Cleaned up some formatting issues.

pull/5137/head
Dave Wu 2017-11-15 22:59:26 +11:00
parent 82a58ac94d
commit 401674284a
1 changed files with 83 additions and 82 deletions

View File

@ -76,110 +76,110 @@ static ADI_TMR_TypeDef * adi_tmr_registers[ADI_TMR_DEVICE_NUM] = {pADI_TMR0, pAD
*---------------------------------------------------------------------------*/
static void GP1CallbackFunction(void *pCBParam, uint32_t Event, void * pArg)
{
Upper_count++;
Upper_count++;
}
static uint32_t get_current_time(void)
{
uint16_t tmrcnt0, tmrcnt1;
uint32_t totaltmr0, totaltmr1;
uint32_t uc1, tmrpend0, tmrpend1;
uint16_t tmrcnt0, tmrcnt1;
uint32_t totaltmr0, totaltmr1;
uint32_t uc1, tmrpend0, tmrpend1;
do {
volatile uint32_t *ucptr = &Upper_count;
volatile uint32_t *ucptr = &Upper_count;
/*
* Carefully coded to prevent race conditions. Do not make changes unless you understand all the
* implications.
*
* Note this function can be called with interrupts globally disabled or enabled. It has been coded to work in both cases.
*
* TMR0 and TMR1 both run from the same synchronous clock. TMR0 runs at 26MHz and TMR1 runs at 26/256MHz.
* TMR1 generates an interrupt every time it overflows its 16 bit counter. TMR0 runs faster and provides
* the lowest 8 bits of the current time count. When TMR0 and TMR1 are combined, they provide 24 bits of
* timer precision. i.e. (TMR0.CURCNT & 0xff) + (TMR1.CURCNT << 8)
*
* There are several race conditions protected against:
* 1. TMR0 and TMR1 are both read at the same time, however, on rare occasions, one will have incremented before the other.
* Therefore we read both timer counters, and check if the middle 8 bits match, if they don't then read the counts again
* until they do. This ensures that one or the other counters are stable with respect to each other.
*
* 2. TMR1.CURCNT and Upper_count racing. Prevent this by disabling the TMR1 interrupt, which stops Upper_count increment interrupt (GP1CallbackFunction).
* Then check pending bit of TMR1 to see if we missed Upper_count interrupt, and add it manually later.
*
* 3. Race between the TMR1 pend, and the TMR1.CURCNT read. Even with TMR1 interrupt disabled, the pend bit
* may be set while TMR1.CURCNT is being read. We don't know if the pend bit matches the TMR1 state.
* To prevent this, the pending bit is read twice, and we see if it matches; if it doesn't, loop around again.
*
* Note the TMR1 interrupt is enabled on each iteration of the loop to flush out any pending TMR1 interrupt,
* thereby clearing any TMR1 pend's. This have no effect if this routine is called with interrupts globally disabled.
*/
/*
* Carefully coded to prevent race conditions. Do not make changes unless you understand all the
* implications.
*
* Note this function can be called with interrupts globally disabled or enabled. It has been coded to work in both cases.
*
* TMR0 and TMR1 both run from the same synchronous clock. TMR0 runs at 26MHz and TMR1 runs at 26/256MHz.
* TMR1 generates an interrupt every time it overflows its 16 bit counter. TMR0 runs faster and provides
* the lowest 8 bits of the current time count. When TMR0 and TMR1 are combined, they provide 24 bits of
* timer precision. i.e. (TMR0.CURCNT & 0xff) + (TMR1.CURCNT << 8)
*
* There are several race conditions protected against:
* 1. TMR0 and TMR1 are both read at the same time, however, on rare occasions, one will have incremented before the other.
* Therefore we read both timer counters, and check if the middle 8 bits match, if they don't then read the counts again
* until they do. This ensures that one or the other counters are stable with respect to each other.
*
* 2. TMR1.CURCNT and Upper_count racing. Prevent this by disabling the TMR1 interrupt, which stops Upper_count increment interrupt (GP1CallbackFunction).
* Then check pending bit of TMR1 to see if we missed Upper_count interrupt, and add it manually later.
*
* 3. Race between the TMR1 pend, and the TMR1.CURCNT read. Even with TMR1 interrupt disabled, the pend bit
* may be set while TMR1.CURCNT is being read. We don't know if the pend bit matches the TMR1 state.
* To prevent this, the pending bit is read twice, and we see if it matches; if it doesn't, loop around again.
*
* Note the TMR1 interrupt is enabled on each iteration of the loop to flush out any pending TMR1 interrupt,
* thereby clearing any TMR1 pend's. This have no effect if this routine is called with interrupts globally disabled.
*/
NVIC_DisableIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]); // Prevent Upper_count increment
tmrpend0 = NVIC_GetPendingIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]);
// Check if there is a pending interrupt for timer 1
NVIC_DisableIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]); // Prevent Upper_count increment
tmrpend0 = NVIC_GetPendingIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]);
// Check if there is a pending interrupt for timer 1
__DMB(); // memory barrier: read GP0 before GP1
tmrcnt0 = adi_tmr_registers[ADI_TMR_DEVICE_GP0]->CURCNT; // to minimize skew, read both timers manually
tmrcnt0 = adi_tmr_registers[ADI_TMR_DEVICE_GP0]->CURCNT; // to minimize skew, read both timers manually
__DMB(); // memory barrier: read GP0 before GP1
__DMB(); // memory barrier: read GP0 before GP1
tmrcnt1 = adi_tmr_registers[ADI_TMR_DEVICE_GP1]->CURCNT; // read both timers manually
tmrcnt1 = adi_tmr_registers[ADI_TMR_DEVICE_GP1]->CURCNT; // read both timers manually
totaltmr0 = tmrcnt0; // expand to u32 bits
totaltmr1 = tmrcnt1; // expand to u32 bits
totaltmr0 = tmrcnt0; // expand to u32 bits
totaltmr1 = tmrcnt1; // expand to u32 bits
tmrcnt0 &= 0xff00u;
tmrcnt1 <<= 8;
tmrcnt0 &= 0xff00u;
tmrcnt1 <<= 8;
__DMB();
uc1 = *ucptr; // Read Upper_count
uc1 = *ucptr; // Read Upper_count
tmrpend1 = NVIC_GetPendingIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]);
// Check for a pending interrupt again. Only leave loop if they match
tmrpend1 = NVIC_GetPendingIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]);
// Check for a pending interrupt again. Only leave loop if they match
NVIC_EnableIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]); // enable interrupt on every loop to allow TMR1 interrupt to run
NVIC_EnableIRQ(adi_tmr_interrupt[ADI_TMR_DEVICE_GP1]); // enable interrupt on every loop to allow TMR1 interrupt to run
} while ((tmrcnt0 != tmrcnt1) || (tmrpend0 != tmrpend1));
totaltmr1 <<= 8; // Timer1 runs 256x slower
totaltmr1 += totaltmr0 & 0xffu; // Use last 8 bits of Timer0 as it runs faster
// totaltmr1 now contain 24 bits of significance
totaltmr1 <<= 8; // Timer1 runs 256x slower
totaltmr1 += totaltmr0 & 0xffu; // Use last 8 bits of Timer0 as it runs faster
// totaltmr1 now contain 24 bits of significance
if (tmrpend0) { // If an interrupt is pending, then increment local copy of upper count
uc1++;
}
if (tmrpend0) { // If an interrupt is pending, then increment local copy of upper count
uc1++;
}
uint64_t Uc = totaltmr1; // expand out to 64 bits unsigned
Uc += ((uint64_t) uc1) << 24; // Add on the upper count to get the full precision count
uint64_t Uc = totaltmr1; // expand out to 64 bits unsigned
Uc += ((uint64_t) uc1) << 24; // Add on the upper count to get the full precision count
// Divide Uc by 26 (26MHz converted to 1MHz) todo scale for other clock freqs
// Divide Uc by 26 (26MHz converted to 1MHz) todo scale for other clock freqs
Uc *= 1290555u; // Divide total(1/26) << 25
Uc >>= 25; // shift back. Fixed point avoid use of floating point divide.
// Compiler does this inline using shifts and adds.
Uc *= 1290555u; // Divide total(1/26) << 25
Uc >>= 25; // shift back. Fixed point avoid use of floating point divide.
// Compiler does this inline using shifts and adds.
return Uc;
return Uc;
}
static void calc_event_counts(uint32_t timestamp)
{
uint32_t calc_time, blocks, offset;
uint64_t aa;
uint64_t aa;
calc_time = get_current_time();
offset = timestamp - calc_time; // offset in useconds
if (offset > 0xf0000000u) // if offset is a really big number, assume that timer has already expired (i.e. negative)
offset = 0u;
offset = 0u;
if (offset > 10u) { // it takes 10us to user timer routine after interrupt. Offset timer to account for that.
offset -= 10u;
offset -= 10u;
} else
offset = 0u;
offset = 0u;
aa = (uint64_t) offset;
aa *= 26u; // convert from 1MHz to 26MHz clock. todo scale for other clock freqs
@ -187,25 +187,26 @@ static void calc_event_counts(uint32_t timestamp)
blocks = aa >> 7;
blocks++; // round
largecnt = blocks>>1; // communicate to event_timer() routine
largecnt = blocks>>1; // communicate to event_timer() routine
}
static void event_timer()
{
if (largecnt) {
uint32_t cnt = largecnt;
uint32_t cnt = largecnt;
if (cnt > 65535u) {
cnt = 0u;
} else
cnt = 65536u - cnt;
if (cnt > 65535u) {
cnt = 0u;
} else {
cnt = 65536u - cnt;
}
tmr2Config.nLoad = cnt;
tmr2Config.nAsyncLoad = cnt;
adi_tmr_ConfigTimer(ADI_TMR_DEVICE_GP2, &tmr2Config);
tmr2Config.nLoad = cnt;
tmr2Config.nAsyncLoad = cnt;
adi_tmr_ConfigTimer(ADI_TMR_DEVICE_GP2, &tmr2Config);
adi_tmr_Enable(ADI_TMR_DEVICE_GP2, true);
} else {
us_ticker_irq_handler();
us_ticker_irq_handler();
}
}
@ -222,16 +223,16 @@ static void event_timer()
*/
static void GP2CallbackFunction(void *pCBParam, uint32_t Event, void * pArg)
{
if (largecnt >= 65536u) {
largecnt -= 65536u;
} else {
largecnt = 0;
if (largecnt >= 65536u) {
largecnt -= 65536u;
} else {
largecnt = 0;
}
if (largecnt < 65536u) {
adi_tmr_Enable(ADI_TMR_DEVICE_GP2, false);
event_timer();
}
if (largecnt < 65536u) {
adi_tmr_Enable(ADI_TMR_DEVICE_GP2, false);
event_timer();
}
}
@ -326,8 +327,8 @@ void us_ticker_set_interrupt(timestamp_t timestamp)
* This MUST not be called if another timer event is currently enabled.
*
*/
calc_event_counts(timestamp); // use timestamp to calculate largecnt to control number of timer interrupts
event_timer(); // uses largecnt to initiate timer interrupts
calc_event_counts(timestamp); // use timestamp to calculate largecnt to control number of timer interrupts
event_timer(); // uses largecnt to initiate timer interrupts
}
/** Set pending interrupt that should be fired right away.