Merge pull request #7952 from offirko/offir-mbed-spif

Prevent sector-unaligned erase
pull/7940/merge
Anna Bridge 2018-09-03 14:17:40 +01:00 committed by GitHub
commit 2efa4e4968
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 81 additions and 82 deletions

View File

@ -344,7 +344,17 @@ int SPIFBlockDevice::erase(bd_addr_t addr, bd_size_t in_size)
// Erase Types of selected region // Erase Types of selected region
uint8_t bitfield = _region_erase_types_bitfield[region]; uint8_t bitfield = _region_erase_types_bitfield[region];
tr_error("DEBUG: erase - addr: %llu, in_size: %llu", addr, in_size); tr_info("DEBUG: erase - addr: %llu, in_size: %llu", addr, in_size);
if ((addr + in_size) > _device_size_bytes) {
tr_error("ERROR: erase exceeds flash device size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
if ( ((addr % get_erase_size(addr)) != 0 ) || (((addr + in_size) % get_erase_size(addr + in_size - 1)) != 0 ) ) {
tr_error("ERROR: invalid erase - unaligned address and size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
// For each iteration erase the largest section supported by current region // For each iteration erase the largest section supported by current region
while (size > 0) { while (size > 0) {
@ -353,13 +363,12 @@ int SPIFBlockDevice::erase(bd_addr_t addr, bd_size_t in_size)
// find the matching instruction and erase size chunk for that type. // find the matching instruction and erase size chunk for that type.
type = _utils_iterate_next_largest_erase_type(bitfield, size, (unsigned int)addr, _region_high_boundary[region]); type = _utils_iterate_next_largest_erase_type(bitfield, size, (unsigned int)addr, _region_high_boundary[region]);
cur_erase_inst = _erase_type_inst_arr[type]; cur_erase_inst = _erase_type_inst_arr[type];
//chunk = _erase_type_size_arr[type];
offset = addr % _erase_type_size_arr[type]; offset = addr % _erase_type_size_arr[type];
chunk = ( (offset + size) < _erase_type_size_arr[type]) ? size : (_erase_type_size_arr[type] - offset); chunk = ( (offset + size) < _erase_type_size_arr[type]) ? size : (_erase_type_size_arr[type] - offset);
tr_error("DEBUG: erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %lu , ", tr_debug("DEBUG: erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %lu , ",
addr, size, cur_erase_inst, chunk); addr, size, cur_erase_inst, chunk);
tr_error("DEBUG: erase - Region: %d, Type:%d", tr_debug("DEBUG: erase - Region: %d, Type:%d",
region, type); region, type);
_mutex->lock(); _mutex->lock();

View File

@ -30,6 +30,7 @@ enum spif_bd_error {
SPIF_BD_ERROR_PARSING_FAILED = -4002, /* SFDP Parsing failed */ SPIF_BD_ERROR_PARSING_FAILED = -4002, /* SFDP Parsing failed */
SPIF_BD_ERROR_READY_FAILED = -4003, /* Wait for Mem Ready failed */ SPIF_BD_ERROR_READY_FAILED = -4003, /* Wait for Mem Ready failed */
SPIF_BD_ERROR_WREN_FAILED = -4004, /* Write Enable Failed */ SPIF_BD_ERROR_WREN_FAILED = -4004, /* Write Enable Failed */
SPIF_BD_ERROR_INVALID_ERASE_PARAMS = -4005, /* Erase command not on sector aligned addresses or exceeds device size */
}; };
@ -136,6 +137,7 @@ public:
* SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed * SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed
* SPIF_BD_ERROR_READY_FAILED - Waiting for Memory ready failed or timed out * SPIF_BD_ERROR_READY_FAILED - Waiting for Memory ready failed or timed out
* SPIF_BD_ERROR_WREN_FAILED - Write Enable failed * SPIF_BD_ERROR_WREN_FAILED - Write Enable failed
* SPIF_BD_ERROR_INVALID_ERASE_PARAMS - Trying to erase unaligned address or size
*/ */
virtual int erase(bd_addr_t addr, bd_size_t size); virtual int erase(bd_addr_t addr, bd_size_t size);

View File

@ -41,13 +41,13 @@ static SingletonPtr<PlatformMutex> _mutex;
// Mutex is protecting rand() per srand for buffer writing and verification. // Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs. // Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test! // Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(SPIFBlockDevice& blockD, bd_size_t block_size, uint8_t *write_block, void basic_erase_program_read_test(SPIFBlockDevice& block_device, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth) uint8_t *read_block, unsigned addrwidth)
{ {
int err = 0; int err = 0;
_mutex->lock(); _mutex->lock();
// Find a random block // Find a random block
bd_addr_t block = (rand() * block_size) % blockD.size(); bd_addr_t block = (rand() * block_size) % block_device.size();
// Use next random number as temporary seed to keep // Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence // the address progressing in the pseudorandom sequence
@ -62,13 +62,13 @@ void basic_erase_program_read_test(SPIFBlockDevice& blockD, bd_size_t block_size
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size); utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock(); _mutex->unlock();
err = blockD.erase(block, block_size); err = block_device.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
err = blockD.program(write_block, block, block_size); err = block_device.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
err = blockD.read(read_block, block, block_size); err = block_device.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
_mutex->lock(); _mutex->lock();
@ -91,16 +91,17 @@ void test_spif_random_program_read_erase()
{ {
utest_printf("\nTest Random Program Read Erase Starts..\n"); utest_printf("\nTest Random Program Read Erase Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO, MBED_CONF_SPIF_DRIVER_SPI_CLK, SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS); MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = blockD.init(); int err = block_device.init();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) { for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"}; static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) { for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)(); bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) { if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n", utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size); ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
@ -109,8 +110,8 @@ void test_spif_random_program_read_erase()
} }
} }
bd_size_t block_size = blockD.get_erase_size(); bd_size_t block_size = block_device.get_erase_size();
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1; unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size]; uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size]; uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
@ -120,10 +121,10 @@ void test_spif_random_program_read_erase()
} }
for (int b = 0; b < TEST_BLOCK_COUNT; b++) { for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(blockD, block_size, write_block, read_block, addrwidth); basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth);
} }
err = blockD.deinit(); err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
end: end:
@ -131,20 +132,21 @@ end:
delete[] read_block; delete[] read_block;
} }
void test_spif_unaligned_program() void test_spif_unaligned_erase()
{ {
utest_printf("\nTest Unaligned Program Starts..\n"); utest_printf("\nTest Unaligned Erase Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO, MBED_CONF_SPIF_DRIVER_SPI_CLK, SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS); MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = blockD.init(); int err = block_device.init();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) { for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"}; static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) { for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)(); bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) { if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n", utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size); ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
@ -153,68 +155,53 @@ void test_spif_unaligned_program()
} }
} }
bd_size_t block_size = blockD.get_erase_size(); bd_addr_t addr = 0;
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1; bd_size_t sector_erase_size = block_device.get_erase_size(addr);
unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size]; utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block ) {
utest_printf("\n Not enough memory for test");
goto end;
}
{ //unaligned start address
bd_addr_t block = (rand() * block_size) % blockD.size() + 1; addr += 1;
err = block_device.erase(addr, sector_erase_size - 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Use next random number as temporary seed to keep err = block_device.erase(addr, sector_erase_size);
// the address progressing in the pseudorandom sequence TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
unsigned seed = rand();
// Fill with random sequence err = block_device.erase(addr, 1);
srand(seed); TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block //unaligned end address
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size); addr = 0;
err = blockD.erase(block, block_size); err = block_device.erase(addr, 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, sector_erase_size + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//erase size exceeds flash device size
err = block_device.erase(addr, block_device.size() + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Valid erase
err = block_device.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_OK, err);
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
//err = blockD.erase(block+4096, block_size);
//TEST_ASSERT_EQUAL(0, err);
err = blockD.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
//printf("index %d\n", i_ind);
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i_ind]);
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
end:
delete[] write_block;
delete[] read_block;
} }
static void test_spif_thread_job(void *vBlockD/*, int thread_num*/) static void test_spif_thread_job(void *block_device_ptr/*, int thread_num*/)
{ {
static int thread_num = 0; static int thread_num = 0;
thread_num++; thread_num++;
SPIFBlockDevice *blockD = (SPIFBlockDevice *)vBlockD; SPIFBlockDevice *block_device = (SPIFBlockDevice *)block_device_ptr;
utest_printf("\n Thread %d Started \n", thread_num); utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = blockD->get_erase_size(); bd_size_t block_size = block_device->get_erase_size();
unsigned addrwidth = ceil(log(float(blockD->size() - 1)) / log(float(16))) + 1; unsigned addrwidth = ceil(log(float(block_device->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size]; uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size]; uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
@ -224,7 +211,7 @@ static void test_spif_thread_job(void *vBlockD/*, int thread_num*/)
} }
for (int b = 0; b < TEST_BLOCK_COUNT; b++) { for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*blockD), block_size, write_block, read_block, addrwidth); basic_erase_program_read_test((*block_device), block_size, write_block, read_block, addrwidth);
} }
end: end:
@ -236,16 +223,17 @@ void test_spif_multi_threads()
{ {
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n"); utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO, MBED_CONF_SPIF_DRIVER_SPI_CLK, SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS); MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = blockD.init(); int err = block_device.init();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) { for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"}; static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) { for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)(); bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) { if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n", utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size); ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
@ -260,7 +248,7 @@ void test_spif_multi_threads()
int i_ind; int i_ind;
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) { for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = spif_bd_thread[i_ind].start(test_spif_thread_job, (void *)&blockD); threadStatus = spif_bd_thread[i_ind].start(test_spif_thread_job, (void *)&block_device);
if (threadStatus != 0) { if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1); utest_printf("\n Thread %d Start Failed!", i_ind + 1);
} }
@ -270,7 +258,7 @@ void test_spif_multi_threads()
spif_bd_thread[i_ind].join(); spif_bd_thread[i_ind].join();
} }
err = blockD.deinit(); err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(0, err);
} }
@ -282,7 +270,7 @@ utest::v1::status_t test_setup(const size_t number_of_cases)
} }
Case cases[] = { Case cases[] = {
Case("Testing unaligned program blocks", test_spif_unaligned_program), Case("Testing unaligned erase blocks", test_spif_unaligned_erase),
Case("Testing read write random blocks", test_spif_random_program_read_erase), Case("Testing read write random blocks", test_spif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_spif_multi_threads) Case("Testing Multi Threads Erase Program Read", test_spif_multi_threads)
}; };