Update i2c_api.c

Replaced I2C ROM call by direct calls to I2C engines. The ROM code has some bugs and does not allow support for the mbed I2CSlave methods. The Slave methods have been added same as for LPC812.
pull/987/head
Wim 2015-03-21 15:25:13 +01:00
parent 8cfb41f56c
commit 52be993683
1 changed files with 403 additions and 165 deletions

View File

@ -20,30 +20,19 @@
#include "cmsis.h"
#include "pinmap.h"
#include "rom_i2c_8xx.h"
#define LPC824_I2C0_FMPLUS 1
#if DEVICE_I2C
typedef struct ROM_API {
const uint32_t unused[5];
const I2CD_API_T *pI2CD; /*!< I2C driver routines functions table */
} LPC_ROM_API_T;
/* Pointer to ROM API function address */
#define LPC_ROM_API_BASE_LOC 0x1FFF1FF8UL
#define LPC_ROM_API (*(LPC_ROM_API_T * *) LPC_ROM_API_BASE_LOC)
/* Pointer to @ref I2CD_API_T functions in ROM */
#define LPC_I2CD_API ((LPC_ROM_API)->pI2CD)
static const SWM_Map SWM_I2C_SDA[] = {
{ 9, 8},
//PINASSIGN Register ID, Pinselect bitfield position
{ 9, 8},
{ 9, 24},
{10, 8},
};
static const SWM_Map SWM_I2C_SCL[] = {
//PINASSIGN Register ID, Pinselect bitfield position
{ 9, 16},
{10, 0},
{10, 16},
@ -52,36 +41,15 @@ static const SWM_Map SWM_I2C_SCL[] = {
static int i2c_used = 0;
static uint8_t repeated_start = 0;
static uint32_t *i2c_buffer;
#define I2C_DAT(x) (x->i2c->MSTDAT)
#define I2C_STAT(x) ((x->i2c->STAT >> 1) & (0x07))
static inline int i2c_status(i2c_t *obj)
{
return I2C_STAT(obj);
}
// Wait until the Serial Interrupt (SI) is set
static int i2c_wait_SI(i2c_t *obj)
{
volatile int timeout = 0;
while (!(obj->i2c->STAT & (1 << 0))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
static inline void i2c_interface_enable(i2c_t *obj)
{
obj->i2c->CFG |= 1;
}
static inline void i2c_power_enable(int ch)
{
switch(ch) {
case 0:
// I2C0, Same as for LPC812
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5);
LPC_SYSCON->PRESETCTRL &= ~(1 << 6);
LPC_SYSCON->PRESETCTRL |= (1 << 6);
@ -89,6 +57,7 @@ static inline void i2c_power_enable(int ch)
case 1:
case 2:
case 3:
// I2C1,I2C2 or I2C3. Not available for LPC812
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << (20 + ch));
LPC_SYSCON->PRESETCTRL &= ~(1 << (13 + ch));
LPC_SYSCON->PRESETCTRL |= (1 << (13 + ch));
@ -99,6 +68,12 @@ static inline void i2c_power_enable(int ch)
}
static inline void i2c_interface_enable(i2c_t *obj) {
obj->i2c->CFG |= (1 << 0); // Enable Master mode
// obj->i2c->CFG &= ~(1 << 1); // Disable Slave mode
}
static int get_available_i2c(void) {
int i;
for (i=0; i<3; i++) {
@ -113,11 +88,23 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl)
const SWM_Map *swm;
uint32_t regVal;
int i2c_ch = 0;
//LPC824
//I2C0 can support FM+ but only on P0_11 and P0_10
if (sda == I2C_SDA && scl == I2C_SCL) {
LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
//Select I2C mode for P0_11 and P0_10
LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
#if(LPC824_I2C0_FMPLUS == 1)
// Enable FM+ mode on P0_11, P0_10
LPC_IOCON->PIO0_10 &= ~(0x3 << 8);
LPC_IOCON->PIO0_10 |= (0x2 << 8); //FM+ mode
LPC_IOCON->PIO0_11 &= ~(0x3 << 8);
LPC_IOCON->PIO0_11 |= (0x2 << 8); //FM+ mode
#endif
}
else {
//Select any other pin for I2C1, I2C2 or I2C3
i2c_ch = get_available_i2c();
if (i2c_ch == -1)
return;
@ -151,127 +138,213 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl)
// enable power
i2c_power_enable(i2c_ch);
uint32_t size_in_bytes = LPC_I2CD_API->i2c_get_mem_size();
i2c_buffer = malloc(size_in_bytes);
obj->handler = LPC_I2CD_API->i2c_setup((uint32_t)(obj->i2c), i2c_buffer);
LPC_I2CD_API->i2c_set_bitrate(obj->handler, SystemCoreClock, 100000);
LPC_I2CD_API->i2c_set_timeout(obj->handler, 100000);
// set default frequency at 100k
i2c_frequency(obj, 100000);
i2c_interface_enable(obj);
}
inline int i2c_start(i2c_t *obj)
{
static inline int i2c_status(i2c_t *obj) {
return I2C_STAT(obj);
}
// Wait until the Master Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_SI(i2c_t *obj) {
int timeout = 0;
while (!(obj->i2c->STAT & (1 << 0))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
//Attention. Spec says: First store Address in DAT before setting STA !
//Undefined state when using single byte I2C operations and too much delay
//between i2c_start and do_i2c_write(Address).
//Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1
inline int i2c_start(i2c_t *obj) {
int status = 0;
if (repeated_start) {
obj->i2c->MSTCTL = (1 << 1) | (1 << 0);
obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR
repeated_start = 0;
} else {
obj->i2c->MSTCTL = (1 << 1);
obj->i2c->MSTCTL = (1 << 1); // STA bit
}
return status;
}
inline int i2c_stop(i2c_t *obj)
{
volatile int timeout = 0;
//Generate Stop condition and wait until bus is Idle
//Will also send NAK for previous RD
inline int i2c_stop(i2c_t *obj) {
int timeout = 0;
// STP bit and Continue bit. Sends NAK to complete previous RD
obj->i2c->MSTCTL = (1 << 2) | (1 << 0);
while ((obj->i2c->STAT & ((1 << 0) | (7 << 1))) != ((1 << 0) | (0 << 1))) {
//Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000)
while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) {
timeout ++;
if (timeout > 100000) return 1;
}
// repeated_start = 0; // bus free
return 0;
}
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr)
{
//Spec says: first check Idle and status is Ok
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
// write the data
I2C_DAT(obj) = value;
if (!addr)
obj->i2c->MSTCTL = (1 << 0);
obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA
// wait and return status
i2c_wait_SI(obj);
return i2c_status(obj);
}
static inline int i2c_do_read(i2c_t *obj, int last)
{
//Attention, correct Order: wait for data ready, read data, read status, continue, return
//Dont read DAT or STAT when not ready, so dont read after setting continue.
//Results may be invalid when next read is underway.
static inline int i2c_do_read(i2c_t *obj, int last) {
// wait for it to arrive
i2c_wait_SI(obj);
if (!last)
obj->i2c->MSTCTL = (1 << 0);
obj->i2c->MSTCTL = (1 << 0); //ACK and Continue
// return the data
return (I2C_DAT(obj) & 0xFF);
}
void i2c_frequency(i2c_t *obj, int hz)
{
LPC_I2CD_API->i2c_set_bitrate(obj->handler, SystemCoreClock, hz);
void i2c_frequency(i2c_t *obj, int hz) {
// No peripheral clock divider on the M0
uint32_t PCLK = SystemCoreClock;
uint32_t clkdiv = PCLK / (hz * 4) - 1;
obj->i2c->CLKDIV = clkdiv;
obj->i2c->MSTTIME = 0;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
ErrorCode_t err;
I2C_PARAM_T i2c_param;
I2C_RESULT_T i2c_result;
// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
// 1) it can not obtain the bus
// 2) it gets error responses at part of the transmission
//
// We tackle them as follows:
// 1) we retry until we get the bus. we could have a "timeout" if we can not get it
// which basically turns it in to a 2)
// 2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count, status;
//Store the address+RD and then generate STA
I2C_DAT(obj) = address | 0x01;
i2c_start(obj);
uint8_t *buf = malloc(length + 1);
buf[0] = (uint8_t)((address | 0x01) & 0xFF);
i2c_param.buffer_ptr_rec = buf;
i2c_param.num_bytes_rec = length + 1;
i2c_param.stop_flag = stop;
err = LPC_I2CD_API->i2c_master_receive_poll(obj->handler, &i2c_param, &i2c_result);
memcpy(data, buf + 1, i2c_result.n_bytes_recd);
free(buf);
if (err == 0)
return i2c_result.n_bytes_recd - 1;
else
return -1;
// Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status == 0x03) { // NAK on SlaveAddress
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Read in all except last byte
for (count = 0; count < (length-1); count++) {
// Wait for it to arrive, note that first byte read after address+RD is already waiting
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status != 0x01) { // RX RDY
i2c_stop(obj);
return count;
}
data[count] = I2C_DAT(obj) & 0xFF; // Store read byte
obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read
}
// Read final byte
// Wait for it to arrive
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status != 0x01) { // RX RDY
i2c_stop(obj);
return count;
}
data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj); // Also sends NAK for last read byte
} else {
repeated_start = 1;
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
ErrorCode_t err;
I2C_PARAM_T i2c_param;
I2C_RESULT_T i2c_result;
uint8_t *buf = malloc(length + 1);
buf[0] = (uint8_t)(address & 0xFE);
memcpy(buf + 1, data, length);
i2c_param.buffer_ptr_send = buf;
i2c_param.num_bytes_send = length + 1;
i2c_param.stop_flag = stop;
err = LPC_I2CD_API->i2c_master_transmit_poll(obj->handler, &i2c_param, &i2c_result);
free(buf);
if (err == 0)
return i2c_result.n_bytes_sent - 1;
else
return -1;
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i, status;
//Store the address+/WR and then generate STA
I2C_DAT(obj) = address & 0xFE;
i2c_start(obj);
// Wait for completion of STA and Sending of SlaveAddress+/WR
i2c_wait_SI(obj);
status = i2c_status(obj);
if (status == 0x03) { // NAK SlaveAddress
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
//Write all bytes
for (i=0; i<length; i++) {
status = i2c_do_write(obj, data[i], 0);
if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite
i2c_stop(obj);
return i;
}
}
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
} else {
repeated_start = 1;
}
return length;
}
void i2c_reset(i2c_t *obj)
{
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last)
{
int i2c_byte_read(i2c_t *obj, int last) {
return (i2c_do_read(obj, last) & 0xFF);
// return (i2c_do_read(obj, last, 0) & 0xFF);
}
int i2c_byte_write(i2c_t *obj, int data)
{
int i2c_byte_write(i2c_t *obj, int data) {
int ack;
int status = i2c_do_write(obj, (data & 0xFF), 0);
switch(status) {
case 2:
case 2: // TX RDY. Handles a Slave NAK on datawrite
ack = 1;
break;
default:
@ -282,77 +355,242 @@ int i2c_byte_write(i2c_t *obj, int data)
return ack;
}
#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
obj->handler = LPC_I2CD_API->i2c_setup((uint32_t)(obj->i2c), i2c_buffer);
if (enable_slave != 0) {
obj->i2c->CFG &= ~(1 << 0);
obj->i2c->CFG |= (1 << 1);
}
else {
obj->i2c->CFG |= (1 << 0);
obj->i2c->CFG &= ~(1 << 1);
}
#define I2C_SLVDAT(x) (x->i2c->SLVDAT)
#define I2C_SLVSTAT(x) ((x->i2c->STAT >> 9) & (0x03))
#define I2C_SLVSI(x) ((x->i2c->STAT >> 8) & (0x01))
//#define I2C_SLVCNT(x) (x->i2c->SLVCTL = (1 << 0))
//#define I2C_SLVNAK(x) (x->i2c->SLVCTL = (1 << 1))
#if(0)
// Wait until the Slave Serial Interrupt (SI) is set
// Timeout when it takes too long.
static int i2c_wait_slave_SI(i2c_t *obj) {
int timeout = 0;
while (!(obj->i2c->STAT & (1 << 8))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
#endif
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave) {
// obj->i2c->CFG &= ~(1 << 0); //Disable Master mode
obj->i2c->CFG |= (1 << 1); //Enable Slave mode
}
else {
// obj->i2c->CFG |= (1 << 0); //Enable Master mode
obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode
}
}
int i2c_slave_receive(i2c_t *obj)
{
CHIP_I2C_MODE_T mode;
int ret;
// Wait for next I2C event and find out what is going on
//
int i2c_slave_receive(i2c_t *obj) {
int addr;
// Check if there is any data pending
if (! I2C_SLVSI(obj)) {
return 0; //NoData
};
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// Get the received address
addr = I2C_SLVDAT(obj) & 0xFF;
// Send ACK on address and Continue
obj->i2c->SLVCTL = (1 << 0);
if (addr == 0x00) {
return 2; //WriteGeneral
}
//check the RW bit
if ((addr & 0x01) == 0x01) {
return 1; //ReadAddressed
}
else {
return 3; //WriteAddressed
}
//break;
mode = LPC_I2CD_API->i2c_get_status(obj->handler);
switch(mode) {
case SLAVE_SEND:
ret = 1;
break;
case SLAVE_RECEIVE:
ret = 3;
break;
case MASTER_SEND:
case MASTER_RECEIVE:
default:
ret = 0;
break;
}
return ret;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Oops, should never get here...
obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data, try to recover...
return 0; //NoData
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
// Oops, should never get here...
I2C_SLVDAT(obj) = 0xFF; // Send dummy data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover...
return 0; //NoData
case 0x3: // Reserved.
default: // Oops, should never get here...
obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover...
return 0; //NoData
//break;
} //switch status
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
ErrorCode_t err;
I2C_PARAM_T i2c_param;
I2C_RESULT_T i2c_result;
// The dedicated I2C Slave byte read and byte write functions need to be called
// from 'common' mbed I2CSlave API for devices that have separate Master and
// Slave engines such as the lpc812 and lpc1549.
i2c_param.buffer_ptr_send = (uint8_t *)data;
i2c_param.num_bytes_send = length;
err = LPC_I2CD_API->i2c_slave_transmit_poll(obj->handler, &i2c_param, &i2c_result);
if (err == 0)
return i2c_result.n_bytes_sent;
else
return -1;
//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter last=1 means received byte will be NACKed.
int i2c_slave_byte_read(i2c_t *obj, int last) {
int data;
// Wait for data
while (!I2C_SLVSI(obj)); // Wait forever
//if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Dont bother to check State, were not returning it anyhow..
//if (I2C_SLVSTAT(obj)) == 0x01) {
// Slave receive. Received data is available (Slave Receiver mode).
//};
data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
if (last) {
obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data and Continue
}
else {
obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read
}
return data;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
ErrorCode_t err;
I2C_PARAM_T i2c_param;
I2C_RESULT_T i2c_result;
i2c_param.buffer_ptr_rec = (uint8_t *)data;
i2c_param.num_bytes_rec = length;
err = LPC_I2CD_API->i2c_slave_receive_poll(obj->handler, &i2c_param, &i2c_result);
if (err == 0)
return i2c_result.n_bytes_recd;
else
return -1;
//Called when Slave is addressed for Read, Slave will send Data in polling mode
//
int i2c_slave_byte_write(i2c_t *obj, int data) {
// Wait until Ready
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Should not get here...
return -2;
//break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue to send
return 1;
//break;
case 0x3: // Reserved.
default:
// Should not get here...
return -3;
//break;
} // switch status
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
LPC_I2CD_API->i2c_set_slave_addr(obj->handler, address, 0);
//Called when Slave is addressed for Write, Slave will receive Data in polling mode
//Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed.
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count=0;
// Read and ACK all expected bytes
while (count < length) {
// Wait for data
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read
break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
case 0x3: // Reserved.
default: // Should never get here...
return -2;
//break;
} // switch status
count++;
} // for all bytes
return count; // Received the expected number of bytes
}
//Called when Slave is addressed for Read, Slave will send Data in polling mode
//Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed.
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count;
// Send and all bytes or Exit on NAK
for (count=0; count < length; count++) {
// Wait until Ready for data
while (!I2C_SLVSI(obj)); // Wait forever
// if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
// Check State
switch(I2C_SLVSTAT(obj)) {
case 0x0: // Slave address plus R/W received
// At least one of the four slave addresses has been matched by hardware.
// You can figure out which address by checking Slave address match Index in STAT register.
// I2C Restart occurred
return -1;
//break;
case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
// Should not get here...
return -2;
//break;
case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission
obj->i2c->SLVCTL = (1 << 0); // Continue to send
break;
case 0x3: // Reserved.
default:
// Should not get here...
return -3;
//break;
} // switch status
} // for all bytes
return length; // Transmitted the max number of bytes
}
// Set the four slave addresses.
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
obj->i2c->SLVADR0 = (address & 0xFE); // Store address in address 0 register
obj->i2c->SLVADR1 = (0x00 & 0xFE); // Store general call write address in address 1 register
obj->i2c->SLVADR2 = (0x01); // Disable address 2 register
obj->i2c->SLVADR3 = (0x01); // Disable address 3 register
obj->i2c->SLVQUAL0 = (mask & 0xFE); // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match
}
#endif