Merge pull request #4241 from OpenNuvoton/nuvoton

[NUC472/M453] Fix serial error with sync/async calls interlaced
pull/4322/head
Martin Kojtal 2017-05-15 16:07:11 +01:00 committed by GitHub
commit 3ca5c36768
8 changed files with 240 additions and 198 deletions

View File

@ -61,6 +61,7 @@ struct serial_s {
void (*vec)(void);
uint32_t irq_handler;
uint32_t irq_id;
uint32_t irq_en;
uint32_t inten_msk;
// Async transfer related fields

View File

@ -23,6 +23,10 @@
#include "nu_bitutil.h"
#include "dma.h"
#define NU_PDMA_CH_MAX PDMA_CH_MAX /* Specify maximum channels of PDMA */
#define NU_PDMA_CH_Pos 0 /* Specify first channel number of PDMA */
#define NU_PDMA_CH_Msk (((1 << NU_PDMA_CH_MAX) - 1) << NU_PDMA_CH_Pos)
struct nu_dma_chn_s {
void (*handler)(uint32_t, uint32_t);
uint32_t id;
@ -31,7 +35,7 @@ struct nu_dma_chn_s {
static int dma_inited = 0;
static uint32_t dma_chn_mask = 0;
static struct nu_dma_chn_s dma_chn_arr[PDMA_CH_MAX];
static struct nu_dma_chn_s dma_chn_arr[NU_PDMA_CH_MAX];
static void pdma_vec(void);
static const struct nu_modinit_s dma_modinit = {DMA_0, PDMA_MODULE, 0, 0, PDMA_RST, PDMA_IRQn, (void *) pdma_vec};
@ -44,7 +48,7 @@ void dma_init(void)
}
dma_inited = 1;
dma_chn_mask = 0;
dma_chn_mask = ~NU_PDMA_CH_Msk;
memset(dma_chn_arr, 0x00, sizeof (dma_chn_arr));
// Reset this module
@ -65,25 +69,12 @@ int dma_channel_allocate(uint32_t capabilities)
dma_init();
}
#if 1
int i = nu_cto(dma_chn_mask);
if (i != 32) {
dma_chn_mask |= 1 << i;
memset(dma_chn_arr + i, 0x00, sizeof (struct nu_dma_chn_s));
memset(dma_chn_arr + i - NU_PDMA_CH_Pos, 0x00, sizeof (struct nu_dma_chn_s));
return i;
}
#else
int i;
for (i = 0; i < PDMA_CH_MAX; i ++) {
if ((dma_chn_mask & (1 << i)) == 0) {
// Channel available
dma_chn_mask |= 1 << i;
memset(dma_chn_arr + i, 0x00, sizeof (struct nu_dma_chn_s));
return i;
}
}
#endif
// No channel available
return DMA_ERROR_OUT_OF_CHANNELS;
@ -102,9 +93,9 @@ void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t even
{
MBED_ASSERT(dma_chn_mask & (1 << channelid));
dma_chn_arr[channelid].handler = (void (*)(uint32_t, uint32_t)) handler;
dma_chn_arr[channelid].id = id;
dma_chn_arr[channelid].event = event;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].handler = (void (*)(uint32_t, uint32_t)) handler;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].id = id;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].event = event;
// Set interrupt vector if someone has removed it.
NVIC_SetVector(dma_modinit.irq_n, (uint32_t) dma_modinit.var);
@ -127,14 +118,14 @@ static void pdma_vec(void)
PDMA_CLR_ABORT_FLAG(abtsts);
while (abtsts) {
int chn_id = nu_ctz(abtsts);
int chn_id = nu_ctz(abtsts) - PDMA_ABTSTS_ABTIFn_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_ABORT)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_ABORT);
}
}
abtsts &= ~(1 << chn_id);
abtsts &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_ABTSTS_ABTIFn_Pos));
}
}
@ -145,14 +136,14 @@ static void pdma_vec(void)
PDMA_CLR_TD_FLAG(tdsts);
while (tdsts) {
int chn_id = nu_ctz(tdsts);
int chn_id = nu_ctz(tdsts) - PDMA_TDSTS_TDIFn_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TRANSFER_DONE)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_TRANSFER_DONE);
}
}
tdsts &= ~(1 << chn_id);
tdsts &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_TDSTS_TDIFn_Pos));
}
}
@ -170,14 +161,14 @@ static void pdma_vec(void)
PDMA->INTSTS = reqto;
while (reqto) {
int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFn_Pos;
int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFn_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_TIMEOUT);
}
}
reqto &= ~(1 << (chn_id + PDMA_INTSTS_REQTOFn_Pos));
reqto &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_INTSTS_REQTOFn_Pos));
}
}
}

View File

@ -99,11 +99,9 @@ void pwmout_init(pwmout_t* obj, PinName pin)
((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn;
if (((struct nu_pwm_var *) modinit->var)->en_msk) {
// Mark this module to be inited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
// Mark this module to be inited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
void pwmout_free(pwmout_t* obj)
@ -122,11 +120,9 @@ void pwmout_free(pwmout_t* obj)
CLK_DisableModuleClock(modinit->clkidx);
}
if (((struct nu_pwm_var *) modinit->var)->en_msk == 0) {
// Mark this module to be deinited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
// Mark this module to be deinited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
void pwmout_write(pwmout_t* obj, float value)

View File

@ -24,6 +24,7 @@
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_bitutil.h"
#include <string.h>
#if DEVICE_SERIAL_ASYNCH
#include "dma_api.h"
@ -61,6 +62,8 @@ static void uart_dma_handler_rx(uint32_t id, uint32_t event);
static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable);
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq);
static int serial_write_async(serial_t *obj);
static int serial_read_async(serial_t *obj);
@ -159,7 +162,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
@ -186,6 +189,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
serial_format(obj, 8, ParityNone, 1);
obj->serial.vec = var->vec;
obj->serial.irq_en = 0;
#if DEVICE_SERIAL_ASYNCH
obj->serial.dma_usage_tx = DMA_USAGE_NEVER;
@ -212,7 +216,7 @@ void serial_free(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
@ -329,7 +333,7 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
obj->serial.irq_handler = (uint32_t) handler;
obj->serial.irq_id = id;
@ -340,51 +344,18 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting inten_msk first to avoid race condition
case RxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
break;
case TxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
break;
}
} else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk;
break;
}
}
obj->serial.irq_en = enable;
serial_enable_interrupt(obj, irq, enable);
}
int serial_getc(serial_t *obj)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_readable(obj));
int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
}
@ -394,11 +365,12 @@ int serial_getc(serial_t *obj)
void serial_putc(serial_t *obj, int c)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_writable(obj));
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c);
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
}
@ -500,7 +472,7 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
@ -563,7 +535,7 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
@ -612,10 +584,8 @@ void serial_tx_abort_asynch(serial_t *obj)
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, TxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableTransmitter(obj->serial.serial.address);
//UART_HAL_FlushTxFifo(obj->serial.serial.address);
serial_enable_interrupt(obj, TxIrq, 0);
serial_rollback_interrupt(obj, TxIrq);
}
void serial_rx_abort_asynch(serial_t *obj)
@ -633,20 +603,30 @@ void serial_rx_abort_asynch(serial_t *obj)
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, RxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableReceiver(obj->serial.serial.address);
//UART_HAL_FlushRxFifo(obj->serial.serial.address);
serial_enable_interrupt(obj, RxIrq, 0);
serial_rollback_interrupt(obj, RxIrq);
}
uint8_t serial_tx_active(serial_t *obj)
{
return serial_is_irq_en(obj, TxIrq);
// NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
uint8_t serial_rx_active(serial_t *obj)
{
return serial_is_irq_en(obj, RxIrq);
// NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
int serial_irq_handler_asynch(serial_t *obj)
@ -886,7 +866,7 @@ static int serial_write_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
@ -938,7 +918,7 @@ static int serial_read_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXPTR_Msk) >> UART_FIFOSTS_RXPTR_Pos;
//uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy;
@ -1013,28 +993,81 @@ static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_tx_async = (void (*)(void)) handler;
serial_irq_set(obj, TxIrq, enable);
serial_enable_interrupt(obj, TxIrq, enable);
}
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_rx_async = (void (*) (void)) handler;
serial_irq_set(obj, RxIrq, enable);
serial_enable_interrupt(obj, RxIrq, enable);
}
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting inten_msk first to avoid race condition
case RxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
break;
case TxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
break;
}
}
else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk;
break;
}
}
}
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
obj->serial.vec = var->vec;
serial_enable_interrupt(obj, irq, obj->serial.irq_en);
}
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch)

View File

@ -61,6 +61,7 @@ struct serial_s {
void (*vec)(void);
uint32_t irq_handler;
uint32_t irq_id;
uint32_t irq_en;
uint32_t inten_msk;
// Async transfer related fields

View File

@ -23,6 +23,10 @@
#include "nu_bitutil.h"
#include "dma.h"
#define NU_PDMA_CH_MAX PDMA_CH_MAX /* Specify maximum channels of PDMA */
#define NU_PDMA_CH_Pos 0 /* Specify first channel number of PDMA */
#define NU_PDMA_CH_Msk (((1 << NU_PDMA_CH_MAX) - 1) << NU_PDMA_CH_Pos)
struct nu_dma_chn_s {
void (*handler)(uint32_t, uint32_t);
uint32_t id;
@ -31,7 +35,7 @@ struct nu_dma_chn_s {
static int dma_inited = 0;
static uint32_t dma_chn_mask = 0;
static struct nu_dma_chn_s dma_chn_arr[PDMA_CH_MAX];
static struct nu_dma_chn_s dma_chn_arr[NU_PDMA_CH_MAX];
static void pdma_vec(void);
static const struct nu_modinit_s dma_modinit = {DMA_0, PDMA_MODULE, 0, 0, PDMA_RST, PDMA_IRQn, (void *) pdma_vec};
@ -44,7 +48,7 @@ void dma_init(void)
}
dma_inited = 1;
dma_chn_mask = 0;
dma_chn_mask = ~NU_PDMA_CH_Msk;
memset(dma_chn_arr, 0x00, sizeof (dma_chn_arr));
// Reset this module
@ -65,25 +69,12 @@ int dma_channel_allocate(uint32_t capabilities)
dma_init();
}
#if 1
int i = nu_cto(dma_chn_mask);
if (i != 32) {
dma_chn_mask |= 1 << i;
memset(dma_chn_arr + i, 0x00, sizeof (struct nu_dma_chn_s));
memset(dma_chn_arr + i - NU_PDMA_CH_Pos, 0x00, sizeof (struct nu_dma_chn_s));
return i;
}
#else
int i;
for (i = 0; i < PDMA_CH_MAX; i ++) {
if ((dma_chn_mask & (1 << i)) == 0) {
// Channel available
dma_chn_mask |= 1 << i;
memset(dma_chn_arr + i, 0x00, sizeof (struct nu_dma_chn_s));
return i;
}
}
#endif
// No channel available
return DMA_ERROR_OUT_OF_CHANNELS;
@ -102,9 +93,9 @@ void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t even
{
MBED_ASSERT(dma_chn_mask & (1 << channelid));
dma_chn_arr[channelid].handler = (void (*)(uint32_t, uint32_t)) handler;
dma_chn_arr[channelid].id = id;
dma_chn_arr[channelid].event = event;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].handler = (void (*)(uint32_t, uint32_t)) handler;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].id = id;
dma_chn_arr[channelid - NU_PDMA_CH_Pos].event = event;
// Set interrupt vector if someone has removed it.
NVIC_SetVector(dma_modinit.irq_n, (uint32_t) dma_modinit.var);
@ -127,14 +118,14 @@ static void pdma_vec(void)
PDMA_CLR_ABORT_FLAG(abtsts);
while (abtsts) {
int chn_id = nu_ctz(abtsts);
int chn_id = nu_ctz(abtsts) - PDMA_ABTSTS_ABTIF_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_ABORT)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_ABORT);
}
}
abtsts &= ~(1 << chn_id);
abtsts &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_ABTSTS_ABTIF_Pos));
}
}
@ -145,14 +136,14 @@ static void pdma_vec(void)
PDMA_CLR_TD_FLAG(tdsts);
while (tdsts) {
int chn_id = nu_ctz(tdsts);
int chn_id = nu_ctz(tdsts) - PDMA_TDSTS_TDIF_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TRANSFER_DONE)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_TRANSFER_DONE);
}
}
tdsts &= ~(1 << chn_id);
tdsts &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_TDSTS_TDIF_Pos));
}
}
@ -170,14 +161,14 @@ static void pdma_vec(void)
PDMA->INTSTS = reqto;
while (reqto) {
int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFX_Pos;
int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFX_Pos + NU_PDMA_CH_Pos;
if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id - NU_PDMA_CH_Pos;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) {
dma_chn->handler(dma_chn->id, DMA_EVENT_TIMEOUT);
}
}
reqto &= ~(1 << (chn_id + PDMA_INTSTS_REQTOFX_Pos));
reqto &= ~(1 << (chn_id - NU_PDMA_CH_Pos + PDMA_INTSTS_REQTOFX_Pos));
}
}
}

View File

@ -105,11 +105,9 @@ void pwmout_init(pwmout_t* obj, PinName pin)
((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn;
if (((struct nu_pwm_var *) modinit->var)->en_msk) {
// Mark this module to be inited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
// Mark this module to be inited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
void pwmout_free(pwmout_t* obj)
@ -145,11 +143,9 @@ void pwmout_free(pwmout_t* obj)
}
}
if (((struct nu_pwm_var *) modinit->var)->en_msk == 0) {
// Mark this module to be deinited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
// Mark this module to be deinited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
void pwmout_write(pwmout_t* obj, float value)

View File

@ -24,6 +24,7 @@
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_bitutil.h"
#include <string.h>
#if DEVICE_SERIAL_ASYNCH
#include "dma_api.h"
@ -65,6 +66,8 @@ static void uart_dma_handler_rx(uint32_t id, uint32_t event);
static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable);
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq);
static int serial_write_async(serial_t *obj);
static int serial_read_async(serial_t *obj);
@ -189,7 +192,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
@ -216,6 +219,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
serial_format(obj, 8, ParityNone, 1);
obj->serial.vec = var->vec;
obj->serial.irq_en = 0;
#if DEVICE_SERIAL_ASYNCH
obj->serial.dma_usage_tx = DMA_USAGE_NEVER;
@ -242,7 +246,7 @@ void serial_free(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
@ -361,7 +365,7 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
obj->serial.irq_handler = (uint32_t) handler;
obj->serial.irq_id = id;
@ -372,51 +376,18 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting inten_msk first to avoid race condition
case RxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
break;
case TxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
break;
}
} else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk;
break;
}
}
obj->serial.irq_en = enable;
serial_enable_interrupt(obj, irq, enable);
}
int serial_getc(serial_t *obj)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_readable(obj));
int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
}
@ -426,11 +397,12 @@ int serial_getc(serial_t *obj)
void serial_putc(serial_t *obj, int c)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_writable(obj));
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c);
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
}
@ -542,7 +514,7 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
@ -603,7 +575,7 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
@ -650,10 +622,8 @@ void serial_tx_abort_asynch(serial_t *obj)
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, TxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableTransmitter(obj->serial.serial.address);
//UART_HAL_FlushTxFifo(obj->serial.serial.address);
serial_enable_interrupt(obj, TxIrq, 0);
serial_rollback_interrupt(obj, TxIrq);
}
void serial_rx_abort_asynch(serial_t *obj)
@ -671,20 +641,30 @@ void serial_rx_abort_asynch(serial_t *obj)
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, RxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableReceiver(obj->serial.serial.address);
//UART_HAL_FlushRxFifo(obj->serial.serial.address);
serial_enable_interrupt(obj, RxIrq, 0);
serial_rollback_interrupt(obj, RxIrq);
}
uint8_t serial_tx_active(serial_t *obj)
{
return serial_is_irq_en(obj, TxIrq);
// NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
uint8_t serial_rx_active(serial_t *obj)
{
return serial_is_irq_en(obj, RxIrq);
// NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
int serial_irq_handler_asynch(serial_t *obj)
@ -934,7 +914,7 @@ static int serial_write_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
@ -986,7 +966,7 @@ static int serial_read_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXPTR_Msk) >> UART_FIFOSTS_RXPTR_Pos;
//uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy;
@ -1061,28 +1041,81 @@ static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_tx_async = (void (*)(void)) handler;
serial_irq_set(obj, TxIrq, enable);
serial_enable_interrupt(obj, TxIrq, enable);
}
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_rx_async = (void (*) (void)) handler;
serial_irq_set(obj, RxIrq, enable);
serial_enable_interrupt(obj, RxIrq, enable);
}
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting inten_msk first to avoid race condition
case RxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
break;
case TxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
break;
}
}
else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk;
break;
}
}
}
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
obj->serial.vec = var->vec;
serial_enable_interrupt(obj, irq, obj->serial.irq_en);
}
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch)