Span: amend documentation

pull/7828/head
Vincent Coubard 2018-08-22 15:11:27 +01:00
parent 95fc284a83
commit 4e7fa91b94
1 changed files with 157 additions and 46 deletions

View File

@ -33,19 +33,130 @@ namespace mbed {
#define SPAN_DYNAMIC_EXTENT -1
/**
* View to an array.
* Non owning view to a sequence of contiguous elements.
*
* Spans encapsulate the pointer to an array and its size into a single object.
* However, it does not manage the lifetime of the array viewed. You can use
* instances of Span to replace the traditional pair of pointer and size
* arguments in function calls.
* Spans encapsulate a pointer to a sequence of contiguous elements and its size
* into a single object. Span can replace the traditional pair of pointer and
* size arguments passed as array definition in function calls.
*
* You can use the size member function to query the number of elements present
* in the array, and the subscript operator allow code using this object to
* access the content of the array viewed.
* @paragraph Operations
*
* Subspans can be created with the help of the functions first(), last() and
* subspan().
* Span objects can be copied and assigned like regular value types with the help
* of copy constructor and copy assignment (=) operator.
*
* Elements of the object can be retrieved with the subscript ([]) operator. The
* pointer to the first element of the sequence viewed can be accessed with data()
* while the function size() returns the number of elements in the sequence and
* empty() informs if the there is any element in the sequence.
*
* Span can be sliced from the beginning of the sequence (first()), from the end
* of the sequence (last()) or from an arbitrary point of the sequence (subspan()).
*
* @paragraph Size encoding
*
* The size of the sequence can be encoded in the type itself or in the value of
* the instance with the help of the template parameter Extent:
*
* - Span<uint8_t, 6>: Span over a sequence of 6 element
* - Span<uint8_t>: Span over an arbitrary long sequence.
*
* When the size is encoded in the type itself, it is guaranteed that the Span
* view a valid sequence (not empty() and not NULL). The type system also prevent
* automatic conversion from Span of different sizes. Finally, the size of the
* span object is a single pointer.
*
* When the size of the sequence viewed is encoded in the Span value, span
* instances can view invalid sequence (empty and NULL pointer). The function
* empty() helps client code to decide if valid content is being viewed or not.
*
* @paragraph Example
*
* - Encoding fixed size array: Array values in parameter decays automatically
* to pointer which leaves room for subtitle bugs:
*
* @code
* typedef uint8_t mac_address_t[6];
* void process_mac(mac_address_t);
*
* // compile just fine
* uint8_t* invalid_value = NULL;
* process_mac(invalid_value);
*
*
* // correct way
* typedef Span<uint8_t, 6> mac_address_t;
* void process_mac(mac_address_t);
*
* // compilation error
* uint8_t* invalid_value = NULL;
* process_mac(invalid_value);
*
* // compilation ok
* uint8_t valid_value[6];
* process_mac(valid_value);
* @endcode
*
* - Arbitrary buffer: When dealing with multiple buffers, it becomes painful to
* keep track of every buffer size and pointer.
*
* @code
* const uint8_t options_tag[OPTIONS_TAG_SIZE];
*
* struct parsed_value_t {
* uint8_t* header;
* uint8_t* options;
* uint8_t* payload;
* size_t payload_size;
* }
*
* parsed_value_t parse(uint8_t* buffer, size_t buffer_size) {
* parsed_value_t parsed_value { 0 };
*
* if (buffer != NULL && buffer_size <= MINIMAL_BUFFER_SIZE) {
* return parsed_value;
* }
*
* parsed_value.header = buffer;
* parsed_value.header_size = BUFFER_HEADER_SIZE;
*
* if (memcmp(buffer + HEADER_OPTIONS_INDEX, options_tag, sizeof(options_tag)) == 0) {
* options = buffer + BUFFER_HEADER_SIZE;
* payload = buffer + BUFFER_HEADER_SIZE + OPTIONS_SIZE;
* payload_size = buffer_size - BUFFER_HEADER_SIZE + OPTIONS_SIZE;
* } else {
* payload = buffer + BUFFER_HEADER_SIZE;
* payload_size = buffer_size - BUFFER_HEADER_SIZE;
* }
*
* return parsed_value;
* }
*
*
* //with span
* struct parsed_value_t {
* Span<uint8_t> header;
* Span<uint8_t> options;
* Span<uint8_t> payload;
* }
*
* parsed_value_t parse(Span<uint8_t> buffer) {
* parsed_value_t parsed_value;
*
* if (buffer.size() <= MINIMAL_BUFFER_SIZE) {
* return parsed_value;
* }
*
* parsed_value.header = buffer.first(BUFFER_HEADER_SIZE);
*
* if (buffer.subspan<HEADER_OPTIONS_INDEX, sizeof(options_tag)>() == option_tag) {
* options = buffer.supspan(parsed_value.header.size(), OPTIONS_SIZE);
* }
*
* payload = buffer.subspan(parsed_value.header.size() + parsed_value.options.size());
*
* return parsed_value;
* }
* @endcode
*
* @note You can create Span instances with the help of the function template
* make_Span() and make_const_Span().
@ -53,9 +164,9 @@ namespace mbed {
* @note Span<T, Extent> objects can be implicitly converted to Span<T> objects
* where required.
*
* @tparam ElementType type of objects held in the array viewed.
* @tparam ElementType type of objects viewed by the Span.
*
* @tparam Extent The size of the array viewed. The default value
* @tparam Extent The size of the contiguous sequence viewed. The default value
* SPAN_DYNAMIC_SIZE is special as it allows construction of Span objects of
* any size (set at runtime).
*/
@ -90,7 +201,7 @@ struct Span {
MBED_STATIC_ASSERT(Extent >= 0, "Invalid extent for a Span");
/**
* Construct an empty span.
* Construct an empty Span.
*
* @post a call to size() will return 0, and data() will return NULL.
*
@ -112,7 +223,7 @@ struct Span {
* @param count Number of elements viewed.
*
* @pre [ptr, ptr + count) must be be a valid range.
* @pre count must be equal to extent.
* @pre count must be equal to Extent.
*
* @post a call to size() will return Extent and data() will return @p ptr.
*/
@ -153,9 +264,9 @@ struct Span {
_data(elements) { }
/**
* Return the size of the array viewed.
* Return the size of the sequence viewed.
*
* @return The number of elements present in the array viewed.
* @return The size of the sequence viewed.
*/
index_type size() const
{
@ -163,9 +274,9 @@ struct Span {
}
/**
* Return if the array is empty or not.
* Return if the sequence is empty or not.
*
* @return true if the array is empty and false otherwise
* @return true if the sequence is empty and false otherwise
*/
bool empty() const
{
@ -190,10 +301,10 @@ struct Span {
}
/**
* Return a pointer to the first element of the sequence or NULL if the span
* Return a pointer to the first element of the sequence or NULL if the Span
* is empty().
*
* @return The pointer to the first element of the span.
* @return The pointer to the first element of the Span.
*/
pointer data() const
{
@ -246,7 +357,7 @@ struct Span {
* is equal to SPAN_DYNAMIC_EXTENT then a span starting at offset and
* containing the rest of the elements is returned.
*
* @return
* @return A subspan of this starting at Offset and Count long.
*/
template<std::ptrdiff_t Offset, std::ptrdiff_t Count>
Span<element_type, Count == SPAN_DYNAMIC_EXTENT ? Extent - Offset : Count>
@ -324,7 +435,7 @@ private:
};
/**
* Span specialisation that handle dynamic array size.
* Span specialisation that handle dynamic size.
*/
template<typename ElementType>
struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
@ -355,7 +466,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
static const index_type extent = SPAN_DYNAMIC_EXTENT;
/**
* Construct an empty span.
* Construct an empty Span.
*
* @post a call to size() will return 0, and data() will return NULL.
*
@ -437,9 +548,9 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Return if the array is empty or not.
* Return if the sequence viewed is empty or not.
*
* @return true if the array is empty and false otherwise
* @return true if the sequence is empty and false otherwise
*/
bool empty() const
{
@ -447,7 +558,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Access to an element of the array.
* Access to an element of the sequence.
*
* @param index Element index to access.
*
@ -464,9 +575,9 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Get the raw pointer to the array.
* Get the raw pointer to the sequence viewed.
*
* @return The raw pointer to the array.
* @return The raw pointer to the first element viewed.
*/
pointer data() const
{
@ -474,7 +585,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Create a new span over the first @p Count elements of the existing view.
* Create a new Span over the first @p Count elements of the existing view.
*
* @tparam Count The number of element viewed by the new Span
*
@ -489,7 +600,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Create a new span over the last @p Count elements of the existing view.
* Create a new Span over the last @p Count elements of the existing view.
*
* @tparam Count The number of element viewed by the new Span
*
@ -513,7 +624,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
* is equal to SPAN_DYNAMIC_EXTENT then a span starting at offset and
* containing the rest of the elements is returned.
*
* @return
* @return A subspan of this starting at Offset and Count long.
*/
template<std::ptrdiff_t Offset, std::ptrdiff_t Count>
Span<element_type, Count == SPAN_DYNAMIC_EXTENT ? SPAN_DYNAMIC_EXTENT : Count>
@ -542,7 +653,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
}
/**
* Create a new span over the last @p count elements of the existing view.
* Create a new Span over the last @p count elements of the existing view.
*
* @param count The number of element viewed by the new Span
*
@ -566,7 +677,7 @@ struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
* is equal to SPAN_DYNAMIC_EXTENT then a span starting at offset and
* containing the rest of the elements is returned.
*
* @return
* @return A subspan of this starting at offset and count long.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> subspan(
index_type offset, index_type count = SPAN_DYNAMIC_EXTENT
@ -593,8 +704,8 @@ private:
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input have the same size and the same content
* and false otherwise.
* @return True if Spans in input have the same size and the same content and
* false otherwise.
*/
template<typename T, typename U, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator==(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
@ -616,8 +727,8 @@ bool operator==(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input have the same size and the same content
* and false otherwise.
* @return True if elements in input have the same size and the same content and
* false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator==(const Span<T, LhsExtent> &lhs, T (&rhs)[RhsExtent])
@ -626,12 +737,12 @@ bool operator==(const Span<T, LhsExtent> &lhs, T (&rhs)[RhsExtent])
}
/**
* Equality operation between a span and a reference to a C++ array.
* Equality operation between a Span and a reference to a C++ array.
*
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input have the same size and the same content
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
@ -646,8 +757,8 @@ bool operator==(T (&lhs)[LhsExtent], const Span<T, RhsExtent> &rhs)
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input do not have the same size or the same
* content and false otherwise.
* @return True if arrays in input do not have the same size or the same content
* and false otherwise.
*/
template<typename T, typename U, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator!=(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
@ -656,12 +767,12 @@ bool operator!=(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
}
/**
* Not Equal operation between a span and a reference to a C++ array.
* Not Equal operation between a Span and a reference to a C++ array.
*
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input have the same size and the same content
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
@ -671,12 +782,12 @@ bool operator!=(const Span<T, LhsExtent> &lhs, T (&rhs)[RhsExtent])
}
/**
* Not Equal operation between a span and a reference to a C++ array.
* Not Equal operation between a Span and a reference to a C++ array.
*
* @param lhs Left hand side of the binary operation.
* @param rhs Right hand side of the binary operation.
*
* @return True if arrays in input have the same size and the same content
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
@ -728,7 +839,7 @@ Span<T, Extent> make_Span(T *elements)
*
* @tparam T Type of elements held in array_ptr.
*
* @param array_ptr The pointer to the array to viewed.
* @param array_ptr The pointer to the array viewed.
* @param array_size The number of T elements in the array.
*
* @return The Span to array_ptr with a size of array_size.