback_t callback,
@ -705,35 +968,15 @@ void SPI_MasterTransferCreateHandle(SPI_Type *base,
uint8_t instance = SPI_GetInstance(base); uint8_t instance = SPI_GetInstance(base);
/* Zero the handle */
memset(handle, 0, sizeof(*handle));
/* Initialize the handle */ /* Initialize the handle */
s_spiHandle[instance] = handle; s_spiHandle[instance] = handle;
handle->callback = callback; handle->callback = callback;
handle->userData = userData; handle->userData = userData;
s_spiIsr = SPI_MasterTransferHandleIRQ; s_spiMasterIsr = SPI_MasterTransferHandleIRQ;
handle->watermark = SPI_GetWatermark(base);
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
uint8_t txSize = 0U;
/* Get the number to be sent if there is FIFO */
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
{
txSize = (base->C3 & SPI_C3_TNEAREF_MARK_MASK) >> SPI_C3_TNEAREF_MARK_SHIFT;
if (txSize == 0U)
{
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) * 3U / 4U;
}
else
{
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) / 2U;
}
}
/* If no FIFO, just set the watermark to 1 */
else
{
handle->watermark = 1U;
}
#else
handle->watermark = 1U;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Get the bytes per frame */ /* Get the bytes per frame */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS) #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
@ -746,6 +989,20 @@ void SPI_MasterTransferCreateHandle(SPI_Type *base,
EnableIRQ(s_spiIRQ[instance]); EnableIRQ(s_spiIRQ[instance]);
} }
/*!
* brief Performs a non-blocking SPI interrupt transfer.
*
* note The API immediately returns after transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status.
* note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
*
* param base SPI peripheral base address.
* param handle pointer to spi_master_handle_t structure which stores the transfer state
* param xfer pointer to spi_xfer_config_t structure
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer) status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)
{ {
assert(handle && xfer); assert(handle && xfer);
@ -763,47 +1020,76 @@ status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *hand
} }
/* Set the handle information */ /* Set the handle information */
handle->txData = xfer->txData; handle->txData = xfer->txData;
handle->rxData = xfer->rxData; handle->rxData = xfer->rxData;
handle->transferSize = xfer->dataSize; handle->transferSize = xfer->dataSize;
handle->txRemainingBytes = xfer->dataSize; handle->txRemainingBytes = xfer->dataSize;
handle->rxRemainingBytes = xfer->dataSize; handle->rxRemainingBytes = xfer->dataSize;
/* Set the SPI state to busy */ /* Set the SPI state to busy */
handle->state = kSPI_Busy; handle->state = kSPI_Busy;
/* Disable SPI and then enable it, this is used to clear S register*/
base->C1 &= ~SPI_C1_SPE_MASK;
base->C1 |= SPI_C1_SPE_MASK;
/* Enable Interrupt, only enable Rx interrupt, use rx interrupt to driver SPI transfer */ /* Enable Interrupt, only enable Rx interrupt, use rx interrupt to driver SPI transfer */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
handle->watermark = SPI_GetWatermark(base);
/* If the size of the transfer size less than watermark, set watermark to 1 */
if (xfer->dataSize < handle->watermark * 2U)
{
handle->watermark = 1U;
}
/* According to watermark size, enable interrupts */
if (handle->watermark > 1U) if (handle->watermark > 1U)
{ {
SPI_EnableFIFO(base, true);
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
while ((base->S & SPI_S_TNEAREF_MASK) != SPI_S_TNEAREF_MASK)
{
}
SPI_SendInitialTransfer(base, handle);
/* Enable Rx near full interrupt */ /* Enable Rx near full interrupt */
SPI_EnableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable);
} }
else else
{ {
SPI_EnableFIFO(base, false);
while ((base->S & SPI_S_SPTEF_MASK) != SPI_S_SPTEF_MASK)
{
}
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendInitialTransfer(base, handle);
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
} }
#else #else
while ((base->S & SPI_S_SPTEF_MASK) != SPI_S_SPTEF_MASK)
{
}
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendInitialTransfer(base, handle);
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
#endif #endif
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendTransfer(base, handle);
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Gets the bytes of the SPI interrupt transferred.
*
* param base SPI peripheral base address.
* param handle Pointer to SPI transfer handle, this should be a static variable.
* param count Transferred bytes of SPI master.
* retval kStatus_SPI_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count) status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)
{ {
assert(handle); assert(handle);
status_t status = kStatus_Success; status_t status = kStatus_Success;
if (handle->state != kStatus_SPI_Busy) if (handle->state != kSPI_Busy)
{ {
status = kStatus_NoTransferInProgress; status = kStatus_NoTransferInProgress;
} }
@ -823,6 +1109,12 @@ status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle,
return status; return status;
} }
/*!
* brief Aborts an SPI transfer using interrupt.
*
* param base SPI peripheral base address.
* param handle Pointer to SPI transfer handle, this should be a static variable.
*/
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle) void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -849,6 +1141,12 @@ void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
handle->txRemainingBytes = 0; handle->txRemainingBytes = 0;
} }
/*!
* brief Interrupts the handler for the SPI.
*
* param base SPI peripheral base address.
* param handle pointer to spi_master_handle_t structure which stores the transfer state.
*/
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle) void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -878,6 +1176,17 @@ void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
} }
} }
/*!
* brief Initializes the SPI slave handle.
*
* This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback Callback function.
* param userData User data.
*/
void SPI_SlaveTransferCreateHandle(SPI_Type *base, void SPI_SlaveTransferCreateHandle(SPI_Type *base,
spi_slave_handle_t *handle, spi_slave_handle_t *handle,
spi_slave_callback_t callback, spi_slave_callback_t callback,
@ -888,9 +1197,15 @@ void SPI_SlaveTransferCreateHandle(SPI_Type *base,
/* Slave create handle share same logic with master create handle, the only difference /* Slave create handle share same logic with master create handle, the only difference
is the Isr pointer. */ is the Isr pointer. */
SPI_MasterTransferCreateHandle(base, handle, callback, userData); SPI_MasterTransferCreateHandle(base, handle, callback, userData);
s_spiIsr = SPI_SlaveTransferHandleIRQ; s_spiSlaveIsr = SPI_SlaveTransferHandleIRQ;
} }
/*!
* brief Interrupts a handler for the SPI slave.
*
* param base SPI peripheral base address.
* param handle pointer to spi_slave_handle_t structure which stores the transfer state
*/
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle) void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -920,11 +1235,28 @@ void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
} }
} }
static void SPI_CommonIRQHandler(SPI_Type *base, uint32_t instance)
{
if (base->C1 & SPI_C1_MSTR_MASK)
{
s_spiMasterIsr(base, s_spiHandle[instance]);
}
else
{
s_spiSlaveIsr(base, s_spiHandle[instance]);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if defined(SPI0) #if defined(SPI0)
void SPI0_DriverIRQHandler(void) void SPI0_DriverIRQHandler(void)
{ {
assert(s_spiHandle[0]); assert(s_spiHandle[0]);
s_spiIsr(SPI0, s_spiHandle[0]); SPI_CommonIRQHandler(SPI0, 0);
} }
#endif #endif
@ -932,7 +1264,7 @@ void SPI0_DriverIRQHandler(void)
void SPI1_DriverIRQHandler(void) void SPI1_DriverIRQHandler(void)
{ {
assert(s_spiHandle[1]); assert(s_spiHandle[1]);
s_spiIsr(SPI1, s_spiHandle[1]); SPI_CommonIRQHandler(SPI1, 1);
} }
#endif #endif
@ -940,6 +1272,6 @@ void SPI1_DriverIRQHandler(void)
void SPI2_DriverIRQHandler(void) void SPI2_DriverIRQHandler(void)
{ {
assert(s_spiHandle[2]); assert(s_spiHandle[2]);
s_spiIsr(SPI0, s_spiHandle[2]); SPI_CommonIRQHandler(SPI2, 2);
} }
#endif #endif

View File

@ -1,31 +1,9 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used tom endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#ifndef _FSL_SPI_H_ #ifndef _FSL_SPI_H_
#define _FSL_SPI_H_ #define _FSL_SPI_H_
@ -37,15 +15,14 @@
* @{ * @{
*/ */
/******************************************************************************* /*******************************************************************************
* Definitions * Definitions
******************************************************************************/ ******************************************************************************/
/*! @name Driver version */ /*! @name Driver version */
/*@{*/ /*@{*/
/*! @brief SPI driver version 2.0.1. */ /*! @brief SPI driver version 2.0.4. */
#define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 1)) #define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 4))
/*@}*/ /*@}*/
#ifndef SPI_DUMMYDATA #ifndef SPI_DUMMYDATA
@ -53,12 +30,15 @@
#define SPI_DUMMYDATA (0xFFU) #define SPI_DUMMYDATA (0xFFU)
#endif #endif
/*! @brief Global variable for dummy data value setting. */
extern volatile uint8_t g_spiDummyData[];
/*! @brief Return status for the SPI driver.*/ /*! @brief Return status for the SPI driver.*/
enum _spi_status enum _spi_status
{ {
kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */ kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */
kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */ kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */
kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI error */ kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI error */
}; };
/*! @brief SPI clock polarity configuration.*/ /*! @brief SPI clock polarity configuration.*/
@ -87,16 +67,16 @@ typedef enum _spi_shift_direction
/*! @brief SPI slave select output mode options.*/ /*! @brief SPI slave select output mode options.*/
typedef enum _spi_ss_output_mode typedef enum _spi_ss_output_mode
{ {
kSPI_SlaveSelectAsGpio = 0x0U, /*!< Slave select pin configured as GPIO. */ kSPI_SlaveSelectAsGpio = 0x0U, /*!< Slave select pin configured as GPIO. */
kSPI_SlaveSelectFaultInput = 0x2U, /*!< Slave select pin configured for fault detection. */ kSPI_SlaveSelectFaultInput = 0x2U, /*!< Slave select pin configured for fault detection. */
kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */ kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */
} spi_ss_output_mode_t; } spi_ss_output_mode_t;
/*! @brief SPI pin mode options.*/ /*! @brief SPI pin mode options.*/
typedef enum _spi_pin_mode typedef enum _spi_pin_mode
{ {
kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/ kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/
kSPI_PinModeInput = 0x1U, /*!< Bidirectional mode. Master: MOSI pin is input; kSPI_PinModeInput = 0x1U, /*!< Bidirectional mode. Master: MOSI pin is input;
* Slave: MISO pin is input. */ * Slave: MISO pin is input. */
kSPI_PinModeOutput = 0x3U /*!< Bidirectional mode. Master: MOSI pin is output; kSPI_PinModeOutput = 0x3U /*!< Bidirectional mode. Master: MOSI pin is output;
* Slave: MISO pin is output. */ * Slave: MISO pin is output. */
@ -113,10 +93,10 @@ typedef enum _spi_data_bitcount_mode
enum _spi_interrupt_enable enum _spi_interrupt_enable
{ {
kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */ kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */
kSPI_TxEmptyInterruptEnable = 0x2U, /*!< Transmit buffer empty interrupt */ kSPI_TxEmptyInterruptEnable = 0x2U, /*!< Transmit buffer empty interrupt */
kSPI_MatchInterruptEnable = 0x4U, /*!< Match interrupt */ kSPI_MatchInterruptEnable = 0x4U, /*!< Match interrupt */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullInterruptEnable = 0x8U, /*!< Receive FIFO nearly full interrupt */ kSPI_RxFifoNearFullInterruptEnable = 0x8U, /*!< Receive FIFO nearly full interrupt */
kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */ kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
}; };
@ -124,44 +104,44 @@ enum _spi_interrupt_enable
/*! @brief SPI status flags.*/ /*! @brief SPI status flags.*/
enum _spi_flags enum _spi_flags
{ {
kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK, /*!< Read buffer full flag */ kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK, /*!< Read buffer full flag */
kSPI_MatchFlag = SPI_S_SPMF_MASK, /*!< Match flag */ kSPI_MatchFlag = SPI_S_SPMF_MASK, /*!< Match flag */
kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */ kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */
kSPI_ModeFaultFlag = SPI_S_MODF_MASK, /*!< Mode fault flag */ kSPI_ModeFaultFlag = SPI_S_MODF_MASK, /*!< Mode fault flag */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK, /*!< Rx FIFO near full */ kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK, /*!< Rx FIFO near full */
kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */ kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */
kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK, /*!< Tx FIFO full */ kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK, /*!< Tx FIFO full */
kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK, /*!< Rx FIFO empty */ kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK, /*!< Rx FIFO empty */
kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U, /*!< Tx FIFO error */ kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U, /*!< Tx FIFO error */
kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U, /*!< Rx FIFO error */ kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U, /*!< Rx FIFO error */
kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U, /*!< Tx FIFO Overflow */ kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U, /*!< Tx FIFO Overflow */
kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U /*!< Rx FIFO Overflow */ kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U /*!< Rx FIFO Overflow */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
}; };
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*! @brief SPI FIFO write-1-to-clear interrupt flags.*/ /*! @brief SPI FIFO write-1-to-clear interrupt flags.*/
typedef enum _spi_w1c_interrupt typedef enum _spi_w1c_interrupt
{ {
kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK, /*!< Receive FIFO full interrupt */ kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK, /*!< Receive FIFO full interrupt */
kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK, /*!< Transmit FIFO empty interrupt */ kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK, /*!< Transmit FIFO empty interrupt */
kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */ kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */
kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */ kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */
} spi_w1c_interrupt_t; } spi_w1c_interrupt_t;
/*! @brief SPI TX FIFO watermark settings.*/ /*! @brief SPI TX FIFO watermark settings.*/
typedef enum _spi_txfifo_watermark typedef enum _spi_txfifo_watermark
{ {
kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */ kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */
kSPI_TxFifoOneHalfEmpty = 1 /*!< SPI tx watermark at 1/2 FIFO size */ kSPI_TxFifoOneHalfEmpty = 1 /*!< SPI tx watermark at 1/2 FIFO size */
} spi_txfifo_watermark_t; } spi_txfifo_watermark_t;
/*! @brief SPI RX FIFO watermark settings.*/ /*! @brief SPI RX FIFO watermark settings.*/
typedef enum _spi_rxfifo_watermark typedef enum _spi_rxfifo_watermark
{ {
kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */ kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */
kSPI_RxFifoOneHalfFull = 1 /*!< SPI rx watermark at 1/2 FIFO size */ kSPI_RxFifoOneHalfFull = 1 /*!< SPI rx watermark at 1/2 FIFO size */
} spi_rxfifo_watermark_t; } spi_rxfifo_watermark_t;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
@ -169,8 +149,8 @@ typedef enum _spi_rxfifo_watermark
/*! @brief SPI DMA source*/ /*! @brief SPI DMA source*/
enum _spi_dma_enable_t enum _spi_dma_enable_t
{ {
kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK, /*!< Tx DMA request source */ kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK, /*!< Tx DMA request source */
kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK, /*!< Rx DMA request source */ kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK, /*!< Rx DMA request source */
kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/ kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/
}; };
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */ #endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */
@ -210,6 +190,7 @@ typedef struct _spi_slave_config
spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */ spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */ spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
spi_pin_mode_t pinMode; /*!< SPI pin mode select */
} spi_slave_config_t; } spi_slave_config_t;
/*! @brief SPI transfer structure */ /*! @brief SPI transfer structure */
@ -478,6 +459,27 @@ static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
* @{ * @{
*/ */
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base);
/*!
* @brief Sets the pin mode for transfer.
*
* @param base SPI base pointer
* @param pinMode pin mode for transfer AND #_spi_pin_mode could get the related configuration.
*/
static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)
{
/* Clear SPC0 and BIDIROE bit. */
base->C2 &= ~(SPI_C2_BIDIROE_MASK | SPI_C2_SPC0_MASK);
/* Set pin mode for transfer. */
base->C2 |= SPI_C2_BIDIROE(pinMode >> 1U) | SPI_C2_SPC0(pinMode & 1U);
}
/*! /*!
* @brief Sets the baud rate for SPI transfer. This is only used in master. * @brief Sets the baud rate for SPI transfer. This is only used in master.
* *
@ -544,6 +546,13 @@ void SPI_WriteData(SPI_Type *base, uint16_t data);
*/ */
uint16_t SPI_ReadData(SPI_Type *base); uint16_t SPI_ReadData(SPI_Type *base);
/*!
* @brief Set up the dummy data.
*
* @param base SPI peripheral address.
* @param dummyData Data to be transferred when tx buffer is NULL.
*/
void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData);
/*! @} */ /*! @} */
/*! /*!
@ -582,11 +591,7 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer);
* *
* @note The API immediately returns after transfer initialization is finished. * @note The API immediately returns after transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status. * Call SPI_GetStatusIRQ() to get the transfer status.
* @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times of the watermark. * @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
* Otherwise,
* the last data may be lost because it cannot generate an interrupt request. Users can also call the functional API to
* get the last
* received data.
* *
* @param base SPI peripheral base address. * @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state * @param handle pointer to spi_master_handle_t structure which stores the transfer state
@ -636,8 +641,8 @@ void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle);
* @param userData User data. * @param userData User data.
*/ */
void SPI_SlaveTransferCreateHandle(SPI_Type *base, void SPI_SlaveTransferCreateHandle(SPI_Type *base,
spi_slave_handle_t *handle, spi_slave_handle_t *handle,
spi_slave_callback_t callback, spi_slave_callback_t callback,
void *userData); void *userData);
/*! /*!
@ -645,11 +650,7 @@ void SPI_SlaveTransferCreateHandle(SPI_Type *base,
* *
* @note The API returns immediately after the transfer initialization is finished. * @note The API returns immediately after the transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status. * Call SPI_GetStatusIRQ() to get the transfer status.
* @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times the watermark. * @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
* Otherwise,
* the last data may be lost because it cannot generate an interrupt request. Call the functional API to get the last
* several
* receive data.
* *
* @param base SPI peripheral base address. * @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state * @param handle pointer to spi_master_handle_t structure which stores the transfer state

View File

@ -1,38 +1,22 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_spi_dma.h" #include "fsl_spi_dma.h"
/******************************************************************************* /*******************************************************************************
* Definitons * Definitions
******************************************************************************/ ******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spi_dma"
#endif
/*<! Structure definition for spi_dma_private_handle_t. The structure is private. */ /*<! Structure definition for spi_dma_private_handle_t. The structure is private. */
typedef struct _spi_dma_private_handle typedef struct _spi_dma_private_handle
{ {
@ -52,13 +36,6 @@ static spi_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_SPI_COUNT];
/******************************************************************************* /*******************************************************************************
* Prototypes * Prototypes
******************************************************************************/ ******************************************************************************/
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
extern uint32_t SPI_GetInstance(SPI_Type *base);
/*! /*!
* @brief DMA callback function for SPI send transfer. * @brief DMA callback function for SPI send transfer.
* *
@ -76,25 +53,18 @@ static void SPI_TxDMACallback(dma_handle_t *handle, void *userData);
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData); static void SPI_RxDMACallback(dma_handle_t *handle, void *userData);
/******************************************************************************* /*******************************************************************************
* Variables * Code
******************************************************************************/ ******************************************************************************/
/* Dummy data used to send */
static const uint8_t s_dummyData = SPI_DUMMYDATA;
/*******************************************************************************
* Code
******************************************************************************/
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData) static void SPI_TxDMACallback(dma_handle_t *handle, void *userData)
{ {
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData; spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle; spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base; SPI_Type *base = privHandle->base;
/* Disable Tx dma */ /* Disable Tx dma */
SPI_EnableDMA(base, kSPI_TxDmaEnable, false); SPI_EnableDMA(base, kSPI_TxDmaEnable, false);
/* Stop DMA tranfer */ /* Stop DMA transfer */
DMA_StopTransfer(spiHandle->txHandle); DMA_StopTransfer(spiHandle->txHandle);
/* change the state */ /* change the state */
@ -114,13 +84,13 @@ static void SPI_TxDMACallback(dma_handle_t *handle, void *userData)
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData) static void SPI_RxDMACallback(dma_handle_t *handle, void *userData)
{ {
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData; spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle; spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base; SPI_Type *base = privHandle->base;
/* Disable Tx dma */ /* Disable Tx dma */
SPI_EnableDMA(base, kSPI_RxDmaEnable, false); SPI_EnableDMA(base, kSPI_RxDmaEnable, false);
/* Stop DMA tranfer */ /* Stop DMA transfer */
DMA_StopTransfer(spiHandle->rxHandle); DMA_StopTransfer(spiHandle->rxHandle);
/* change the state */ /* change the state */
@ -137,6 +107,19 @@ static void SPI_RxDMACallback(dma_handle_t *handle, void *userData)
} }
} }
/*!
* brief Initialize the SPI master DMA handle.
*
* This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs.
* Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback User callback function called at the end of a transfer.
* param userData User data for callback.
* param txHandle DMA handle pointer for SPI Tx, the handle shall be static allocated by users.
* param rxHandle DMA handle pointer for SPI Rx, the handle shall be static allocated by users.
*/
void SPI_MasterTransferCreateHandleDMA(SPI_Type *base, void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
spi_dma_handle_t *handle, spi_dma_handle_t *handle,
spi_dma_callback_t callback, spi_dma_callback_t callback,
@ -146,7 +129,10 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
{ {
assert(handle); assert(handle);
dma_transfer_config_t config = {0}; dma_transfer_config_t config = {0};
uint32_t instance = SPI_GetInstance(base); uint32_t instance = SPI_GetInstance(base);
/* Zero the handle */
memset(handle, 0, sizeof(*handle));
/* Set spi base to handle */ /* Set spi base to handle */
handle->txHandle = txHandle; handle->txHandle = txHandle;
@ -158,7 +144,7 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
handle->state = kSPI_Idle; handle->state = kSPI_Idle;
/* Set handle to global state */ /* Set handle to global state */
s_dmaPrivateHandle[instance].base = base; s_dmaPrivateHandle[instance].base = base;
s_dmaPrivateHandle[instance].handle = handle; s_dmaPrivateHandle[instance].handle = handle;
/* Compute internal state */ /* Compute internal state */
@ -180,27 +166,27 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Set the non-change attribute for Tx DMA transfer, to improve efficiency */ /* Set the non-change attribute for Tx DMA transfer, to improve efficiency */
config.destAddr = SPI_GetDataRegisterAddress(base); config.destAddr = SPI_GetDataRegisterAddress(base);
config.enableDestIncrement = false; config.enableDestIncrement = false;
config.enableSrcIncrement = true; config.enableSrcIncrement = true;
if (handle->bytesPerFrame == 1U) if (handle->bytesPerFrame == 1U)
{ {
config.srcSize = kDMA_Transfersize8bits; config.srcSize = kDMA_Transfersize8bits;
config.destSize = kDMA_Transfersize8bits; config.destSize = kDMA_Transfersize8bits;
} }
else else
{ {
config.srcSize = kDMA_Transfersize16bits; config.srcSize = kDMA_Transfersize16bits;
config.destSize = kDMA_Transfersize16bits; config.destSize = kDMA_Transfersize16bits;
} }
DMA_SubmitTransfer(handle->txHandle, &config, true); DMA_SubmitTransfer(handle->txHandle, &config, true);
/* Set non-change attribute for Rx DMA */ /* Set non-change attribute for Rx DMA */
config.srcAddr = SPI_GetDataRegisterAddress(base); config.srcAddr = SPI_GetDataRegisterAddress(base);
config.destAddr = 0U; config.destAddr = 0U;
config.enableDestIncrement = true; config.enableDestIncrement = true;
config.enableSrcIncrement = false; config.enableSrcIncrement = false;
DMA_SubmitTransfer(handle->rxHandle, &config, true); DMA_SubmitTransfer(handle->rxHandle, &config, true);
/* Install callback for Tx dma channel */ /* Install callback for Tx dma channel */
@ -208,6 +194,19 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]); DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]);
} }
/*!
* brief Perform a non-blocking SPI transfer using DMA.
*
* note This interface returned immediately after transfer initiates, users should call
* SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
* param xfer Pointer to dma transfer structure.
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer) status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
{ {
assert(handle && xfer); assert(handle && xfer);
@ -231,16 +230,16 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
SPI_Enable(base, true); SPI_Enable(base, true);
/* Configure tx transfer DMA */ /* Configure tx transfer DMA */
config.destAddr = SPI_GetDataRegisterAddress(base); config.destAddr = SPI_GetDataRegisterAddress(base);
config.enableDestIncrement = false; config.enableDestIncrement = false;
if (handle->bytesPerFrame == 1U) if (handle->bytesPerFrame == 1U)
{ {
config.srcSize = kDMA_Transfersize8bits; config.srcSize = kDMA_Transfersize8bits;
config.destSize = kDMA_Transfersize8bits; config.destSize = kDMA_Transfersize8bits;
} }
else else
{ {
config.srcSize = kDMA_Transfersize16bits; config.srcSize = kDMA_Transfersize16bits;
config.destSize = kDMA_Transfersize16bits; config.destSize = kDMA_Transfersize16bits;
} }
config.transferSize = xfer->dataSize; config.transferSize = xfer->dataSize;
@ -248,13 +247,13 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
if (xfer->txData) if (xfer->txData)
{ {
config.enableSrcIncrement = true; config.enableSrcIncrement = true;
config.srcAddr = (uint32_t)(xfer->txData); config.srcAddr = (uint32_t)(xfer->txData);
} }
else else
{ {
/* Disable the source increasement and source set to dummyData */ /* Disable the source increasement and source set to dummyData */
config.enableSrcIncrement = false; config.enableSrcIncrement = false;
config.srcAddr = (uint32_t)(&s_dummyData); config.srcAddr = (uint32_t)(&g_spiDummyData[SPI_GetInstance(base)]);
} }
DMA_SubmitTransfer(handle->txHandle, &config, true); DMA_SubmitTransfer(handle->txHandle, &config, true);
@ -270,7 +269,7 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
/* Change the state of handle */ /* Change the state of handle */
handle->transferSize = xfer->dataSize; handle->transferSize = xfer->dataSize;
handle->state = kSPI_Busy; handle->state = kSPI_Busy;
/* Start Rx transfer if needed */ /* Start Rx transfer if needed */
if (xfer->rxData) if (xfer->rxData)
@ -288,6 +287,15 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Get the transferred bytes for SPI slave DMA.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
* param count Transferred bytes.
* retval kStatus_SPI_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count) status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
{ {
assert(handle); assert(handle);
@ -313,6 +321,12 @@ status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle,
return status; return status;
} }
/*!
* brief Abort a SPI transfer using DMA.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
*/
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle) void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -327,5 +341,5 @@ void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
/* Set the handle state */ /* Set the handle state */
handle->txInProgress = false; handle->txInProgress = false;
handle->rxInProgress = false; handle->rxInProgress = false;
handle->state = kSPI_Idle; handle->state = kSPI_Idle;
} }

View File

@ -1,31 +1,9 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#ifndef _FSL_SPI_DMA_H_ #ifndef _FSL_SPI_DMA_H_
#define _FSL_SPI_DMA_H_ #define _FSL_SPI_DMA_H_
@ -38,11 +16,16 @@
* @{ * @{
*/ */
/******************************************************************************* /*******************************************************************************
* Definitions * Definitions
******************************************************************************/ ******************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief SPI DMA driver version 2.0.4. */
#define FSL_SPI_DMA_DRIVER_VERSION (MAKE_VERSION(2, 0, 4))
/*@}*/
typedef struct _spi_dma_handle spi_dma_handle_t; typedef struct _spi_dma_handle spi_dma_handle_t;
/*! @brief SPI DMA callback called at the end of transfer. */ /*! @brief SPI DMA callback called at the end of transfer. */
@ -55,7 +38,7 @@ struct _spi_dma_handle
bool rxInProgress; /*!< Receive transfer finished */ bool rxInProgress; /*!< Receive transfer finished */
dma_handle_t *txHandle; /*!< DMA handler for SPI send */ dma_handle_t *txHandle; /*!< DMA handler for SPI send */
dma_handle_t *rxHandle; /*!< DMA handler for SPI receive */ dma_handle_t *rxHandle; /*!< DMA handler for SPI receive */
uint8_t bytesPerFrame; /*!< Bytes in a frame for SPI tranfer */ uint8_t bytesPerFrame; /*!< Bytes in a frame for SPI transfer */
spi_dma_callback_t callback; /*!< Callback for SPI DMA transfer */ spi_dma_callback_t callback; /*!< Callback for SPI DMA transfer */
void *userData; /*!< User Data for SPI DMA callback */ void *userData; /*!< User Data for SPI DMA callback */
uint32_t state; /*!< Internal state of SPI DMA transfer */ uint32_t state; /*!< Internal state of SPI DMA transfer */

View File

@ -1,38 +1,22 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_spi.h" #include "fsl_spi.h"
/******************************************************************************* /*******************************************************************************
* Definitons * Definitions
******************************************************************************/ ******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spi"
#endif
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */ /*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _spi_transfer_states_t enum _spi_transfer_states_t
{ {
@ -46,12 +30,6 @@ typedef void (*spi_isr_t)(SPI_Type *base, spi_master_handle_t *spiHandle);
/******************************************************************************* /*******************************************************************************
* Prototypes * Prototypes
******************************************************************************/ ******************************************************************************/
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base);
/*! /*!
* @brief Sends a buffer of data bytes in non-blocking way. * @brief Sends a buffer of data bytes in non-blocking way.
@ -71,6 +49,14 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
*/ */
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size); static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
/*!
* @brief Get the waterrmark value for this SPI instance.
*
* @param base SPI base pointer
* @return Watermark value for the SPI instance.
*/
static uint8_t SPI_GetWatermark(SPI_Type *base);
/*! /*!
* @brief Send a piece of data for SPI. * @brief Send a piece of data for SPI.
* *
@ -78,6 +64,7 @@ static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
* and write the data into it. At the same time, this function updates the values in * and write the data into it. At the same time, this function updates the values in
* master handle structure. * master handle structure.
* *
* @param base SPI base pointer
* @param handle Pointer to SPI master handle structure. * @param handle Pointer to SPI master handle structure.
*/ */
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle); static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle);
@ -89,9 +76,18 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle);
* and write the data to destination address. At the same time, this function updates * and write the data to destination address. At the same time, this function updates
* the values in master handle structure. * the values in master handle structure.
* *
* @param base SPI base pointer
* @param handle Pointer to SPI master handle structure. * @param handle Pointer to SPI master handle structure.
*/ */
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle); static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle);
/*!
* @brief Common IRQ handler for SPI.
*
* @param base SPI base pointer.
* @param instance SPI instance number.
*/
static void SPI_CommonIRQHandler(SPI_Type *base, uint32_t instance);
/******************************************************************************* /*******************************************************************************
* Variables * Variables
******************************************************************************/ ******************************************************************************/
@ -101,21 +97,31 @@ static spi_master_handle_t *s_spiHandle[FSL_FEATURE_SOC_SPI_COUNT];
static SPI_Type *const s_spiBases[] = SPI_BASE_PTRS; static SPI_Type *const s_spiBases[] = SPI_BASE_PTRS;
/*! @brief IRQ name array */ /*! @brief IRQ name array */
static const IRQn_Type s_spiIRQ[] = SPI_IRQS; static const IRQn_Type s_spiIRQ[] = SPI_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Clock array name */ /*! @brief Clock array name */
static const clock_ip_name_t s_spiClock[] = SPI_CLOCKS; static const clock_ip_name_t s_spiClock[] = SPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointer to master IRQ handler for each instance. */ /*! @brief Pointer to master IRQ handler for each instance. */
static spi_isr_t s_spiIsr; static spi_isr_t s_spiMasterIsr;
static spi_isr_t s_spiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t g_spiDummyData[ARRAY_SIZE(s_spiBases)] = {0};
/******************************************************************************* /*******************************************************************************
* Code * Code
******************************************************************************/ ******************************************************************************/
/*!
* brief Get the instance for SPI module.
*
* param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base) uint32_t SPI_GetInstance(SPI_Type *base)
{ {
uint32_t instance; uint32_t instance;
/* Find the instance index from base address mappings. */ /* Find the instance index from base address mappings. */
for (instance = 0; instance < FSL_FEATURE_SOC_SPI_COUNT; instance++) for (instance = 0; instance < ARRAY_SIZE(s_spiBases); instance++)
{ {
if (s_spiBases[instance] == base) if (s_spiBases[instance] == base)
{ {
@ -123,15 +129,28 @@ uint32_t SPI_GetInstance(SPI_Type *base)
} }
} }
assert(instance < FSL_FEATURE_SOC_SPI_COUNT); assert(instance < ARRAY_SIZE(s_spiBases));
return instance; return instance;
} }
/*!
* brief Set up the dummy data.
*
* param base SPI peripheral address.
* param dummyData Data to be transferred when tx buffer is NULL.
*/
void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
{
uint32_t instance = SPI_GetInstance(base);
g_spiDummyData[instance] = dummyData;
}
static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size) static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
uint32_t instance = SPI_GetInstance(base);
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
/* Check if 16 bits or 8 bits */ /* Check if 16 bits or 8 bits */
@ -155,13 +174,13 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
base->DL = *buffer++; base->DL = *buffer++;
} }
#else #else
base->D = *buffer++; base->D = *buffer++;
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */ #endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
} }
/* Send dummy data */ /* Send dummy data */
else else
{ {
SPI_WriteData(base, SPI_DUMMYDATA); SPI_WriteData(base, ((uint32_t)g_spiDummyData[instance] << 8 | g_spiDummyData[instance]));
} }
i += bytesPerFrame; i += bytesPerFrame;
} }
@ -169,7 +188,7 @@ static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size) static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -205,18 +224,68 @@ static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
} }
} }
/* Get the watermark value of transfer. Please note that the entery width of FIFO is 16 bits. */
static uint8_t SPI_GetWatermark(SPI_Type *base)
{
uint8_t ret = 0;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
uint8_t rxSize = 0U;
/* Get the number to be sent if there is FIFO */
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
{
rxSize = (base->C3 & SPI_C3_RNFULLF_MARK_MASK) >> SPI_C3_RNFULLF_MARK_SHIFT;
if (rxSize == 0U)
{
ret = FSL_FEATURE_SPI_FIFO_SIZEn(base) * 3U / 4U;
}
else
{
ret = FSL_FEATURE_SPI_FIFO_SIZEn(base) / 2U;
}
}
/* If no FIFO, just set the watermark to 1 */
else
{
ret = 1U;
}
#else
ret = 1U;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
return ret;
}
static void SPI_SendInitialTransfer(SPI_Type *base, spi_master_handle_t *handle)
{
uint8_t bytestoTransfer = handle->bytePerFrame;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && (FSL_FEATURE_SPI_HAS_FIFO)
if (handle->watermark > 1)
{
/* In the first time to send data to FIFO, if transfer size is not larger than
* the FIFO size, send all data to FIFO, or send data to make the FIFO full.
* Besides, The FIFO's entry width is 16 bits, need to translate it to bytes.
*/
bytestoTransfer = MIN(handle->txRemainingBytes, (FSL_FEATURE_SPI_FIFO_SIZEn(base) * 2));
}
#endif
SPI_WriteNonBlocking(base, handle->txData, bytestoTransfer);
/* Update handle information */
if (handle->txData)
{
handle->txData += bytestoTransfer;
}
handle->txRemainingBytes -= bytestoTransfer;
}
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle) static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
{ {
uint8_t bytes = MIN((handle->watermark * 2U), handle->txRemainingBytes); uint8_t bytes = handle->bytePerFrame;
/* Read S register and ensure SPTEF is 1, otherwise the write would be ignored. */ /* Read S register and ensure SPTEF is 1, otherwise the write would be ignored. */
if (handle->watermark == 1U) if (handle->watermark == 1U)
{ {
if (bytes != 0U)
{
bytes = handle->bytePerFrame;
}
/* Send data */ /* Send data */
if (base->C1 & SPI_C1_MSTR_MASK) if (base->C1 & SPI_C1_MSTR_MASK)
{ {
@ -235,7 +304,7 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
else else
{ {
/* As a slave, send data until SPTEF cleared */ /* As a slave, send data until SPTEF cleared */
while ((base->S & SPI_S_SPTEF_MASK) && (handle->txRemainingBytes > 0)) while ((base->S & SPI_S_SPTEF_MASK) && (handle->txRemainingBytes >= bytes))
{ {
SPI_WriteNonBlocking(base, handle->txData, bytes); SPI_WriteNonBlocking(base, handle->txData, bytes);
@ -253,56 +322,96 @@ static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
/* If use FIFO */ /* If use FIFO */
else else
{ {
if (base->S & SPI_S_TNEAREF_MASK) /* The FIFO's entry width is 16 bits, need to translate it to bytes. */
{ uint8_t bytestoTransfer = handle->watermark * 2;
SPI_WriteNonBlocking(base, handle->txData, bytes);
/* Update handle information */ if (handle->txRemainingBytes < 8U)
if (handle->txData) {
{ bytestoTransfer = handle->txRemainingBytes;
handle->txData += bytes;
}
handle->txRemainingBytes -= bytes;
} }
SPI_WriteNonBlocking(base, handle->txData, bytestoTransfer);
/* Update handle information */
if (handle->txData)
{
handle->txData += bytestoTransfer;
}
handle->txRemainingBytes -= bytestoTransfer;
} }
#endif #endif
} }
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle) static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle)
{ {
uint8_t bytes = MIN((handle->watermark * 2U), handle->rxRemainingBytes); uint8_t bytes = handle->bytePerFrame;
uint8_t val = 1U;
/* Read S register and ensure SPRF is 1, otherwise the write would be ignored. */ /* Read S register and ensure SPRF is 1, otherwise the write would be ignored. */
if (handle->watermark == 1U) if (handle->watermark == 1U)
{ {
val = base->S & SPI_S_SPRF_MASK; if (base->S & SPI_S_SPRF_MASK)
if (bytes != 0U)
{ {
bytes = handle->bytePerFrame; SPI_ReadNonBlocking(base, handle->rxData, bytes);
/* Update information in handle */
if (handle->rxData)
{
handle->rxData += bytes;
}
handle->rxRemainingBytes -= bytes;
} }
} }
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && (FSL_FEATURE_SPI_HAS_FIFO)
if (val) /* If use FIFO */
else
{ {
SPI_ReadNonBlocking(base, handle->rxData, bytes); /* While rx fifo not empty and remaining data can also trigger the last interrupt */
while ((base->S & SPI_S_RFIFOEF_MASK) == 0U)
/* Update information in handle */
if (handle->rxData)
{ {
handle->rxData += bytes; SPI_ReadNonBlocking(base, handle->rxData, bytes);
/* Update information in handle */
if (handle->rxData)
{
handle->rxData += bytes;
}
handle->rxRemainingBytes -= bytes;
/* If the reamining data equals to watermark, leave to last interrupt */
if (handle->rxRemainingBytes == (handle->watermark * 2U))
{
break;
}
} }
handle->rxRemainingBytes -= bytes;
} }
#endif
} }
/*!
* brief Sets the SPI master configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit().
* User may use the initialized structure unchanged in SPI_MasterInit(), or modify
* some fields of the structure before calling SPI_MasterInit(). After calling this API,
* the master is ready to transfer.
* Example:
code
spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);
endcode
*
* param config pointer to master config structure
*/
void SPI_MasterGetDefaultConfig(spi_master_config_t *config) void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
{ {
config->enableMaster = true; /* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
config->enableMaster = true;
config->enableStopInWaitMode = false; config->enableStopInWaitMode = false;
config->polarity = kSPI_ClockPolarityActiveHigh; config->polarity = kSPI_ClockPolarityActiveHigh;
config->phase = kSPI_ClockPhaseFirstEdge; config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst; config->direction = kSPI_MsbFirst;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
config->dataMode = kSPI_8BitMode; config->dataMode = kSPI_8BitMode;
@ -313,17 +422,37 @@ void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
config->rxWatermark = kSPI_RxFifoOneHalfFull; config->rxWatermark = kSPI_RxFifoOneHalfFull;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
config->pinMode = kSPI_PinModeNormal; config->pinMode = kSPI_PinModeNormal;
config->outputMode = kSPI_SlaveSelectAutomaticOutput; config->outputMode = kSPI_SlaveSelectAutomaticOutput;
config->baudRate_Bps = 500000U; config->baudRate_Bps = 500000U;
} }
/*!
* brief Initializes the SPI with master configuration.
*
* The configuration structure can be filled by user from scratch, or be set with default
* values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
* Example
code
spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);
endcode
*
* param base SPI base pointer
* param config pointer to master configuration structure
* param srcClock_Hz Source clock frequency.
*/
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz) void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
{ {
assert(config && srcClock_Hz); assert(config && srcClock_Hz);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Open clock gate for SPI and open interrupt */ /* Open clock gate for SPI and open interrupt */
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable SPI before configuration */ /* Disable SPI before configuration */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
@ -354,6 +483,9 @@ void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t
/* Set baud rate */ /* Set baud rate */
SPI_MasterSetBaudRate(base, config->baudRate_Bps, srcClock_Hz); SPI_MasterSetBaudRate(base, config->baudRate_Bps, srcClock_Hz);
/* Set the dummy data, this data will usefull when tx buffer is NULL. */
SPI_SetDummyData(base, SPI_DUMMYDATA);
/* Enable SPI */ /* Enable SPI */
if (config->enableMaster) if (config->enableMaster)
{ {
@ -361,12 +493,28 @@ void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t
} }
} }
/*!
* brief Sets the SPI slave configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit().
* Modify some fields of the structure before calling SPI_SlaveInit().
* Example:
code
spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);
endcode
*
* param config pointer to slave configuration structure
*/
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config) void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
{ {
config->enableSlave = true; /* Initializes the configure structure to zero. */
config->polarity = kSPI_ClockPolarityActiveHigh; memset(config, 0, sizeof(*config));
config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst; config->enableSlave = true;
config->polarity = kSPI_ClockPolarityActiveHigh;
config->phase = kSPI_ClockPhaseFirstEdge;
config->direction = kSPI_MsbFirst;
config->enableStopInWaitMode = false; config->enableStopInWaitMode = false;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -377,14 +525,37 @@ void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
config->txWatermark = kSPI_TxFifoOneHalfEmpty; config->txWatermark = kSPI_TxFifoOneHalfEmpty;
config->rxWatermark = kSPI_RxFifoOneHalfFull; config->rxWatermark = kSPI_RxFifoOneHalfFull;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
config->pinMode = kSPI_PinModeNormal;
} }
/*!
* brief Initializes the SPI with slave configuration.
*
* The configuration structure can be filled by user from scratch or be set with
* default values by SPI_SlaveGetDefaultConfig().
* After calling this API, the slave is ready to transfer.
* Example
code
spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);
endcode
*
* param base SPI base pointer
* param config pointer to master configuration structure
*/
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config) void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
{ {
assert(config); assert(config);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Open clock gate for SPI and open interrupt */ /* Open clock gate for SPI and open interrupt */
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable SPI before configuration */ /* Disable SPI before configuration */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
@ -395,9 +566,11 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
/* Configure data mode if needed */ /* Configure data mode if needed */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
base->C2 = SPI_C2_SPIMODE(config->dataMode) | SPI_C2_SPISWAI(config->enableStopInWaitMode); base->C2 = SPI_C2_SPIMODE(config->dataMode) | SPI_C2_SPISWAI(config->enableStopInWaitMode) |
SPI_C2_BIDIROE(config->pinMode >> 1U) | SPI_C2_SPC0(config->pinMode & 1U);
#else #else
base->C2 = SPI_C2_SPISWAI(config->enableStopInWaitMode); base->C2 = SPI_C2_SPISWAI(config->enableStopInWaitMode) | SPI_C2_BIDIROE(config->pinMode >> 1U) |
SPI_C2_SPC0(config->pinMode & 1U);
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */ #endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
/* Set watermark */ /* Set watermark */
@ -409,6 +582,9 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
} }
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Set the dummy data, this data will usefull when tx buffer is NULL. */
SPI_SetDummyData(base, SPI_DUMMYDATA);
/* Enable SPI */ /* Enable SPI */
if (config->enableSlave) if (config->enableSlave)
{ {
@ -416,15 +592,31 @@ void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
} }
} }
/*!
* brief De-initializes the SPI.
*
* Calling this API resets the SPI module, gates the SPI clock.
* The SPI module can't work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
*
* param base SPI base pointer
*/
void SPI_Deinit(SPI_Type *base) void SPI_Deinit(SPI_Type *base)
{ {
/* Disable SPI module before shutting down */ /* Disable SPI module before shutting down */
base->C1 &= ~SPI_C1_SPE_MASK; base->C1 &= ~SPI_C1_SPE_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Gate the clock */ /* Gate the clock */
CLOCK_DisableClock(s_spiClock[SPI_GetInstance(base)]); CLOCK_DisableClock(s_spiClock[SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
} }
/*!
* brief Gets the status flag.
*
* param base SPI base pointer
* return SPI Status, use status flag to AND #_spi_flags could get the related status.
*/
uint32_t SPI_GetStatusFlags(SPI_Type *base) uint32_t SPI_GetStatusFlags(SPI_Type *base)
{ {
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
@ -441,6 +633,17 @@ uint32_t SPI_GetStatusFlags(SPI_Type *base)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Enables the interrupt for the SPI.
*
* param base SPI base pointer
* param mask SPI interrupt source. The parameter can be any combination of the following values:
* arg kSPI_RxFullAndModfInterruptEnable
* arg kSPI_TxEmptyInterruptEnable
* arg kSPI_MatchInterruptEnable
* arg kSPI_RxFifoNearFullInterruptEnable
* arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask) void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
{ {
/* Rx full interrupt */ /* Rx full interrupt */
@ -480,6 +683,17 @@ void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Disables the interrupt for the SPI.
*
* param base SPI base pointer
* param mask SPI interrupt source. The parameter can be any combination of the following values:
* arg kSPI_RxFullAndModfInterruptEnable
* arg kSPI_TxEmptyInterruptEnable
* arg kSPI_MatchInterruptEnable
* arg kSPI_RxFifoNearFullInterruptEnable
* arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask) void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
{ {
/* Rx full interrupt */ /* Rx full interrupt */
@ -518,6 +732,13 @@ void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
} }
/*!
* brief Sets the baud rate for SPI transfer. This is only used in master.
*
* param base SPI base pointer
* param baudRate_Bps baud rate needed in Hz.
* param srcClock_Hz SPI source clock frequency in Hz.
*/
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz) void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{ {
uint32_t prescaler; uint32_t prescaler;
@ -535,7 +756,7 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
/* Set the maximum divisor bit settings for each of the following divisors */ /* Set the maximum divisor bit settings for each of the following divisors */
bestPrescaler = 7U; bestPrescaler = 7U;
bestDivisor = 8U; bestDivisor = 8U;
/* In all for loops, if min_diff = 0, the exit for loop*/ /* In all for loops, if min_diff = 0, the exit for loop*/
for (prescaler = 0; (prescaler <= 7) && min_diff; prescaler++) for (prescaler = 0; (prescaler <= 7) && min_diff; prescaler++)
@ -556,9 +777,9 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
if (min_diff > diff) if (min_diff > diff)
{ {
/* A better match found */ /* A better match found */
min_diff = diff; min_diff = diff;
bestPrescaler = prescaler; bestPrescaler = prescaler;
bestDivisor = rateDivisor; bestDivisor = rateDivisor;
} }
} }
@ -571,9 +792,18 @@ void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcCl
base->BR = SPI_BR_SPR(bestDivisor) | SPI_BR_SPPR(bestPrescaler); base->BR = SPI_BR_SPR(bestDivisor) | SPI_BR_SPPR(bestPrescaler);
} }
/*!
* brief Sends a buffer of data bytes using a blocking method.
*
* note This function blocks via polling until all bytes have been sent.
*
* param base SPI base pointer
* param buffer The data bytes to send
* param size The number of data bytes to send
*/
void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size) void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
{ {
uint32_t i = 0; uint32_t i = 0;
uint8_t bytesPerFrame = 1U; uint8_t bytesPerFrame = 1U;
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
@ -596,6 +826,12 @@ void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
} }
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
* brief Enables or disables the FIFO if there is a FIFO.
*
* param base SPI base pointer
* param enable True means enable FIFO, false means disable FIFO.
*/
void SPI_EnableFIFO(SPI_Type *base, bool enable) void SPI_EnableFIFO(SPI_Type *base, bool enable)
{ {
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U) if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U)
@ -612,6 +848,12 @@ void SPI_EnableFIFO(SPI_Type *base, bool enable)
} }
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/*!
* brief Writes a data into the SPI data register.
*
* param base SPI base pointer
* param data needs to be write.
*/
void SPI_WriteData(SPI_Type *base, uint16_t data) void SPI_WriteData(SPI_Type *base, uint16_t data)
{ {
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS) #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
@ -622,6 +864,12 @@ void SPI_WriteData(SPI_Type *base, uint16_t data)
#endif #endif
} }
/*!
* brief Gets a data from the SPI data register.
*
* param base SPI base pointer
* return Data in the register.
*/
uint16_t SPI_ReadData(SPI_Type *base) uint16_t SPI_ReadData(SPI_Type *base)
{ {
uint16_t val = 0; uint16_t val = 0;
@ -634,6 +882,14 @@ uint16_t SPI_ReadData(SPI_Type *base)
return val; return val;
} }
/*!
* brief Transfers a block of data using a polling method.
*
* param base SPI base pointer
* param xfer pointer to spi_xfer_config_t structure
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
*/
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer) status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
{ {
assert(xfer); assert(xfer);
@ -651,10 +907,6 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U; bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
#endif #endif
/* Disable SPI and then enable it, this is used to clear S register */
base->C1 &= ~SPI_C1_SPE_MASK;
base->C1 |= SPI_C1_SPE_MASK;
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/* Disable FIFO, as the FIFO may cause data loss if the data size is not integer /* Disable FIFO, as the FIFO may cause data loss if the data size is not integer
@ -696,6 +948,17 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Initializes the SPI master handle.
*
* This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback Callback function.
* param userData User data.
*/
void SPI_MasterTransferCreateHandle(SPI_Type *base, void SPI_MasterTransferCreateHandle(SPI_Type *base,
spi_master_handle_t *handle, spi_master_handle_t *handle,
spi_master_callback_t callback, spi_master_callback_t callback,
@ -705,35 +968,15 @@ void SPI_MasterTransferCreateHandle(SPI_Type *base,
uint8_t instance = SPI_GetInstance(base); uint8_t instance = SPI_GetInstance(base);
/* Zero the handle */
memset(handle, 0, sizeof(*handle));
/* Initialize the handle */ /* Initialize the handle */
s_spiHandle[instance] = handle; s_spiHandle[instance] = handle;
handle->callback = callback; handle->callback = callback;
handle->userData = userData; handle->userData = userData;
s_spiIsr = SPI_MasterTransferHandleIRQ; s_spiMasterIsr = SPI_MasterTransferHandleIRQ;
handle->watermark = SPI_GetWatermark(base);
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
uint8_t txSize = 0U;
/* Get the number to be sent if there is FIFO */
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
{
txSize = (base->C3 & SPI_C3_TNEAREF_MARK_MASK) >> SPI_C3_TNEAREF_MARK_SHIFT;
if (txSize == 0U)
{
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) * 3U / 4U;
}
else
{
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) / 2U;
}
}
/* If no FIFO, just set the watermark to 1 */
else
{
handle->watermark = 1U;
}
#else
handle->watermark = 1U;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Get the bytes per frame */ /* Get the bytes per frame */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS) #if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
@ -746,6 +989,20 @@ void SPI_MasterTransferCreateHandle(SPI_Type *base,
EnableIRQ(s_spiIRQ[instance]); EnableIRQ(s_spiIRQ[instance]);
} }
/*!
* brief Performs a non-blocking SPI interrupt transfer.
*
* note The API immediately returns after transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status.
* note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
*
* param base SPI peripheral base address.
* param handle pointer to spi_master_handle_t structure which stores the transfer state
* param xfer pointer to spi_xfer_config_t structure
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer) status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)
{ {
assert(handle && xfer); assert(handle && xfer);
@ -763,47 +1020,76 @@ status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *hand
} }
/* Set the handle information */ /* Set the handle information */
handle->txData = xfer->txData; handle->txData = xfer->txData;
handle->rxData = xfer->rxData; handle->rxData = xfer->rxData;
handle->transferSize = xfer->dataSize; handle->transferSize = xfer->dataSize;
handle->txRemainingBytes = xfer->dataSize; handle->txRemainingBytes = xfer->dataSize;
handle->rxRemainingBytes = xfer->dataSize; handle->rxRemainingBytes = xfer->dataSize;
/* Set the SPI state to busy */ /* Set the SPI state to busy */
handle->state = kSPI_Busy; handle->state = kSPI_Busy;
/* Disable SPI and then enable it, this is used to clear S register*/
base->C1 &= ~SPI_C1_SPE_MASK;
base->C1 |= SPI_C1_SPE_MASK;
/* Enable Interrupt, only enable Rx interrupt, use rx interrupt to driver SPI transfer */ /* Enable Interrupt, only enable Rx interrupt, use rx interrupt to driver SPI transfer */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
handle->watermark = SPI_GetWatermark(base);
/* If the size of the transfer size less than watermark, set watermark to 1 */
if (xfer->dataSize < handle->watermark * 2U)
{
handle->watermark = 1U;
}
/* According to watermark size, enable interrupts */
if (handle->watermark > 1U) if (handle->watermark > 1U)
{ {
SPI_EnableFIFO(base, true);
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
while ((base->S & SPI_S_TNEAREF_MASK) != SPI_S_TNEAREF_MASK)
{
}
SPI_SendInitialTransfer(base, handle);
/* Enable Rx near full interrupt */ /* Enable Rx near full interrupt */
SPI_EnableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable);
} }
else else
{ {
SPI_EnableFIFO(base, false);
while ((base->S & SPI_S_SPTEF_MASK) != SPI_S_SPTEF_MASK)
{
}
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendInitialTransfer(base, handle);
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
} }
#else #else
while ((base->S & SPI_S_SPTEF_MASK) != SPI_S_SPTEF_MASK)
{
}
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendInitialTransfer(base, handle);
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable); SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
#endif #endif
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
SPI_SendTransfer(base, handle);
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Gets the bytes of the SPI interrupt transferred.
*
* param base SPI peripheral base address.
* param handle Pointer to SPI transfer handle, this should be a static variable.
* param count Transferred bytes of SPI master.
* retval kStatus_SPI_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count) status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)
{ {
assert(handle); assert(handle);
status_t status = kStatus_Success; status_t status = kStatus_Success;
if (handle->state != kStatus_SPI_Busy) if (handle->state != kSPI_Busy)
{ {
status = kStatus_NoTransferInProgress; status = kStatus_NoTransferInProgress;
} }
@ -823,6 +1109,12 @@ status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle,
return status; return status;
} }
/*!
* brief Aborts an SPI transfer using interrupt.
*
* param base SPI peripheral base address.
* param handle Pointer to SPI transfer handle, this should be a static variable.
*/
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle) void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -849,6 +1141,12 @@ void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
handle->txRemainingBytes = 0; handle->txRemainingBytes = 0;
} }
/*!
* brief Interrupts the handler for the SPI.
*
* param base SPI peripheral base address.
* param handle pointer to spi_master_handle_t structure which stores the transfer state.
*/
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle) void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -878,6 +1176,17 @@ void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
} }
} }
/*!
* brief Initializes the SPI slave handle.
*
* This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback Callback function.
* param userData User data.
*/
void SPI_SlaveTransferCreateHandle(SPI_Type *base, void SPI_SlaveTransferCreateHandle(SPI_Type *base,
spi_slave_handle_t *handle, spi_slave_handle_t *handle,
spi_slave_callback_t callback, spi_slave_callback_t callback,
@ -888,9 +1197,15 @@ void SPI_SlaveTransferCreateHandle(SPI_Type *base,
/* Slave create handle share same logic with master create handle, the only difference /* Slave create handle share same logic with master create handle, the only difference
is the Isr pointer. */ is the Isr pointer. */
SPI_MasterTransferCreateHandle(base, handle, callback, userData); SPI_MasterTransferCreateHandle(base, handle, callback, userData);
s_spiIsr = SPI_SlaveTransferHandleIRQ; s_spiSlaveIsr = SPI_SlaveTransferHandleIRQ;
} }
/*!
* brief Interrupts a handler for the SPI slave.
*
* param base SPI peripheral base address.
* param handle pointer to spi_slave_handle_t structure which stores the transfer state
*/
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle) void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -920,11 +1235,28 @@ void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
} }
} }
static void SPI_CommonIRQHandler(SPI_Type *base, uint32_t instance)
{
if (base->C1 & SPI_C1_MSTR_MASK)
{
s_spiMasterIsr(base, s_spiHandle[instance]);
}
else
{
s_spiSlaveIsr(base, s_spiHandle[instance]);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if defined(SPI0) #if defined(SPI0)
void SPI0_DriverIRQHandler(void) void SPI0_DriverIRQHandler(void)
{ {
assert(s_spiHandle[0]); assert(s_spiHandle[0]);
s_spiIsr(SPI0, s_spiHandle[0]); SPI_CommonIRQHandler(SPI0, 0);
} }
#endif #endif
@ -932,7 +1264,7 @@ void SPI0_DriverIRQHandler(void)
void SPI1_DriverIRQHandler(void) void SPI1_DriverIRQHandler(void)
{ {
assert(s_spiHandle[1]); assert(s_spiHandle[1]);
s_spiIsr(SPI1, s_spiHandle[1]); SPI_CommonIRQHandler(SPI1, 1);
} }
#endif #endif
@ -940,6 +1272,6 @@ void SPI1_DriverIRQHandler(void)
void SPI2_DriverIRQHandler(void) void SPI2_DriverIRQHandler(void)
{ {
assert(s_spiHandle[2]); assert(s_spiHandle[2]);
s_spiIsr(SPI0, s_spiHandle[2]); SPI_CommonIRQHandler(SPI2, 2);
} }
#endif #endif

View File

@ -1,31 +1,9 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used tom endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#ifndef _FSL_SPI_H_ #ifndef _FSL_SPI_H_
#define _FSL_SPI_H_ #define _FSL_SPI_H_
@ -37,15 +15,14 @@
* @{ * @{
*/ */
/******************************************************************************* /*******************************************************************************
* Definitions * Definitions
******************************************************************************/ ******************************************************************************/
/*! @name Driver version */ /*! @name Driver version */
/*@{*/ /*@{*/
/*! @brief SPI driver version 2.0.1. */ /*! @brief SPI driver version 2.0.4. */
#define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 1)) #define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 4))
/*@}*/ /*@}*/
#ifndef SPI_DUMMYDATA #ifndef SPI_DUMMYDATA
@ -53,12 +30,15 @@
#define SPI_DUMMYDATA (0xFFU) #define SPI_DUMMYDATA (0xFFU)
#endif #endif
/*! @brief Global variable for dummy data value setting. */
extern volatile uint8_t g_spiDummyData[];
/*! @brief Return status for the SPI driver.*/ /*! @brief Return status for the SPI driver.*/
enum _spi_status enum _spi_status
{ {
kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */ kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */
kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */ kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */
kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI error */ kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI error */
}; };
/*! @brief SPI clock polarity configuration.*/ /*! @brief SPI clock polarity configuration.*/
@ -87,16 +67,16 @@ typedef enum _spi_shift_direction
/*! @brief SPI slave select output mode options.*/ /*! @brief SPI slave select output mode options.*/
typedef enum _spi_ss_output_mode typedef enum _spi_ss_output_mode
{ {
kSPI_SlaveSelectAsGpio = 0x0U, /*!< Slave select pin configured as GPIO. */ kSPI_SlaveSelectAsGpio = 0x0U, /*!< Slave select pin configured as GPIO. */
kSPI_SlaveSelectFaultInput = 0x2U, /*!< Slave select pin configured for fault detection. */ kSPI_SlaveSelectFaultInput = 0x2U, /*!< Slave select pin configured for fault detection. */
kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */ kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */
} spi_ss_output_mode_t; } spi_ss_output_mode_t;
/*! @brief SPI pin mode options.*/ /*! @brief SPI pin mode options.*/
typedef enum _spi_pin_mode typedef enum _spi_pin_mode
{ {
kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/ kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/
kSPI_PinModeInput = 0x1U, /*!< Bidirectional mode. Master: MOSI pin is input; kSPI_PinModeInput = 0x1U, /*!< Bidirectional mode. Master: MOSI pin is input;
* Slave: MISO pin is input. */ * Slave: MISO pin is input. */
kSPI_PinModeOutput = 0x3U /*!< Bidirectional mode. Master: MOSI pin is output; kSPI_PinModeOutput = 0x3U /*!< Bidirectional mode. Master: MOSI pin is output;
* Slave: MISO pin is output. */ * Slave: MISO pin is output. */
@ -113,10 +93,10 @@ typedef enum _spi_data_bitcount_mode
enum _spi_interrupt_enable enum _spi_interrupt_enable
{ {
kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */ kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */
kSPI_TxEmptyInterruptEnable = 0x2U, /*!< Transmit buffer empty interrupt */ kSPI_TxEmptyInterruptEnable = 0x2U, /*!< Transmit buffer empty interrupt */
kSPI_MatchInterruptEnable = 0x4U, /*!< Match interrupt */ kSPI_MatchInterruptEnable = 0x4U, /*!< Match interrupt */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullInterruptEnable = 0x8U, /*!< Receive FIFO nearly full interrupt */ kSPI_RxFifoNearFullInterruptEnable = 0x8U, /*!< Receive FIFO nearly full interrupt */
kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */ kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
}; };
@ -124,44 +104,44 @@ enum _spi_interrupt_enable
/*! @brief SPI status flags.*/ /*! @brief SPI status flags.*/
enum _spi_flags enum _spi_flags
{ {
kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK, /*!< Read buffer full flag */ kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK, /*!< Read buffer full flag */
kSPI_MatchFlag = SPI_S_SPMF_MASK, /*!< Match flag */ kSPI_MatchFlag = SPI_S_SPMF_MASK, /*!< Match flag */
kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */ kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */
kSPI_ModeFaultFlag = SPI_S_MODF_MASK, /*!< Mode fault flag */ kSPI_ModeFaultFlag = SPI_S_MODF_MASK, /*!< Mode fault flag */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK, /*!< Rx FIFO near full */ kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK, /*!< Rx FIFO near full */
kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */ kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */
kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK, /*!< Tx FIFO full */ kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK, /*!< Tx FIFO full */
kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK, /*!< Rx FIFO empty */ kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK, /*!< Rx FIFO empty */
kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U, /*!< Tx FIFO error */ kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U, /*!< Tx FIFO error */
kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U, /*!< Rx FIFO error */ kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U, /*!< Rx FIFO error */
kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U, /*!< Tx FIFO Overflow */ kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U, /*!< Tx FIFO Overflow */
kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U /*!< Rx FIFO Overflow */ kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U /*!< Rx FIFO Overflow */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
}; };
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO #if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*! @brief SPI FIFO write-1-to-clear interrupt flags.*/ /*! @brief SPI FIFO write-1-to-clear interrupt flags.*/
typedef enum _spi_w1c_interrupt typedef enum _spi_w1c_interrupt
{ {
kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK, /*!< Receive FIFO full interrupt */ kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK, /*!< Receive FIFO full interrupt */
kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK, /*!< Transmit FIFO empty interrupt */ kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK, /*!< Transmit FIFO empty interrupt */
kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */ kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */
kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */ kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */
} spi_w1c_interrupt_t; } spi_w1c_interrupt_t;
/*! @brief SPI TX FIFO watermark settings.*/ /*! @brief SPI TX FIFO watermark settings.*/
typedef enum _spi_txfifo_watermark typedef enum _spi_txfifo_watermark
{ {
kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */ kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */
kSPI_TxFifoOneHalfEmpty = 1 /*!< SPI tx watermark at 1/2 FIFO size */ kSPI_TxFifoOneHalfEmpty = 1 /*!< SPI tx watermark at 1/2 FIFO size */
} spi_txfifo_watermark_t; } spi_txfifo_watermark_t;
/*! @brief SPI RX FIFO watermark settings.*/ /*! @brief SPI RX FIFO watermark settings.*/
typedef enum _spi_rxfifo_watermark typedef enum _spi_rxfifo_watermark
{ {
kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */ kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */
kSPI_RxFifoOneHalfFull = 1 /*!< SPI rx watermark at 1/2 FIFO size */ kSPI_RxFifoOneHalfFull = 1 /*!< SPI rx watermark at 1/2 FIFO size */
} spi_rxfifo_watermark_t; } spi_rxfifo_watermark_t;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
@ -169,8 +149,8 @@ typedef enum _spi_rxfifo_watermark
/*! @brief SPI DMA source*/ /*! @brief SPI DMA source*/
enum _spi_dma_enable_t enum _spi_dma_enable_t
{ {
kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK, /*!< Tx DMA request source */ kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK, /*!< Tx DMA request source */
kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK, /*!< Rx DMA request source */ kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK, /*!< Rx DMA request source */
kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/ kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/
}; };
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */ #endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */
@ -210,6 +190,7 @@ typedef struct _spi_slave_config
spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */ spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */ spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
spi_pin_mode_t pinMode; /*!< SPI pin mode select */
} spi_slave_config_t; } spi_slave_config_t;
/*! @brief SPI transfer structure */ /*! @brief SPI transfer structure */
@ -478,6 +459,27 @@ static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
* @{ * @{
*/ */
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
uint32_t SPI_GetInstance(SPI_Type *base);
/*!
* @brief Sets the pin mode for transfer.
*
* @param base SPI base pointer
* @param pinMode pin mode for transfer AND #_spi_pin_mode could get the related configuration.
*/
static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)
{
/* Clear SPC0 and BIDIROE bit. */
base->C2 &= ~(SPI_C2_BIDIROE_MASK | SPI_C2_SPC0_MASK);
/* Set pin mode for transfer. */
base->C2 |= SPI_C2_BIDIROE(pinMode >> 1U) | SPI_C2_SPC0(pinMode & 1U);
}
/*! /*!
* @brief Sets the baud rate for SPI transfer. This is only used in master. * @brief Sets the baud rate for SPI transfer. This is only used in master.
* *
@ -544,6 +546,13 @@ void SPI_WriteData(SPI_Type *base, uint16_t data);
*/ */
uint16_t SPI_ReadData(SPI_Type *base); uint16_t SPI_ReadData(SPI_Type *base);
/*!
* @brief Set up the dummy data.
*
* @param base SPI peripheral address.
* @param dummyData Data to be transferred when tx buffer is NULL.
*/
void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData);
/*! @} */ /*! @} */
/*! /*!
@ -582,11 +591,7 @@ status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer);
* *
* @note The API immediately returns after transfer initialization is finished. * @note The API immediately returns after transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status. * Call SPI_GetStatusIRQ() to get the transfer status.
* @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times of the watermark. * @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
* Otherwise,
* the last data may be lost because it cannot generate an interrupt request. Users can also call the functional API to
* get the last
* received data.
* *
* @param base SPI peripheral base address. * @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state * @param handle pointer to spi_master_handle_t structure which stores the transfer state
@ -636,8 +641,8 @@ void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle);
* @param userData User data. * @param userData User data.
*/ */
void SPI_SlaveTransferCreateHandle(SPI_Type *base, void SPI_SlaveTransferCreateHandle(SPI_Type *base,
spi_slave_handle_t *handle, spi_slave_handle_t *handle,
spi_slave_callback_t callback, spi_slave_callback_t callback,
void *userData); void *userData);
/*! /*!
@ -645,11 +650,7 @@ void SPI_SlaveTransferCreateHandle(SPI_Type *base,
* *
* @note The API returns immediately after the transfer initialization is finished. * @note The API returns immediately after the transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status. * Call SPI_GetStatusIRQ() to get the transfer status.
* @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times the watermark. * @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
* Otherwise,
* the last data may be lost because it cannot generate an interrupt request. Call the functional API to get the last
* several
* receive data.
* *
* @param base SPI peripheral base address. * @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state * @param handle pointer to spi_master_handle_t structure which stores the transfer state

View File

@ -1,38 +1,22 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_spi_dma.h" #include "fsl_spi_dma.h"
/******************************************************************************* /*******************************************************************************
* Definitons * Definitions
******************************************************************************/ ******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.spi_dma"
#endif
/*<! Structure definition for spi_dma_private_handle_t. The structure is private. */ /*<! Structure definition for spi_dma_private_handle_t. The structure is private. */
typedef struct _spi_dma_private_handle typedef struct _spi_dma_private_handle
{ {
@ -52,13 +36,6 @@ static spi_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_SPI_COUNT];
/******************************************************************************* /*******************************************************************************
* Prototypes * Prototypes
******************************************************************************/ ******************************************************************************/
/*!
* @brief Get the instance for SPI module.
*
* @param base SPI base address
*/
extern uint32_t SPI_GetInstance(SPI_Type *base);
/*! /*!
* @brief DMA callback function for SPI send transfer. * @brief DMA callback function for SPI send transfer.
* *
@ -76,25 +53,18 @@ static void SPI_TxDMACallback(dma_handle_t *handle, void *userData);
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData); static void SPI_RxDMACallback(dma_handle_t *handle, void *userData);
/******************************************************************************* /*******************************************************************************
* Variables * Code
******************************************************************************/ ******************************************************************************/
/* Dummy data used to send */
static const uint8_t s_dummyData = SPI_DUMMYDATA;
/*******************************************************************************
* Code
******************************************************************************/
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData) static void SPI_TxDMACallback(dma_handle_t *handle, void *userData)
{ {
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData; spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle; spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base; SPI_Type *base = privHandle->base;
/* Disable Tx dma */ /* Disable Tx dma */
SPI_EnableDMA(base, kSPI_TxDmaEnable, false); SPI_EnableDMA(base, kSPI_TxDmaEnable, false);
/* Stop DMA tranfer */ /* Stop DMA transfer */
DMA_StopTransfer(spiHandle->txHandle); DMA_StopTransfer(spiHandle->txHandle);
/* change the state */ /* change the state */
@ -114,13 +84,13 @@ static void SPI_TxDMACallback(dma_handle_t *handle, void *userData)
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData) static void SPI_RxDMACallback(dma_handle_t *handle, void *userData)
{ {
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData; spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle; spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base; SPI_Type *base = privHandle->base;
/* Disable Tx dma */ /* Disable Tx dma */
SPI_EnableDMA(base, kSPI_RxDmaEnable, false); SPI_EnableDMA(base, kSPI_RxDmaEnable, false);
/* Stop DMA tranfer */ /* Stop DMA transfer */
DMA_StopTransfer(spiHandle->rxHandle); DMA_StopTransfer(spiHandle->rxHandle);
/* change the state */ /* change the state */
@ -137,6 +107,19 @@ static void SPI_RxDMACallback(dma_handle_t *handle, void *userData)
} }
} }
/*!
* brief Initialize the SPI master DMA handle.
*
* This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs.
* Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback User callback function called at the end of a transfer.
* param userData User data for callback.
* param txHandle DMA handle pointer for SPI Tx, the handle shall be static allocated by users.
* param rxHandle DMA handle pointer for SPI Rx, the handle shall be static allocated by users.
*/
void SPI_MasterTransferCreateHandleDMA(SPI_Type *base, void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
spi_dma_handle_t *handle, spi_dma_handle_t *handle,
spi_dma_callback_t callback, spi_dma_callback_t callback,
@ -146,7 +129,10 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
{ {
assert(handle); assert(handle);
dma_transfer_config_t config = {0}; dma_transfer_config_t config = {0};
uint32_t instance = SPI_GetInstance(base); uint32_t instance = SPI_GetInstance(base);
/* Zero the handle */
memset(handle, 0, sizeof(*handle));
/* Set spi base to handle */ /* Set spi base to handle */
handle->txHandle = txHandle; handle->txHandle = txHandle;
@ -158,7 +144,7 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
handle->state = kSPI_Idle; handle->state = kSPI_Idle;
/* Set handle to global state */ /* Set handle to global state */
s_dmaPrivateHandle[instance].base = base; s_dmaPrivateHandle[instance].base = base;
s_dmaPrivateHandle[instance].handle = handle; s_dmaPrivateHandle[instance].handle = handle;
/* Compute internal state */ /* Compute internal state */
@ -180,27 +166,27 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
#endif /* FSL_FEATURE_SPI_HAS_FIFO */ #endif /* FSL_FEATURE_SPI_HAS_FIFO */
/* Set the non-change attribute for Tx DMA transfer, to improve efficiency */ /* Set the non-change attribute for Tx DMA transfer, to improve efficiency */
config.destAddr = SPI_GetDataRegisterAddress(base); config.destAddr = SPI_GetDataRegisterAddress(base);
config.enableDestIncrement = false; config.enableDestIncrement = false;
config.enableSrcIncrement = true; config.enableSrcIncrement = true;
if (handle->bytesPerFrame == 1U) if (handle->bytesPerFrame == 1U)
{ {
config.srcSize = kDMA_Transfersize8bits; config.srcSize = kDMA_Transfersize8bits;
config.destSize = kDMA_Transfersize8bits; config.destSize = kDMA_Transfersize8bits;
} }
else else
{ {
config.srcSize = kDMA_Transfersize16bits; config.srcSize = kDMA_Transfersize16bits;
config.destSize = kDMA_Transfersize16bits; config.destSize = kDMA_Transfersize16bits;
} }
DMA_SubmitTransfer(handle->txHandle, &config, true); DMA_SubmitTransfer(handle->txHandle, &config, true);
/* Set non-change attribute for Rx DMA */ /* Set non-change attribute for Rx DMA */
config.srcAddr = SPI_GetDataRegisterAddress(base); config.srcAddr = SPI_GetDataRegisterAddress(base);
config.destAddr = 0U; config.destAddr = 0U;
config.enableDestIncrement = true; config.enableDestIncrement = true;
config.enableSrcIncrement = false; config.enableSrcIncrement = false;
DMA_SubmitTransfer(handle->rxHandle, &config, true); DMA_SubmitTransfer(handle->rxHandle, &config, true);
/* Install callback for Tx dma channel */ /* Install callback for Tx dma channel */
@ -208,6 +194,19 @@ void SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]); DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]);
} }
/*!
* brief Perform a non-blocking SPI transfer using DMA.
*
* note This interface returned immediately after transfer initiates, users should call
* SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
* param xfer Pointer to dma transfer structure.
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer) status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
{ {
assert(handle && xfer); assert(handle && xfer);
@ -231,16 +230,16 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
SPI_Enable(base, true); SPI_Enable(base, true);
/* Configure tx transfer DMA */ /* Configure tx transfer DMA */
config.destAddr = SPI_GetDataRegisterAddress(base); config.destAddr = SPI_GetDataRegisterAddress(base);
config.enableDestIncrement = false; config.enableDestIncrement = false;
if (handle->bytesPerFrame == 1U) if (handle->bytesPerFrame == 1U)
{ {
config.srcSize = kDMA_Transfersize8bits; config.srcSize = kDMA_Transfersize8bits;
config.destSize = kDMA_Transfersize8bits; config.destSize = kDMA_Transfersize8bits;
} }
else else
{ {
config.srcSize = kDMA_Transfersize16bits; config.srcSize = kDMA_Transfersize16bits;
config.destSize = kDMA_Transfersize16bits; config.destSize = kDMA_Transfersize16bits;
} }
config.transferSize = xfer->dataSize; config.transferSize = xfer->dataSize;
@ -248,13 +247,13 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
if (xfer->txData) if (xfer->txData)
{ {
config.enableSrcIncrement = true; config.enableSrcIncrement = true;
config.srcAddr = (uint32_t)(xfer->txData); config.srcAddr = (uint32_t)(xfer->txData);
} }
else else
{ {
/* Disable the source increasement and source set to dummyData */ /* Disable the source increasement and source set to dummyData */
config.enableSrcIncrement = false; config.enableSrcIncrement = false;
config.srcAddr = (uint32_t)(&s_dummyData); config.srcAddr = (uint32_t)(&g_spiDummyData[SPI_GetInstance(base)]);
} }
DMA_SubmitTransfer(handle->txHandle, &config, true); DMA_SubmitTransfer(handle->txHandle, &config, true);
@ -270,7 +269,7 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
/* Change the state of handle */ /* Change the state of handle */
handle->transferSize = xfer->dataSize; handle->transferSize = xfer->dataSize;
handle->state = kSPI_Busy; handle->state = kSPI_Busy;
/* Start Rx transfer if needed */ /* Start Rx transfer if needed */
if (xfer->rxData) if (xfer->rxData)
@ -288,6 +287,15 @@ status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_tra
return kStatus_Success; return kStatus_Success;
} }
/*!
* brief Get the transferred bytes for SPI slave DMA.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
* param count Transferred bytes.
* retval kStatus_SPI_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count) status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
{ {
assert(handle); assert(handle);
@ -313,6 +321,12 @@ status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle,
return status; return status;
} }
/*!
* brief Abort a SPI transfer using DMA.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
*/
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle) void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
{ {
assert(handle); assert(handle);
@ -327,5 +341,5 @@ void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
/* Set the handle state */ /* Set the handle state */
handle->txInProgress = false; handle->txInProgress = false;
handle->rxInProgress = false; handle->rxInProgress = false;
handle->state = kSPI_Idle; handle->state = kSPI_Idle;
} }

View File

@ -1,31 +1,9 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without modification, * SPDX-License-Identifier: BSD-3-Clause
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#ifndef _FSL_SPI_DMA_H_ #ifndef _FSL_SPI_DMA_H_
#define _FSL_SPI_DMA_H_ #define _FSL_SPI_DMA_H_
@ -38,11 +16,16 @@
* @{ * @{
*/ */
/******************************************************************************* /*******************************************************************************
* Definitions * Definitions
******************************************************************************/ ******************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief SPI DMA driver version 2.0.4. */
#define FSL_SPI_DMA_DRIVER_VERSION (MAKE_VERSION(2, 0, 4))
/*@}*/
typedef struct _spi_dma_handle spi_dma_handle_t; typedef struct _spi_dma_handle spi_dma_handle_t;
/*! @brief SPI DMA callback called at the end of transfer. */ /*! @brief SPI DMA callback called at the end of transfer. */
@ -55,7 +38,7 @@ struct _spi_dma_handle
bool rxInProgress; /*!< Receive transfer finished */ bool rxInProgress; /*!< Receive transfer finished */
dma_handle_t *txHandle; /*!< DMA handler for SPI send */ dma_handle_t *txHandle; /*!< DMA handler for SPI send */
dma_handle_t *rxHandle; /*!< DMA handler for SPI receive */ dma_handle_t *rxHandle; /*!< DMA handler for SPI receive */
uint8_t bytesPerFrame; /*!< Bytes in a frame for SPI tranfer */ uint8_t bytesPerFrame; /*!< Bytes in a frame for SPI transfer */
spi_dma_callback_t callback; /*!< Callback for SPI DMA transfer */ spi_dma_callback_t callback; /*!< Callback for SPI DMA transfer */
void *userData; /*!< User Data for SPI DMA callback */ void *userData; /*!< User Data for SPI DMA callback */
uint32_t state; /*!< Internal state of SPI DMA transfer */ uint32_t state; /*!< Internal state of SPI DMA transfer */