Remove duplicate code

pull/13397/head
winneymj 2020-08-05 19:46:54 -05:00
parent 541a2c8664
commit 5249a9ad31
1 changed files with 0 additions and 796 deletions

View File

@ -1012,800 +1012,4 @@ void spi_abort_asynch(spi_t *obj)
}
#endif // DEVICE_SPI_ASYNCH
#if NRFX_CHECK(NRFX_SPI_ENABLED)
// /**
// * Brief Reconfigure peripheral.
// *
// * If the peripheral has changed ownership clear old configuration and
// * re-initialize the peripheral with the new settings.
// *
// * Parameter obj The object
// * Parameter handler Optional callback handler.
// * Parameter force_change Force change regardless of ownership.
// */
// static void spi_configure_driver_instance(spi_t *obj)
// {
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// int instance = spi_inst->instance;
// /* Get pointer to object of the current owner of the peripheral. */
// void *current_owner = object_owner_spi2c_get(instance);
// /* Check if reconfiguration is actually necessary. */
// if ((obj != current_owner) || spi_inst->update) {
// /* Update applied, reset flag. */
// spi_inst->update = false;
// /* Clean up and uninitialize peripheral if already initialized. */
// if (nordic_nrf5_spi_initialized[instance]) {
// nrfx_spi_uninit(&nordic_nrf5_spi_instance[instance]);
// }
// #if DEVICE_SPI_ASYNCH
// /* Set callback handler in asynchronous mode. */
// if (spi_inst->handler) {
// nrfx_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), nordic_nrf5_spi_event_handler, obj);
// } else {
// nrfx_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), NULL, NULL);
// }
// #else
// /* Set callback handler to NULL in synchronous mode. */
// nrfx_spi_init(&nordic_nrf5_spi_instance[instance], &(spi_inst->config), NULL, NULL);
// #endif
// /* Mark instance as initialized. */
// nordic_nrf5_spi_initialized[instance] = true;
// /* Claim ownership of peripheral. */
// object_owner_spi2c_set(instance, obj);
// }
// }
// void spi_get_capabilities(PinName ssel, bool slave, spi_capabilities_t *cap)
// {
// if (slave) {
// cap->minimum_frequency = 200000; // 200 kHz
// cap->maximum_frequency = 2000000; // 2 MHz
// cap->word_length = 0x00000080; // 8 bit symbols
// cap->support_slave_mode = false; // to be determined later based on ssel
// cap->hw_cs_handle = false; // irrelevant in slave mode
// cap->slave_delay_between_symbols_ns = 2500; // 2.5 us
// cap->clk_modes = 0x0f; // all clock modes
// cap->tx_rx_buffers_equal_length = false; // rx/tx buffers can have different sizes
// #if DEVICE_SPI_ASYNCH
// cap->async_mode = true;
// #else
// cap->async_mode = false;
// #endif
// } else {
// cap->minimum_frequency = 200000; // 200 kHz
// cap->maximum_frequency = 2000000; // 2 MHz
// cap->word_length = 0x00000080; // 8 bit symbols
// cap->support_slave_mode = false; // to be determined later based on ssel
// cap->hw_cs_handle = false; // to be determined later based on ssel
// cap->slave_delay_between_symbols_ns = 0; // irrelevant in master mode
// cap->clk_modes = 0x0f; // all clock modes
// cap->tx_rx_buffers_equal_length = false; // rx/tx buffers can have different sizes
// #if DEVICE_SPI_ASYNCH
// cap->async_mode = true;
// #else
// cap->async_mode = false;
// #endif
// }
// // check if given ssel pin is in the cs pinmap
// const PinMap *cs_pins = spi_master_cs_pinmap();
// PinName pin = NC;
// while (cs_pins->pin != NC) {
// if (cs_pins->pin == ssel) {
// #if DEVICE_SPISLAVE
// cap->support_slave_mode = true;
// #endif
// cap->hw_cs_handle = true;
// break;
// }
// cs_pins++;
// }
// }
// /** Initialize the SPI peripheral
// *
// * Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
// * Parameter obj The SPI object to initialize
// * Parameter mosi The pin to use for MOSI
// * Parameter miso The pin to use for MISO
// * Parameter sclk The pin to use for SCLK
// * Parameter ssel The pin to use for SSEL
// */
// void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
// {
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// /* Get instance based on requested pins. */
// spi_inst->instance = pin_instance_spi(mosi, miso, sclk);
// MBED_ASSERT(spi_inst->instance < NRFX_SPI_ENABLED_COUNT);
// /* Store chip select separately for manual enabling. */
// spi_inst->cs = ssel;
// /* Store pins except chip select. */
// spi_inst->config.sck_pin = sclk;
// spi_inst->config.mosi_pin = mosi;
// spi_inst->config.miso_pin = miso;
// spi_inst->config.ss_pin = NRFX_SPI_PIN_NOT_USED;
// /* Use the default config. */
// spi_inst->config.irq_priority = SPI_DEFAULT_CONFIG_IRQ_PRIORITY;
// spi_inst->config.orc = SPI_FILL_CHAR;
// spi_inst->config.frequency = NRF_SPI_FREQ_4M;
// spi_inst->config.mode = NRF_SPI_MODE_0;
// spi_inst->config.bit_order = NRF_SPI_BIT_ORDER_MSB_FIRST;
// #if DEVICE_SPI_ASYNCH
// /* Set default values for asynchronous variables. */
// spi_inst->handler = 0;
// spi_inst->mask = 0;
// spi_inst->event = 0;
// #endif
// /* Configure peripheral. This is called on each init to ensure all pins are set correctly
// * according to the SPI mode before calling CS for the first time.
// */
// spi_configure_driver_instance(obj);
// /* Configure GPIO pin if chip select has been set. */
// if (ssel != NC) {
// nrf_gpio_pin_set(ssel);
// nrf_gpio_cfg_output(ssel);
// }
// static bool first_init = true;
// if (first_init) {
// first_init = false;
// /* Register interrupt handlers in driver with the NVIC. */
// NVIC_SetVector(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn, (uint32_t) SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQHandler);
// NVIC_SetVector(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1_IRQn, (uint32_t) SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1_IRQHandler);
// NVIC_SetVector(SPIM2_SPIS2_SPI2_IRQn, (uint32_t) SPIM2_SPIS2_SPI2_IRQHandler);
// }
// }
// /** Release a SPI object
// *
// * TODO: spi_free is currently unimplemented
// * This will require reference counting at the C++ level to be safe
// *
// * Return the pins owned by the SPI object to their reset state
// * Disable the SPI peripheral
// * Disable the SPI clock
// * Parameter obj The SPI object to deinitialize
// */
// void spi_free(spi_t *obj)
// {
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// int instance = spi_inst->instance;
// /* Use driver uninit to free instance. */
// nrfx_spi_uninit(&nordic_nrf5_spi_instance[instance]);
// /* Mark instance as uninitialized. */
// nordic_nrf5_spi_initialized[instance] = false;
// }
// /** Configure the SPI format
// *
// * Set the number of bits per frame, configure clock polarity and phase, shift order and master/slave mode.
// * The default bit order is MSB.
// * Parameter obj The SPI object to configure
// * Parameter bits The number of bits per frame
// * Parameter mode The SPI mode (clock polarity, phase, and shift direction)
// * Parameter slave Zero for master mode or non-zero for slave mode
// */
// void spi_format(spi_t *obj, int bits, int mode, int slave)
// {
// /* SPI module only supports 8 bit transfers. */
// MBED_ASSERT(bits == 8);
// /* SPI module doesn't support Mbed HAL Slave API. */
// MBED_ASSERT(slave == 0);
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// nrf_spi_mode_t new_mode = NRF_SPI_MODE_0;
// /* Convert Mbed HAL mode to Nordic mode. */
// if (mode == 0) {
// new_mode = NRF_SPI_MODE_0;
// } else if (mode == 1) {
// new_mode = NRF_SPI_MODE_1;
// } else if (mode == 2) {
// new_mode = NRF_SPI_MODE_2;
// } else if (mode == 3) {
// new_mode = NRF_SPI_MODE_3;
// }
// /* Check if configuration has changed. */
// if (spi_inst->config.mode != new_mode) {
// spi_inst->config.mode = new_mode;
// /* Set flag to force update. */
// spi_inst->update = true;
// }
// /* Configure peripheral if necessary. Must be called on each format to ensure the pins are set
// * correctly according to the SPI mode.
// */
// spi_configure_driver_instance(obj);
// }
// /** Set the SPI baud rate
// *
// * Actual frequency may differ from the desired frequency due to available dividers and bus clock
// * Configures the SPI peripheral's baud rate
// * Parameter obj The SPI object to configure
// * Parameter hz The baud rate in Hz
// */
// void spi_frequency(spi_t *obj, int hz)
// {
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// nrf_spi_frequency_t new_frequency = NRF_SPI_FREQ_1M;
// /* Convert frequency to Nordic enum type. */
// if (hz < 250000) {
// new_frequency = NRF_SPI_FREQ_125K;
// } else if (hz < 500000) {
// new_frequency = NRF_SPI_FREQ_250K;
// } else if (hz < 1000000) {
// new_frequency = NRF_SPI_FREQ_500K;
// } else if (hz < 2000000) {
// new_frequency = NRF_SPI_FREQ_1M;
// } else if (hz < 4000000) {
// new_frequency = NRF_SPI_FREQ_2M;
// } else if (hz < 8000000) {
// new_frequency = NRF_SPI_FREQ_4M;
// } else {
// new_frequency = NRF_SPI_FREQ_8M;
// }
// /* Check if configuration has changed. */
// if (spi_inst->config.frequency != new_frequency) {
// spi_inst->config.frequency = new_frequency;
// /* Set flag to force update. */
// spi_inst->update = true;
// }
// }
// /** Write a byte out in master mode and receive a value
// *
// * Parameter obj The SPI peripheral to use for sending
// * Parameter value The value to send
// * Return Returns the value received during send
// */
// int spi_master_write(spi_t *obj, int value)
// {
// nrfx_err_t ret;
// nrfx_spi_xfer_desc_t desc;
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// int instance = spi_inst->instance;
// /* Local variables used in transfer. */
// const uint8_t tx_buff = (uint8_t) value;
// uint8_t rx_buff;
// /* Configure peripheral if necessary. */
// spi_configure_driver_instance(obj);
// /* Manually clear chip select pin if defined. */
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_clear(spi_inst->cs);
// }
// /* Transfer 1 byte. */
// desc.p_tx_buffer = &tx_buff;
// desc.p_rx_buffer = &rx_buff;
// desc.tx_length = 1;
// desc.rx_length = 1;
// ret = nrfx_spi_xfer(&nordic_nrf5_spi_instance[instance], &desc, 0);
// if (ret != NRFX_SUCCESS) {
// DEBUG_PRINTF("%d error returned from nrf_spi_xfer\n\r");
// }
// /* Manually set chip select pin if defined. */
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_set(spi_inst->cs);
// }
// return rx_buff;
// }
// /** Write a block out in master mode and receive a value
// *
// * The total number of bytes sent and recieved will be the maximum of
// * tx_length and rx_length. The bytes written will be padded with the
// * value 0xff.
// *
// * Parameter obj The SPI peripheral to use for sending
// * Parameter tx_buffer Pointer to the byte-array of data to write to the device
// * Parameter tx_length Number of bytes to write, may be zero
// * Parameter rx_buffer Pointer to the byte-array of data to read from the device
// * Parameter rx_length Number of bytes to read, may be zero
// * Parameter write_fill Default data transmitted while performing a read
// * @returns
// * The number of bytes written and read from the device. This is
// * maximum of tx_length and rx_length.
// */
// int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill)
// {
// nrfx_spi_xfer_desc_t desc;
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// int instance = spi_inst->instance;
// /* Check if overflow character has changed. */
// if (spi_inst->config.orc != write_fill) {
// /* Store new overflow character and force reconfiguration. */
// spi_inst->update = true;
// spi_inst->config.orc = write_fill;
// }
// /* Configure peripheral if necessary. */
// spi_configure_driver_instance(obj);
// /* Manually clear chip select pin if defined. */
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_clear(spi_inst->cs);
// }
// /* The Nordic SPI driver is only able to transfer 255 bytes at a time.
// * The following code will write/read the data 255 bytes at a time and
// * ensure that asymmetrical transfers are handled properly.
// */
// int tx_offset = 0;
// int rx_offset = 0;
// ret_code_t result = NRFX_SUCCESS;
// /* Loop until all data is sent and received. */
// while (((tx_length > 0) || (rx_length > 0)) && (result == NRFX_SUCCESS)) {
// /* Check if tx_length is larger than 255 and if so, limit to 255. */
// int tx_actual_length = (tx_length > 255) ? 255 : tx_length;
// /* Set tx buffer pointer. Set to NULL if no data is going to be transmitted. */
// const uint8_t *tx_actual_buffer = (tx_actual_length > 0) ?
// (const uint8_t *)(tx_buffer + tx_offset) :
// NULL;
// /* Check if rx_length is larger than 255 and if so, limit to 255. */
// int rx_actual_length = (rx_length > 255) ? 255 : rx_length;
// /* Set rx buffer pointer. Set to NULL if no data is going to be received. */
// uint8_t *rx_actual_buffer = (rx_actual_length > 0) ?
// (uint8_t *)(rx_buffer + rx_offset) :
// NULL;
// /* Blocking transfer. */
// desc.p_tx_buffer = tx_actual_buffer;
// desc.p_rx_buffer = rx_actual_buffer;
// desc.tx_length = tx_actual_length;
// desc.rx_length = rx_actual_length;
// result = nrfx_spi_xfer(&nordic_nrf5_spi_instance[instance],
// &desc, 0);
// /* Update loop variables. */
// tx_length -= tx_actual_length;
// tx_offset += tx_actual_length;
// rx_length -= rx_actual_length;
// rx_offset += rx_actual_length;
// }
// /* Manually set chip select pin if defined. */
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_set(spi_inst->cs);
// }
// return (rx_offset < tx_offset) ? tx_offset : rx_offset;
// }
// /** Checks if the specified SPI peripheral is in use
// *
// * Parameter obj The SPI peripheral to check
// * Return non-zero if the peripheral is currently transmitting
// */
// int spi_busy(spi_t *obj)
// {
// /* Legacy API call. Always return zero. */
// return 0;
// }
// /** Get the module number
// *
// * Parameter obj The SPI peripheral to check
// * Return The module number
// */
// uint8_t spi_get_module(spi_t *obj)
// {
// #if DEVICE_SPI_ASYNCH
// struct spi_s *spi_inst = &obj->spi;
// #else
// struct spi_s *spi_inst = obj;
// #endif
// return spi_inst->instance;
// }
// const PinMap *spi_master_mosi_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_master_miso_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_master_clk_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_master_cs_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_slave_mosi_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_slave_miso_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_slave_clk_pinmap()
// {
// return PinMap_SPI_testing;
// }
// const PinMap *spi_slave_cs_pinmap()
// {
// return PinMap_SPI_testing;
// }
// #if DEVICE_SPISLAVE
// /** Check if a value is available to read
// *
// * Parameter obj The SPI peripheral to check
// * Return non-zero if a value is available
// */
// int spi_slave_receive(spi_t *obj)
// {
// return 0;
// }
// /** Get a received value out of the SPI receive buffer in slave mode
// *
// * Blocks until a value is available
// * Parameter obj The SPI peripheral to read
// * Return The value received
// */
// int spi_slave_read(spi_t *obj)
// {
// return 0;
// }
// /** Write a value to the SPI peripheral in slave mode
// *
// * Blocks until the SPI peripheral can be written to
// * Parameter obj The SPI peripheral to write
// * Parameter value The value to write
// */
// void spi_slave_write(spi_t *obj, int value)
// {
// return;
// }
#if DEVICE_SPI_ASYNCH
// /***
// * _____ _____
// * /\ /\ | __ \_ _|
// * / \ ___ _ _ _ __ ___ / \ | |__) || |
// * / /\ \ / __| | | | '_ \ / __| / /\ \ | ___/ | |
// * / ____ \\__ \ |_| | | | | (__ / ____ \| | _| |_
// * /_/ \_\___/\__, |_| |_|\___| /_/ \_\_| |_____|
// * __/ |
// * |___/
// */
// static ret_code_t spi_master_transfer_async_continue(spi_t *obj)
// {
// nrfx_spi_xfer_desc_t desc;
// /* Remaining data to be transferred. */
// size_t tx_length = obj->tx_buff.length - obj->tx_buff.pos;
// size_t rx_length = obj->rx_buff.length - obj->rx_buff.pos;
// /* Cap TX length to 255 bytes. */
// if (tx_length > 255) {
// tx_length = 255;
// }
// /* Cap RX length to 255 bytes. */
// if (rx_length > 255) {
// rx_length = 255;
// }
// desc.p_tx_buffer = ((const uint8_t *)(obj->tx_buff.buffer) + obj->tx_buff.pos);
// desc.p_rx_buffer = ((uint8_t *)(obj->rx_buff.buffer) + obj->rx_buff.pos);
// desc.tx_length = tx_length;
// desc.rx_length = rx_length;
// ret_code_t result = nrfx_spi_xfer(&nordic_nrf5_spi_instance[obj->spi.instance],
// &desc, 0);
// return result;
// }
// /* Callback function for driver calls. This is called from ISR context. */
// static void nordic_nrf5_spi_event_handler(nrfx_spi_evt_t const *p_event, void *p_context)
// {
// // Only safe to use with mbed-printf.
// //DEBUG_PRINTF("nordic_nrf5_twi_event_handler: %d %p\r\n", p_event->type, p_context);
// bool signal_complete = false;
// bool signal_error = false;
// spi_t *obj = (spi_t *) p_context;
// struct spi_s *spi_inst = &obj->spi;
// if (p_event->type == NRFX_SPI_EVENT_DONE) {
// /* Update buffers with new positions. */
// obj->tx_buff.pos += p_event->xfer_desc.tx_length;
// obj->rx_buff.pos += p_event->xfer_desc.rx_length;
// /* Setup a new transfer if more data is pending. */
// if ((obj->tx_buff.pos < obj->tx_buff.length) || (obj->rx_buff.pos < obj->tx_buff.length)) {
// /* Initiate SPI transfer. */
// ret_code_t result = spi_master_transfer_async_continue(obj);
// /* Abort if transfer wasn't accepted. */
// if (result != NRFX_SUCCESS) {
// /* Signal callback handler that transfer failed. */
// signal_error = true;
// }
// } else {
// /* Signal callback handler that transfer is complete. */
// signal_complete = true;
// }
// } else {
// /* Unexpected event, signal callback handler that transfer failed. */
// signal_error = true;
// }
// /* Transfer complete, signal success if mask is set.*/
// if (signal_complete) {
// /* Signal success if event mask matches and event handler is set. */
// if ((spi_inst->mask & SPI_EVENT_COMPLETE) && spi_inst->handler) {
// /* Cast handler to callback function pointer. */
// void (*callback)(void) = (void (*)(void)) spi_inst->handler;
// /* Reset object. */
// spi_inst->handler = 0;
// spi_inst->update = true;
// /* Store event value so it can be read back. */
// spi_inst->event = SPI_EVENT_COMPLETE;
// /* Signal callback handler. */
// callback();
// }
// /* Transfer failed, signal error if mask is set. */
// } else if (signal_error) {
// /* Signal error if event mask matches and event handler is set. */
// if ((spi_inst->mask & SPI_EVENT_ERROR) && spi_inst->handler) {
// /* Cast handler to callback function pointer. */
// void (*callback)(void) = (void (*)(void)) spi_inst->handler;
// /* Reset object. */
// spi_inst->handler = 0;
// spi_inst->update = true;
// /* Store event value so it can be read back. */
// spi_inst->event = SPI_EVENT_ERROR;
// /* Signal callback handler. */
// callback();
// }
// }
// /* Transfer completed one way or another. Set chip select manually if defined. */
// if (signal_complete || signal_error) {
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_set(spi_inst->cs);
// }
// }
// }
// /** Begin the SPI transfer. Buffer pointers and lengths are specified in tx_buff and rx_buff
// *
// * Parameter obj The SPI object that holds the transfer information
// * Parameter tx The transmit buffer
// * Parameter tx_length The number of bytes to transmit
// * Parameter rx The receive buffer
// * Parameter rx_length The number of bytes to receive
// * Parameter bit_width The bit width of buffer words
// * Parameter event The logical OR of events to be registered
// * Parameter handler SPI interrupt handler
// * Parameter hint A suggestion for how to use DMA with this transfer
// */
// void spi_master_transfer(spi_t *obj,
// const void *tx,
// size_t tx_length,
// void *rx,
// size_t rx_length,
// uint8_t bit_width,
// uint32_t handler,
// uint32_t mask,
// DMAUsage hint)
// {
// /* SPI peripheral only supports 8 bit transfers. */
// MBED_ASSERT(bit_width == 8);
// /* Setup buffers for transfer. */
// struct buffer_s *buffer_pointer;
// buffer_pointer = &obj->tx_buff;
// buffer_pointer->buffer = (void *) tx;
// buffer_pointer->length = tx_length;
// buffer_pointer->pos = 0;
// buffer_pointer->width = 8;
// buffer_pointer = &obj->rx_buff;
// buffer_pointer->buffer = rx;
// buffer_pointer->length = rx_length;
// buffer_pointer->pos = 0;
// buffer_pointer->width = 8;
// /* Save event handler and event mask so they can be called from interrupt handler. */
// struct spi_s *spi_inst = &obj->spi;
// spi_inst->handler = handler;
// spi_inst->mask = mask;
// /* Clear event flag. */
// spi_inst->event = 0;
// /* Force reconfiguration. */
// spi_inst->update = true;
// /* Configure peripheral if necessary. */
// spi_configure_driver_instance(obj);
// /* Manually clear chip select pin if defined. */
// if (spi_inst->cs != NC) {
// nrf_gpio_pin_clear(spi_inst->cs);
// }
// /* Initiate SPI transfer. */
// ret_code_t result = spi_master_transfer_async_continue(obj);
// /* Signal error if event mask matches and event handler is set. */
// if ((result != NRFX_SUCCESS) && (mask & SPI_EVENT_ERROR) && handler) {
// /* Cast handler to callback function pointer. */
// void (*callback)(void) = (void (*)(void)) handler;
// /* Reset object. */
// spi_inst->handler = 0;
// spi_inst->update = true;
// /* Store event value so it can be read back. */
// spi_inst->event = SPI_EVENT_ERROR;
// /* Signal callback handler. */
// callback();
// }
// }
// /** The asynchronous IRQ handler
// *
// * Reads the received values out of the RX FIFO, writes values into the TX FIFO and checks for transfer termination
// * conditions, such as buffer overflows or transfer complete.
// * Parameter obj The SPI object that holds the transfer information
// * Return Event flags if a transfer termination condition was met; otherwise 0.
// */
// uint32_t spi_irq_handler_asynch(spi_t *obj)
// {
// /* Return latest event. */
// return obj->spi.event;
// }
// /** Attempts to determine if the SPI peripheral is already in use
// *
// * If a temporary DMA channel has been allocated, peripheral is in use.
// * If a permanent DMA channel has been allocated, check if the DMA channel is in use. If not, proceed as though no DMA
// * channel were allocated.
// * If no DMA channel is allocated, check whether tx and rx buffers have been assigned. For each assigned buffer, check
// * if the corresponding buffer position is less than the buffer length. If buffers do not indicate activity, check if
// * there are any bytes in the FIFOs.
// * Parameter obj The SPI object to check for activity
// * Return Non-zero if the SPI port is active or zero if it is not.
// */
// uint8_t spi_active(spi_t *obj)
// {
// /* Callback handler is non-zero when a transfer is in progress. */
// return (obj->spi.handler != 0);
// }
// /** Abort an SPI transfer
// *
// * Parameter obj The SPI peripheral to stop
// */
// void spi_abort_asynch(spi_t *obj)
// {
// int instance = obj->spi.instance;
// /* Abort transfer. */
// nrfx_spi_abort(&nordic_nrf5_spi_instance[instance]);
// /* Force reconfiguration. */
// object_owner_spi2c_set(instance, NULL);
// }
#endif // DEVICE_SPI_ASYNCH
#endif // NRFX_SPI_ENABLED
#endif // DEVICE_SPI