Merge pull request #3918 from OpenNuvoton/nuvoton

[NUC472/M453] Support unique locally administered MAC address and other driver updates
pull/3536/merge
Sam Grove 2017-03-22 12:03:19 +00:00 committed by GitHub
commit 2d2479ac1c
18 changed files with 351 additions and 244 deletions

View File

@ -100,36 +100,43 @@ struct ethernetif {
// Override mbed_mac_address of mbed_interface.c to provide ethernet devices with a semi-unique MAC address // Override mbed_mac_address of mbed_interface.c to provide ethernet devices with a semi-unique MAC address
void mbed_mac_address(char *mac) void mbed_mac_address(char *mac)
{ {
unsigned char my_mac_addr[6] = {0x02, 0x00, 0xac, 0x55, 0x66, 0x77}; // default mac adderss uint32_t uID1;
// Fetch word 0 // Fetch word 0
uint32_t word0 = *(uint32_t *)0x7FFFC; uint32_t word0 = *(uint32_t *)0x7F804; // 2KB Data Flash at 0x7F800
// Fetch word 1 // Fetch word 1
// we only want bottom 16 bits of word1 (MAC bits 32-47) // we only want bottom 16 bits of word1 (MAC bits 32-47)
// and bit 9 forced to 1, bit 8 forced to 0 // and bit 9 forced to 1, bit 8 forced to 0
// Locally administered MAC, reduced conflicts // Locally administered MAC, reduced conflicts
// http://en.wikipedia.org/wiki/MAC_address // http://en.wikipedia.org/wiki/MAC_address
uint32_t word1 = *(uint32_t *)0x7FFF8; uint32_t word1 = *(uint32_t *)0x7F800; // 2KB Data Flash at 0x7F800
if( word0 == 0xFFFFFFFF ) // Not burn any mac address at the last 2 words of flash
if( word0 == 0xFFFFFFFF ) // Not burn any mac address at 1st 2 words of Data Flash
{ {
mac[0] = my_mac_addr[0]; // with a semi-unique MAC address from the UUID
mac[1] = my_mac_addr[1]; /* Enable FMC ISP function */
mac[2] = my_mac_addr[2]; SYS_UnlockReg();
mac[3] = my_mac_addr[3]; FMC_Open();
mac[4] = my_mac_addr[4]; // = FMC_ReadUID(0);
mac[5] = my_mac_addr[5]; uID1 = FMC_ReadUID(1);
return; word1 = (uID1 & 0x003FFFFF) | ((uID1 & 0x030000) << 6) >> 8;
word0 = ((FMC_ReadUID(0) >> 4) << 20) | ((uID1 & 0xFF)<<12) | (FMC_ReadUID(2) & 0xFFF);
/* Disable FMC ISP function */
FMC_Close();
/* Lock protected registers */
SYS_LockReg();
} }
word1 |= 0x00000200; word1 |= 0x00000200;
word1 &= 0x0000FEFF; word1 &= 0x0000FEFF;
mac[0] = (word1 & 0x000000ff); mac[0] = (word1 & 0x0000ff00) >> 8;
mac[1] = (word1 & 0x0000ff00) >> 8; mac[1] = (word1 & 0x000000ff);
mac[2] = (word0 & 0xff000000) >> 24; mac[2] = (word0 & 0xff000000) >> 24;
mac[3] = (word0 & 0x00ff0000) >> 16; mac[3] = (word0 & 0x00ff0000) >> 16;
mac[4] = (word0 & 0x0000ff00) >> 8; mac[4] = (word0 & 0x0000ff00) >> 8;
mac[5] = (word0 & 0x000000ff); mac[5] = (word0 & 0x000000ff);
LWIP_DEBUGF(LWIP_DBG_LEVEL_WARNING|LWIP_DBG_ON, ("mac address %02x-%02x-%02x-%02x-%02x-%02x \r\n", mac[0], mac[1],mac[2],mac[3],mac[4],mac[5]));
} }
/** /**
@ -350,7 +357,7 @@ ethernetif_loopback_input(struct pbuf *p) // TODO: make sure packet no
{ {
/* pass all packets to ethernet_input, which decides what packets it supports */ /* pass all packets to ethernet_input, which decides what packets it supports */
if (netif->input(p, netif) != ERR_OK) { if (netif->input(p, netif) != ERR_OK) {
LWIP_DEBUGF(NETIF_DEBUG, ("k64f_enetif_input: input error\n")); LWIP_DEBUGF(NETIF_DEBUG, ("netif_input: input error\n"));
/* Free buffer */ /* Free buffer */
pbuf_free(p); pbuf_free(p);
} }

View File

@ -23,95 +23,101 @@
extern "C" { extern "C" {
#endif #endif
// NOTE: TIMER0_BASE=(APBPERIPH_BASE + 0x10000) // NOTE: Check all module base addresses (XXX_BASE in BSP) for free bit fields to define module name
// TIMER1_BASE=(APBPERIPH_BASE + 0x10020) // which encodes module base address and module index/subindex.
#define NU_MODNAME(MODBASE, SUBINDEX) ((MODBASE) | (SUBINDEX)) #define NU_MODSUBINDEX_Pos 0
#define NU_MODBASE(MODNAME) ((MODNAME) & 0xFFFFFFE0) #define NU_MODSUBINDEX_Msk (0x1Ful << NU_MODSUBINDEX_Pos)
#define NU_MODSUBINDEX(MODNAME) ((MODNAME) & 0x0000001F) #define NU_MODINDEX_Pos 20
#define NU_MODINDEX_Msk (0xFul << NU_MODINDEX_Pos)
#define NU_MODNAME(MODBASE, INDEX, SUBINDEX) ((MODBASE) | ((INDEX) << NU_MODINDEX_Pos) | ((SUBINDEX) << NU_MODSUBINDEX_Pos))
#define NU_MODBASE(MODNAME) ((MODNAME) & ~(NU_MODINDEX_Msk | NU_MODSUBINDEX_Msk))
#define NU_MODINDEX(MODNAME) (((MODNAME) & NU_MODINDEX_Msk) >> NU_MODINDEX_Pos)
#define NU_MODSUBINDEX(MODNAME) (((MODNAME) & NU_MODSUBINDEX_Msk) >> NU_MODSUBINDEX_Pos)
#if 0 #if 0
typedef enum { typedef enum {
GPIO_A = (int) NU_MODNAME(GPIOA_BASE, 0), GPIO_A = (int) NU_MODNAME(GPIOA_BASE, 0, 0),
GPIO_B = (int) NU_MODNAME(GPIOB_BASE, 0), GPIO_B = (int) NU_MODNAME(GPIOB_BASE, 1, 0),
GPIO_C = (int) NU_MODNAME(GPIOC_BASE, 0), GPIO_C = (int) NU_MODNAME(GPIOC_BASE, 2, 0),
GPIO_D = (int) NU_MODNAME(GPIOD_BASE, 0), GPIO_D = (int) NU_MODNAME(GPIOD_BASE, 3, 0),
GPIO_E = (int) NU_MODNAME(GPIOE_BASE, 0), GPIO_E = (int) NU_MODNAME(GPIOE_BASE, 4, 0),
GPIO_F = (int) NU_MODNAME(GPIOF_BASE, 0) GPIO_F = (int) NU_MODNAME(GPIOF_BASE, 5, 0)
} GPIOName; } GPIOName;
#endif #endif
typedef enum { typedef enum {
ADC_0_0 = (int) NU_MODNAME(EADC0_BASE, 0), ADC_0_0 = (int) NU_MODNAME(EADC0_BASE, 0, 0),
ADC_0_1 = (int) NU_MODNAME(EADC0_BASE, 1), ADC_0_1 = (int) NU_MODNAME(EADC0_BASE, 0, 1),
ADC_0_2 = (int) NU_MODNAME(EADC0_BASE, 2), ADC_0_2 = (int) NU_MODNAME(EADC0_BASE, 0, 2),
ADC_0_3 = (int) NU_MODNAME(EADC0_BASE, 3), ADC_0_3 = (int) NU_MODNAME(EADC0_BASE, 0, 3),
ADC_0_4 = (int) NU_MODNAME(EADC0_BASE, 4), ADC_0_4 = (int) NU_MODNAME(EADC0_BASE, 0, 4),
ADC_0_5 = (int) NU_MODNAME(EADC0_BASE, 5), ADC_0_5 = (int) NU_MODNAME(EADC0_BASE, 0, 5),
ADC_0_6 = (int) NU_MODNAME(EADC0_BASE, 6), ADC_0_6 = (int) NU_MODNAME(EADC0_BASE, 0, 6),
ADC_0_7 = (int) NU_MODNAME(EADC0_BASE, 7), ADC_0_7 = (int) NU_MODNAME(EADC0_BASE, 0, 7),
ADC_0_8 = (int) NU_MODNAME(EADC0_BASE, 8), ADC_0_8 = (int) NU_MODNAME(EADC0_BASE, 0, 8),
ADC_0_9 = (int) NU_MODNAME(EADC0_BASE, 9), ADC_0_9 = (int) NU_MODNAME(EADC0_BASE, 0, 9),
ADC_0_10 = (int) NU_MODNAME(EADC0_BASE, 10), ADC_0_10 = (int) NU_MODNAME(EADC0_BASE, 0, 10),
ADC_0_11 = (int) NU_MODNAME(EADC0_BASE, 11), ADC_0_11 = (int) NU_MODNAME(EADC0_BASE, 0, 11),
ADC_0_12 = (int) NU_MODNAME(EADC0_BASE, 12), ADC_0_12 = (int) NU_MODNAME(EADC0_BASE, 0, 12),
ADC_0_13 = (int) NU_MODNAME(EADC0_BASE, 13), ADC_0_13 = (int) NU_MODNAME(EADC0_BASE, 0, 13),
ADC_0_14 = (int) NU_MODNAME(EADC0_BASE, 14), ADC_0_14 = (int) NU_MODNAME(EADC0_BASE, 0, 14),
ADC_0_15 = (int) NU_MODNAME(EADC0_BASE, 15) ADC_0_15 = (int) NU_MODNAME(EADC0_BASE, 0, 15)
} ADCName; } ADCName;
typedef enum { typedef enum {
UART_0 = (int) NU_MODNAME(UART0_BASE, 0), UART_0 = (int) NU_MODNAME(UART0_BASE, 0, 0),
UART_1 = (int) NU_MODNAME(UART1_BASE, 0), UART_1 = (int) NU_MODNAME(UART1_BASE, 1, 0),
UART_2 = (int) NU_MODNAME(UART2_BASE, 0), UART_2 = (int) NU_MODNAME(UART2_BASE, 2, 0),
UART_3 = (int) NU_MODNAME(UART3_BASE, 0), UART_3 = (int) NU_MODNAME(UART3_BASE, 3, 0),
// FIXME: board-specific // FIXME: board-specific
STDIO_UART = UART_3 STDIO_UART = UART_3
} UARTName; } UARTName;
typedef enum { typedef enum {
SPI_0 = (int) NU_MODNAME(SPI0_BASE, 0), SPI_0 = (int) NU_MODNAME(SPI0_BASE, 0, 0),
SPI_1 = (int) NU_MODNAME(SPI1_BASE, 0), SPI_1 = (int) NU_MODNAME(SPI1_BASE, 1, 0),
SPI_2 = (int) NU_MODNAME(SPI2_BASE, 0) SPI_2 = (int) NU_MODNAME(SPI2_BASE, 2, 0)
} SPIName; } SPIName;
typedef enum { typedef enum {
I2C_0 = (int) NU_MODNAME(I2C0_BASE, 0), I2C_0 = (int) NU_MODNAME(I2C0_BASE, 0, 0),
I2C_1 = (int) NU_MODNAME(I2C1_BASE, 0) I2C_1 = (int) NU_MODNAME(I2C1_BASE, 1, 0)
} I2CName; } I2CName;
typedef enum { typedef enum {
PWM_0_0 = (int) NU_MODNAME(PWM0_BASE, 0), PWM_0_0 = (int) NU_MODNAME(PWM0_BASE, 0, 0),
PWM_0_1 = (int) NU_MODNAME(PWM0_BASE, 1), PWM_0_1 = (int) NU_MODNAME(PWM0_BASE, 0, 1),
PWM_0_2 = (int) NU_MODNAME(PWM0_BASE, 2), PWM_0_2 = (int) NU_MODNAME(PWM0_BASE, 0, 2),
PWM_0_3 = (int) NU_MODNAME(PWM0_BASE, 3), PWM_0_3 = (int) NU_MODNAME(PWM0_BASE, 0, 3),
PWM_0_4 = (int) NU_MODNAME(PWM0_BASE, 4), PWM_0_4 = (int) NU_MODNAME(PWM0_BASE, 0, 4),
PWM_0_5 = (int) NU_MODNAME(PWM0_BASE, 5), PWM_0_5 = (int) NU_MODNAME(PWM0_BASE, 0, 5),
PWM_1_0 = (int) NU_MODNAME(PWM1_BASE, 0), PWM_1_0 = (int) NU_MODNAME(PWM1_BASE, 1, 0),
PWM_1_1 = (int) NU_MODNAME(PWM1_BASE, 1), PWM_1_1 = (int) NU_MODNAME(PWM1_BASE, 1, 1),
PWM_1_2 = (int) NU_MODNAME(PWM1_BASE, 2), PWM_1_2 = (int) NU_MODNAME(PWM1_BASE, 1, 2),
PWM_1_3 = (int) NU_MODNAME(PWM1_BASE, 3), PWM_1_3 = (int) NU_MODNAME(PWM1_BASE, 1, 3),
PWM_1_4 = (int) NU_MODNAME(PWM1_BASE, 4), PWM_1_4 = (int) NU_MODNAME(PWM1_BASE, 1, 4),
PWM_1_5 = (int) NU_MODNAME(PWM1_BASE, 5) PWM_1_5 = (int) NU_MODNAME(PWM1_BASE, 1, 5)
} PWMName; } PWMName;
typedef enum { typedef enum {
TIMER_0 = (int) NU_MODNAME(TMR01_BASE, 0), TIMER_0 = (int) NU_MODNAME(TMR01_BASE, 0, 0),
TIMER_1 = (int) NU_MODNAME(TMR01_BASE + 0x20, 0), TIMER_1 = (int) NU_MODNAME(TMR01_BASE + 0x20, 1, 0),
TIMER_2 = (int) NU_MODNAME(TMR23_BASE, 0), TIMER_2 = (int) NU_MODNAME(TMR23_BASE, 2, 0),
TIMER_3 = (int) NU_MODNAME(TMR23_BASE + 0x20, 0), TIMER_3 = (int) NU_MODNAME(TMR23_BASE + 0x20, 3, 0),
} TIMERName; } TIMERName;
typedef enum { typedef enum {
RTC_0 = (int) NU_MODNAME(RTC_BASE, 0) RTC_0 = (int) NU_MODNAME(RTC_BASE, 0, 0)
} RTCName; } RTCName;
typedef enum { typedef enum {
DMA_0 = (int) NU_MODNAME(PDMA_BASE, 0) DMA_0 = (int) NU_MODNAME(PDMA_BASE, 0, 0)
} DMAName; } DMAName;
typedef enum { typedef enum {
CAN_0 = (int) NU_MODNAME(CAN0_BASE, 0) CAN_0 = (int) NU_MODNAME(CAN0_BASE, 0, 0)
} CANName; } CANName;
#ifdef __cplusplus #ifdef __cplusplus

View File

@ -22,13 +22,32 @@
extern "C" { extern "C" {
#endif #endif
#define NU_PORT_SHIFT 12 #define NU_PININDEX_Pos 0
#define NU_PINNAME_TO_PORT(name) ((unsigned int)(name) >> NU_PORT_SHIFT) #define NU_PININDEX_Msk (0xFFul << NU_PININDEX_Pos)
#define NU_PINNAME_TO_PIN(name) ((unsigned int)(name) & ~(0xFFFFFFFF << NU_PORT_SHIFT)) #define NU_PINPORT_Pos 8
#define NU_PORT_N_PIN_TO_PINNAME(port, pin) ((((unsigned int) (port)) << (NU_PORT_SHIFT)) | ((unsigned int) (pin))) #define NU_PINPORT_Msk (0xFul << NU_PINPORT_Pos)
#define NU_PORT_BASE(port) ((GPIO_T *)(((uint32_t) GPIOA_BASE) + 0x40 * port)) #define NU_PIN_MODINDEX_Pos 12
#define NU_MFP_POS(pin) ((pin % 8) * 4) #define NU_PIN_MODINDEX_Msk (0xFul << NU_PIN_MODINDEX_Pos)
#define NU_MFP_MSK(pin) (0xful << NU_MFP_POS(pin)) #define NU_PIN_BIND_Pos 16
#define NU_PIN_BIND_Msk (0x1ul << NU_PIN_BIND_Pos)
#define NU_PININDEX(PINNAME) (((unsigned int)(PINNAME) & NU_PININDEX_Msk) >> NU_PININDEX_Pos)
#define NU_PINPORT(PINNAME) (((unsigned int)(PINNAME) & NU_PINPORT_Msk) >> NU_PINPORT_Pos)
#define NU_PIN_BIND(PINNAME) (((unsigned int)(PINNAME) & NU_PIN_BIND_Msk) >> NU_PIN_BIND_Pos)
#define NU_PIN_MODINDEX(PINNAME) (((unsigned int)(PINNAME) & NU_PIN_MODINDEX_Msk) >> NU_PIN_MODINDEX_Pos)
#define NU_PINNAME(PORT, PIN) ((((unsigned int) (PORT)) << (NU_PINPORT_Pos)) | (((unsigned int) (PIN)) << NU_PININDEX_Pos))
#define NU_PINNAME_BIND(PINNAME, modname) NU_PINNAME_BIND_(NU_PINPORT(PINNAME), NU_PININDEX(PINNAME), modname)
#define NU_PINNAME_BIND_(PORT, PIN, modname) ((((unsigned int)(PORT)) << NU_PINPORT_Pos) | (((unsigned int)(PIN)) << NU_PININDEX_Pos) | (NU_MODINDEX(modname) << NU_PIN_MODINDEX_Pos) | NU_PIN_BIND_Msk)
#define NU_PORT_BASE(port) ((GPIO_T *)(((uint32_t) GPIOA_BASE) + 0x40 * port))
#define NU_MFP_POS(pin) ((pin % 8) * 4)
#define NU_MFP_MSK(pin) (0xful << NU_MFP_POS(pin))
// LEGACY
#define NU_PINNAME_TO_PIN(PINNAME) NU_PININDEX(PINNAME)
#define NU_PINNAME_TO_PORT(PINNAME) NU_PINPORT(PINNAME)
#define NU_PINNAME_TO_MODSUBINDEX(PINNAME) NU_PIN_MODINDEX(PINNAME)
#define NU_PORT_N_PIN_TO_PINNAME(PORT, PIN) NU_PINNAME((PORT), (PIN))
typedef enum { typedef enum {
PIN_INPUT, PIN_INPUT,

View File

@ -69,7 +69,7 @@
PA0 = 0x00; PA0 = 0x00;
PA1 = 0x00; PA1 = 0x00;
CAN_Open((CAN_T *)obj->can, 500000, CAN_NORMAL_MODE); CAN_Open((CAN_T *)NU_MODBASE(obj->can), 500000, CAN_NORMAL_MODE);
can_filter(obj, 0, 0, CANStandard, 0); can_filter(obj, 0, 0, CANStandard, 0);
} }
@ -91,9 +91,9 @@ void can_free(can_t *obj)
int can_frequency(can_t *obj, int hz) int can_frequency(can_t *obj, int hz)
{ {
CAN_SetBaudRate((CAN_T *)obj->can, hz); CAN_SetBaudRate((CAN_T *)NU_MODBASE(obj->can), hz);
return CAN_GetCANBitRate((CAN_T *)obj->can); return CAN_GetCANBitRate((CAN_T *)NU_MODBASE(obj->can));
} }
static void can_irq(CANName name, int id) static void can_irq(CANName name, int id)
@ -154,7 +154,7 @@ void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id)
void can_irq_free(can_t *obj) void can_irq_free(can_t *obj)
{ {
CAN_DisableInt((CAN_T *)obj->can, (CAN_CON_IE_Msk|CAN_CON_SIE_Msk|CAN_CON_EIE_Msk)); CAN_DisableInt((CAN_T *)NU_MODBASE(obj->can), (CAN_CON_IE_Msk|CAN_CON_SIE_Msk|CAN_CON_EIE_Msk));
can_irq_ids[obj->index] = 0; can_irq_ids[obj->index] = 0;
@ -163,8 +163,9 @@ void can_irq_free(can_t *obj)
void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable) void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable)
{ {
CAN_T *can_base = (CAN_T *) NU_MODBASE(obj->can);
CAN_EnterInitMode((CAN_T*)obj->can, ((enable != 0 )? CAN_CON_IE_Msk :0) ); CAN_EnterInitMode(can_base, ((enable != 0 )? CAN_CON_IE_Msk :0) );
switch (irq) switch (irq)
@ -172,15 +173,15 @@ void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable)
case IRQ_ERROR: case IRQ_ERROR:
case IRQ_BUS: case IRQ_BUS:
case IRQ_PASSIVE: case IRQ_PASSIVE:
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_EIE_Msk; can_base->CON = can_base->CON |CAN_CON_EIE_Msk;
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_SIE_Msk; can_base->CON = can_base->CON |CAN_CON_SIE_Msk;
break; break;
case IRQ_RX: case IRQ_RX:
case IRQ_TX: case IRQ_TX:
case IRQ_OVERRUN: case IRQ_OVERRUN:
case IRQ_WAKEUP: case IRQ_WAKEUP:
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_SIE_Msk; can_base->CON = can_base->CON |CAN_CON_SIE_Msk;
break; break;
default: default:
@ -188,7 +189,7 @@ void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable)
} }
CAN_LeaveInitMode((CAN_T*)obj->can); CAN_LeaveInitMode(can_base);
NVIC_SetVector(CAN0_IRQn, (uint32_t)&CAN0_IRQHandler); NVIC_SetVector(CAN0_IRQn, (uint32_t)&CAN0_IRQHandler);
NVIC_EnableIRQ(CAN0_IRQn); NVIC_EnableIRQ(CAN0_IRQn);
@ -205,14 +206,14 @@ int can_write(can_t *obj, CAN_Message msg, int cc)
CMsg.DLC = msg.len; CMsg.DLC = msg.len;
memcpy((void *)&CMsg.Data[0],(const void *)&msg.data[0], (unsigned int)8); memcpy((void *)&CMsg.Data[0],(const void *)&msg.data[0], (unsigned int)8);
return CAN_Transmit((CAN_T *)(obj->can), cc, &CMsg); return CAN_Transmit((CAN_T *)NU_MODBASE(obj->can), cc, &CMsg);
} }
int can_read(can_t *obj, CAN_Message *msg, int handle) int can_read(can_t *obj, CAN_Message *msg, int handle)
{ {
STR_CANMSG_T CMsg; STR_CANMSG_T CMsg;
if(!CAN_Receive((CAN_T *)(obj->can), handle, &CMsg)) if(!CAN_Receive((CAN_T *)NU_MODBASE(obj->can), handle, &CMsg))
return 0; return 0;
msg->format = (CANFormat)CMsg.IdType; msg->format = (CANFormat)CMsg.IdType;
@ -226,32 +227,34 @@ int can_read(can_t *obj, CAN_Message *msg, int handle)
int can_mode(can_t *obj, CanMode mode) int can_mode(can_t *obj, CanMode mode)
{ {
CAN_T *can_base = (CAN_T *) NU_MODBASE(obj->can);
int success = 0; int success = 0;
switch (mode) switch (mode)
{ {
case MODE_RESET: case MODE_RESET:
CAN_LeaveTestMode((CAN_T*)obj->can); CAN_LeaveTestMode(can_base);
success = 1; success = 1;
break; break;
case MODE_NORMAL: case MODE_NORMAL:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_BASIC_Msk); CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk);
success = 1; success = 1;
break; break;
case MODE_SILENT: case MODE_SILENT:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_SILENT_Msk); CAN_EnterTestMode(can_base, CAN_TEST_SILENT_Msk);
success = 1; success = 1;
break; break;
case MODE_TEST_LOCAL: case MODE_TEST_LOCAL:
case MODE_TEST_GLOBAL: case MODE_TEST_GLOBAL:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_LBACK_Msk); CAN_EnterTestMode(can_base, CAN_TEST_LBACK_Msk);
success = 1; success = 1;
break; break;
case MODE_TEST_SILENT: case MODE_TEST_SILENT:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_SILENT_Msk | CAN_TEST_LBACK_Msk); CAN_EnterTestMode(can_base, CAN_TEST_SILENT_Msk | CAN_TEST_LBACK_Msk);
success = 1; success = 1;
break; break;
@ -267,7 +270,7 @@ int can_mode(can_t *obj, CanMode mode)
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle)
{ {
return CAN_SetRxMsg((CAN_T *)(obj->can), handle , (uint32_t)format, id); return CAN_SetRxMsg((CAN_T *)NU_MODBASE(obj->can), handle , (uint32_t)format, id);
} }
@ -285,19 +288,19 @@ void can_reset(can_t *obj)
unsigned char can_rderror(can_t *obj) unsigned char can_rderror(can_t *obj)
{ {
CAN_T *can = (CAN_T *)(obj->can); CAN_T *can = (CAN_T *)NU_MODBASE(obj->can);
return ((can->ERR>>8)&0xFF); return ((can->ERR>>8)&0xFF);
} }
unsigned char can_tderror(can_t *obj) unsigned char can_tderror(can_t *obj)
{ {
CAN_T *can = (CAN_T *)(obj->can); CAN_T *can = (CAN_T *)NU_MODBASE(obj->can);
return ((can->ERR)&0xFF); return ((can->ERR)&0xFF);
} }
void can_monitor(can_t *obj, int silent) void can_monitor(can_t *obj, int silent)
{ {
CAN_EnterTestMode((CAN_T *)(obj->can), CAN_TEST_SILENT_Msk); CAN_EnterTestMode((CAN_T *)NU_MODBASE(obj->can), CAN_TEST_SILENT_Msk);
} }
#endif // DEVICE_CAN #endif // DEVICE_CAN

View File

@ -32,6 +32,7 @@ extern "C" {
#define DMA_EVENT_MASK DMA_EVENT_ALL #define DMA_EVENT_MASK DMA_EVENT_ALL
void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t event); void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t event);
PDMA_T *dma_modbase(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -111,6 +111,11 @@ void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t even
NVIC_EnableIRQ(dma_modinit.irq_n); NVIC_EnableIRQ(dma_modinit.irq_n);
} }
PDMA_T *dma_modbase(void)
{
return (PDMA_T *) NU_MODBASE(dma_modinit.modname);
}
static void pdma_vec(void) static void pdma_vec(void)
{ {
uint32_t intsts = PDMA_GET_INT_STATUS(); uint32_t intsts = PDMA_GET_INT_STATUS();
@ -165,7 +170,7 @@ static void pdma_vec(void)
PDMA->INTSTS = reqto; PDMA->INTSTS = reqto;
while (reqto) { while (reqto) {
int chn_id = nu_ctz(reqto) >> PDMA_INTSTS_REQTOFn_Pos; int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFn_Pos;
if (dma_chn_mask & (1 << chn_id)) { if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id; struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) { if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) {

View File

@ -99,9 +99,11 @@ void pwmout_init(pwmout_t* obj, PinName pin)
((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn; ((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn;
// Mark this module to be inited. if (((struct nu_pwm_var *) modinit->var)->en_msk) {
int i = modinit - pwm_modinit_tab; // Mark this module to be inited.
pwm_modinit_mask |= 1 << i; int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
} }
void pwmout_free(pwmout_t* obj) void pwmout_free(pwmout_t* obj)
@ -120,9 +122,11 @@ void pwmout_free(pwmout_t* obj)
CLK_DisableModuleClock(modinit->clkidx); CLK_DisableModuleClock(modinit->clkidx);
} }
// Mark this module to be deinited. if (((struct nu_pwm_var *) modinit->var)->en_msk == 0) {
int i = modinit - pwm_modinit_tab; // Mark this module to be deinited.
pwm_modinit_mask &= ~(1 << i); int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
} }
void pwmout_write(pwmout_t* obj, float value) void pwmout_write(pwmout_t* obj, float value)

View File

@ -255,7 +255,7 @@ void serial_free(serial_t *obj)
void serial_baud(serial_t *obj, int baudrate) { void serial_baud(serial_t *obj, int baudrate) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
obj->serial.baudrate = baudrate; obj->serial.baudrate = baudrate;
UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate); UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate);
@ -263,7 +263,7 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
// TODO: Assert for not supported parity and data bits // TODO: Assert for not supported parity and data bits
obj->serial.databits = data_bits; obj->serial.databits = data_bits;
@ -325,7 +325,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{ {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
@ -502,7 +502,9 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart); MBED_ASSERT(modinit->modname == obj->serial.uart);
PDMA->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_tx, PDMA_SetTransferMode(obj->serial.dma_chn_id_tx,
((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -515,7 +517,7 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
// NUC472: End of source address // NUC472: End of source address
// M451: Start of source address // M451: Start of source address
PDMA_SAR_INC, // Source address incremental PDMA_SAR_INC, // Source address incremental
(uint32_t) obj->serial.uart, // Destination address (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address
PDMA_DAR_FIX); // Destination address fixed PDMA_DAR_FIX); // Destination address fixed
PDMA_SetBurstType(obj->serial.dma_chn_id_tx, PDMA_SetBurstType(obj->serial.dma_chn_id_tx,
PDMA_REQ_SINGLE, // Single mode PDMA_REQ_SINGLE, // Single mode
@ -563,7 +565,9 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart); MBED_ASSERT(modinit->modname == obj->serial.uart);
PDMA->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_rx, PDMA_SetTransferMode(obj->serial.dma_chn_id_rx,
((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -572,7 +576,7 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
(rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
rx_length); rx_length);
PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx, PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx,
(uint32_t) obj->serial.uart, // Source address (uint32_t) NU_MODBASE(obj->serial.uart), // Source address
PDMA_SAR_FIX, // Source address fixed PDMA_SAR_FIX, // Source address fixed
(uint32_t) rx, // NOTE: (uint32_t) rx, // NOTE:
// NUC472: End of destination address // NUC472: End of destination address
@ -593,14 +597,16 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
void serial_tx_abort_asynch(serial_t *obj) void serial_tx_abort_asynch(serial_t *obj)
{ {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) { if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_INT_TRANS_DONE); PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_tx); //PDMA_STOP(obj->serial.dma_chn_id_tx);
PDMA->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx);
} }
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk); UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk);
} }
@ -615,11 +621,13 @@ void serial_tx_abort_asynch(serial_t *obj)
void serial_rx_abort_asynch(serial_t *obj) void serial_rx_abort_asynch(serial_t *obj)
{ {
if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) { if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_INT_TRANS_DONE); PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_rx); //PDMA_STOP(obj->serial.dma_chn_id_rx);
PDMA->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx);
} }
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk); UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk);
} }

View File

@ -314,8 +314,10 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->spi.spi); MBED_ASSERT(modinit->modname == obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
// Configure tx DMA // Configure tx DMA
PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, PDMA_SetTransferMode(obj->spi.dma_chn_id_tx,
((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -339,7 +341,7 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
// Configure rx DMA // Configure rx DMA
PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, PDMA_SetTransferMode(obj->spi.dma_chn_id_rx,
((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -380,6 +382,7 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
void spi_abort_asynch(spi_t *obj) void spi_abort_asynch(spi_t *obj)
{ {
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
if (obj->spi.dma_usage != DMA_USAGE_NEVER) { if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
// Receive FIFO Overrun in case of tx length > rx length on DMA way // Receive FIFO Overrun in case of tx length > rx length on DMA way
@ -388,18 +391,18 @@ void spi_abort_asynch(spi_t *obj)
} }
if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0); PDMA_DisableInt(obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->spi.dma_chn_id_tx); //PDMA_STOP(obj->spi.dma_chn_id_tx);
PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx); pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
} }
SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0); PDMA_DisableInt(obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->spi.dma_chn_id_rx); //PDMA_STOP(obj->spi.dma_chn_id_rx);
PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx); pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
} }
SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
} }

View File

@ -23,111 +23,117 @@
extern "C" { extern "C" {
#endif #endif
// NOTE: TIMER0_BASE=(APBPERIPH_BASE + 0x10000) // NOTE: Check all module base addresses (XXX_BASE in BSP) for free bit fields to define module name
// TIMER1_BASE=(APBPERIPH_BASE + 0x10020) // which encodes module base address and module index/subindex.
#define NU_MODNAME(MODBASE, SUBINDEX) ((MODBASE) | (SUBINDEX)) #define NU_MODSUBINDEX_Pos 0
#define NU_MODBASE(MODNAME) ((MODNAME) & 0xFFFFFFE0) #define NU_MODSUBINDEX_Msk (0x1Ful << NU_MODSUBINDEX_Pos)
#define NU_MODSUBINDEX(MODNAME) ((MODNAME) & 0x0000001F) #define NU_MODINDEX_Pos 20
#define NU_MODINDEX_Msk (0xFul << NU_MODINDEX_Pos)
#define NU_MODNAME(MODBASE, INDEX, SUBINDEX) ((MODBASE) | ((INDEX) << NU_MODINDEX_Pos) | ((SUBINDEX) << NU_MODSUBINDEX_Pos))
#define NU_MODBASE(MODNAME) ((MODNAME) & ~(NU_MODINDEX_Msk | NU_MODSUBINDEX_Msk))
#define NU_MODINDEX(MODNAME) (((MODNAME) & NU_MODINDEX_Msk) >> NU_MODINDEX_Pos)
#define NU_MODSUBINDEX(MODNAME) (((MODNAME) & NU_MODSUBINDEX_Msk) >> NU_MODSUBINDEX_Pos)
#if 0 #if 0
typedef enum { typedef enum {
GPIO_A = (int) NU_MODNAME(GPIOA_BASE, 0), GPIO_A = (int) NU_MODNAME(GPIOA_BASE, 0, 0),
GPIO_B = (int) NU_MODNAME(GPIOB_BASE, 0), GPIO_B = (int) NU_MODNAME(GPIOB_BASE, 1, 0),
GPIO_C = (int) NU_MODNAME(GPIOC_BASE, 0), GPIO_C = (int) NU_MODNAME(GPIOC_BASE, 2, 0),
GPIO_D = (int) NU_MODNAME(GPIOD_BASE, 0), GPIO_D = (int) NU_MODNAME(GPIOD_BASE, 3, 0),
GPIO_E = (int) NU_MODNAME(GPIOE_BASE, 0), GPIO_E = (int) NU_MODNAME(GPIOE_BASE, 4, 0),
GPIO_F = (int) NU_MODNAME(GPIOF_BASE, 0), GPIO_F = (int) NU_MODNAME(GPIOF_BASE, 5, 0),
GPIO_G = (int) NU_MODNAME(GPIOG_BASE, 0), GPIO_G = (int) NU_MODNAME(GPIOG_BASE, 6, 0),
GPIO_H = (int) NU_MODNAME(GPIOH_BASE, 0), GPIO_H = (int) NU_MODNAME(GPIOH_BASE, 7, 0),
GPIO_I = (int) NU_MODNAME(GPIOI_BASE, 0) GPIO_I = (int) NU_MODNAME(GPIOI_BASE, 8, 0)
} GPIOName; } GPIOName;
#endif #endif
typedef enum { typedef enum {
ADC_0_0 = (int) NU_MODNAME(EADC_BASE, 0), ADC_0_0 = (int) NU_MODNAME(EADC_BASE, 0, 0),
ADC_0_1 = (int) NU_MODNAME(EADC_BASE, 1), ADC_0_1 = (int) NU_MODNAME(EADC_BASE, 0, 1),
ADC_0_2 = (int) NU_MODNAME(EADC_BASE, 2), ADC_0_2 = (int) NU_MODNAME(EADC_BASE, 0, 2),
ADC_0_3 = (int) NU_MODNAME(EADC_BASE, 3), ADC_0_3 = (int) NU_MODNAME(EADC_BASE, 0, 3),
ADC_0_4 = (int) NU_MODNAME(EADC_BASE, 4), ADC_0_4 = (int) NU_MODNAME(EADC_BASE, 0, 4),
ADC_0_5 = (int) NU_MODNAME(EADC_BASE, 5), ADC_0_5 = (int) NU_MODNAME(EADC_BASE, 0, 5),
ADC_0_6 = (int) NU_MODNAME(EADC_BASE, 6), ADC_0_6 = (int) NU_MODNAME(EADC_BASE, 0, 6),
ADC_0_7 = (int) NU_MODNAME(EADC_BASE, 7), ADC_0_7 = (int) NU_MODNAME(EADC_BASE, 0, 7),
ADC_1_0 = (int) NU_MODNAME(EADC_BASE, 8), ADC_1_0 = (int) NU_MODNAME(EADC_BASE, 1, 0),
ADC_1_1 = (int) NU_MODNAME(EADC_BASE, 9), ADC_1_1 = (int) NU_MODNAME(EADC_BASE, 1, 1),
ADC_1_2 = (int) NU_MODNAME(EADC_BASE, 10), ADC_1_2 = (int) NU_MODNAME(EADC_BASE, 1, 2),
ADC_1_3 = (int) NU_MODNAME(EADC_BASE, 11), ADC_1_3 = (int) NU_MODNAME(EADC_BASE, 1, 3),
ADC_1_4 = (int) NU_MODNAME(EADC_BASE, 12), ADC_1_4 = (int) NU_MODNAME(EADC_BASE, 1, 4),
ADC_1_5 = (int) NU_MODNAME(EADC_BASE, 13), ADC_1_5 = (int) NU_MODNAME(EADC_BASE, 1, 5),
ADC_1_6 = (int) NU_MODNAME(EADC_BASE, 14), ADC_1_6 = (int) NU_MODNAME(EADC_BASE, 1, 6),
ADC_1_7 = (int) NU_MODNAME(EADC_BASE, 15), ADC_1_7 = (int) NU_MODNAME(EADC_BASE, 1, 7),
} ADCName; } ADCName;
typedef enum { typedef enum {
UART_0 = (int) NU_MODNAME(UART0_BASE, 0), UART_0 = (int) NU_MODNAME(UART0_BASE, 0, 0),
UART_1 = (int) NU_MODNAME(UART1_BASE, 0), UART_1 = (int) NU_MODNAME(UART1_BASE, 1, 0),
UART_2 = (int) NU_MODNAME(UART2_BASE, 0), UART_2 = (int) NU_MODNAME(UART2_BASE, 2, 0),
UART_3 = (int) NU_MODNAME(UART3_BASE, 0), UART_3 = (int) NU_MODNAME(UART3_BASE, 3, 0),
UART_4 = (int) NU_MODNAME(UART4_BASE, 0), UART_4 = (int) NU_MODNAME(UART4_BASE, 4, 0),
UART_5 = (int) NU_MODNAME(UART5_BASE, 0), UART_5 = (int) NU_MODNAME(UART5_BASE, 5, 0),
// FIXME: board-specific // FIXME: board-specific
STDIO_UART = UART_3 STDIO_UART = UART_3
} UARTName; } UARTName;
typedef enum { typedef enum {
SPI_0 = (int) NU_MODNAME(SPI0_BASE, 0), SPI_0 = (int) NU_MODNAME(SPI0_BASE, 0, 0),
SPI_1 = (int) NU_MODNAME(SPI1_BASE, 0), SPI_1 = (int) NU_MODNAME(SPI1_BASE, 1, 0),
SPI_2 = (int) NU_MODNAME(SPI2_BASE, 0), SPI_2 = (int) NU_MODNAME(SPI2_BASE, 2, 0),
SPI_3 = (int) NU_MODNAME(SPI3_BASE, 0) SPI_3 = (int) NU_MODNAME(SPI3_BASE, 3, 0)
} SPIName; } SPIName;
typedef enum { typedef enum {
I2C_0 = (int) NU_MODNAME(I2C0_BASE, 0), I2C_0 = (int) NU_MODNAME(I2C0_BASE, 0, 0),
I2C_1 = (int) NU_MODNAME(I2C1_BASE, 0), I2C_1 = (int) NU_MODNAME(I2C1_BASE, 1, 0),
I2C_2 = (int) NU_MODNAME(I2C2_BASE, 0), I2C_2 = (int) NU_MODNAME(I2C2_BASE, 2, 0),
I2C_3 = (int) NU_MODNAME(I2C3_BASE, 0), I2C_3 = (int) NU_MODNAME(I2C3_BASE, 3, 0),
I2C_4 = (int) NU_MODNAME(I2C4_BASE, 0) I2C_4 = (int) NU_MODNAME(I2C4_BASE, 4, 0)
} I2CName; } I2CName;
typedef enum { typedef enum {
PWM_0_0 = (int) NU_MODNAME(PWM0_BASE, 0), PWM_0_0 = (int) NU_MODNAME(PWM0_BASE, 0, 0),
PWM_0_1 = (int) NU_MODNAME(PWM0_BASE, 1), PWM_0_1 = (int) NU_MODNAME(PWM0_BASE, 0, 1),
PWM_0_2 = (int) NU_MODNAME(PWM0_BASE, 2), PWM_0_2 = (int) NU_MODNAME(PWM0_BASE, 0, 2),
PWM_0_3 = (int) NU_MODNAME(PWM0_BASE, 3), PWM_0_3 = (int) NU_MODNAME(PWM0_BASE, 0, 3),
PWM_0_4 = (int) NU_MODNAME(PWM0_BASE, 4), PWM_0_4 = (int) NU_MODNAME(PWM0_BASE, 0, 4),
PWM_0_5 = (int) NU_MODNAME(PWM0_BASE, 5), PWM_0_5 = (int) NU_MODNAME(PWM0_BASE, 0, 5),
PWM_1_0 = (int) NU_MODNAME(PWM1_BASE, 0), PWM_1_0 = (int) NU_MODNAME(PWM1_BASE, 1, 0),
PWM_1_1 = (int) NU_MODNAME(PWM1_BASE, 1), PWM_1_1 = (int) NU_MODNAME(PWM1_BASE, 1, 1),
PWM_1_2 = (int) NU_MODNAME(PWM1_BASE, 2), PWM_1_2 = (int) NU_MODNAME(PWM1_BASE, 1, 2),
PWM_1_3 = (int) NU_MODNAME(PWM1_BASE, 3), PWM_1_3 = (int) NU_MODNAME(PWM1_BASE, 1, 3),
PWM_1_4 = (int) NU_MODNAME(PWM1_BASE, 4), PWM_1_4 = (int) NU_MODNAME(PWM1_BASE, 1, 4),
PWM_1_5 = (int) NU_MODNAME(PWM1_BASE, 5) PWM_1_5 = (int) NU_MODNAME(PWM1_BASE, 1, 5)
} PWMName; } PWMName;
typedef enum { typedef enum {
TIMER_0 = (int) NU_MODNAME(TIMER0_BASE, 0), TIMER_0 = (int) NU_MODNAME(TIMER0_BASE, 0, 0),
TIMER_1 = (int) NU_MODNAME(TIMER1_BASE, 0), TIMER_1 = (int) NU_MODNAME(TIMER1_BASE, 1, 0),
TIMER_2 = (int) NU_MODNAME(TIMER2_BASE, 0), TIMER_2 = (int) NU_MODNAME(TIMER2_BASE, 2, 0),
TIMER_3 = (int) NU_MODNAME(TIMER3_BASE, 0) TIMER_3 = (int) NU_MODNAME(TIMER3_BASE, 3, 0)
} TIMERName; } TIMERName;
typedef enum { typedef enum {
RTC_0 = (int) NU_MODNAME(RTC_BASE, 0) RTC_0 = (int) NU_MODNAME(RTC_BASE, 0, 0)
} RTCName; } RTCName;
typedef enum { typedef enum {
DMA_0 = (int) NU_MODNAME(PDMA_BASE, 0) DMA_0 = (int) NU_MODNAME(PDMA_BASE, 0, 0)
} DMAName; } DMAName;
typedef enum { typedef enum {
SD_0_0 = (int) NU_MODNAME(SD_BASE, 0), SD_0_0 = (int) NU_MODNAME(SD_BASE, 0, 0),
SD_0_1 = (int) NU_MODNAME(SD_BASE, 1) SD_0_1 = (int) NU_MODNAME(SD_BASE, 0, 1)
} SDName; } SDName;
typedef enum { typedef enum {
CAN_0 = (int) NU_MODNAME(CAN0_BASE, 0), CAN_0 = (int) NU_MODNAME(CAN0_BASE, 0, 0),
CAN_1 = (int) NU_MODNAME(CAN1_BASE, 0) CAN_1 = (int) NU_MODNAME(CAN1_BASE, 1, 0)
} CANName; } CANName;
#ifdef __cplusplus #ifdef __cplusplus

View File

@ -22,13 +22,32 @@
extern "C" { extern "C" {
#endif #endif
#define NU_PORT_SHIFT 12 #define NU_PININDEX_Pos 0
#define NU_PINNAME_TO_PORT(name) ((unsigned int)(name) >> NU_PORT_SHIFT) #define NU_PININDEX_Msk (0xFFul << NU_PININDEX_Pos)
#define NU_PINNAME_TO_PIN(name) ((unsigned int)(name) & ~(0xFFFFFFFF << NU_PORT_SHIFT)) #define NU_PINPORT_Pos 8
#define NU_PORT_N_PIN_TO_PINNAME(port, pin) ((((unsigned int) (port)) << (NU_PORT_SHIFT)) | ((unsigned int) (pin))) #define NU_PINPORT_Msk (0xFul << NU_PINPORT_Pos)
#define NU_PORT_BASE(port) ((GPIO_T *)(((uint32_t) GPIOA_BASE) + 0x40 * port)) #define NU_PIN_MODINDEX_Pos 12
#define NU_MFP_POS(pin) ((pin % 8) * 4) #define NU_PIN_MODINDEX_Msk (0xFul << NU_PIN_MODINDEX_Pos)
#define NU_MFP_MSK(pin) (0xful << NU_MFP_POS(pin)) #define NU_PIN_BIND_Pos 16
#define NU_PIN_BIND_Msk (0x1ul << NU_PIN_BIND_Pos)
#define NU_PININDEX(PINNAME) (((unsigned int)(PINNAME) & NU_PININDEX_Msk) >> NU_PININDEX_Pos)
#define NU_PINPORT(PINNAME) (((unsigned int)(PINNAME) & NU_PINPORT_Msk) >> NU_PINPORT_Pos)
#define NU_PIN_BIND(PINNAME) (((unsigned int)(PINNAME) & NU_PIN_BIND_Msk) >> NU_PIN_BIND_Pos)
#define NU_PIN_MODINDEX(PINNAME) (((unsigned int)(PINNAME) & NU_PIN_MODINDEX_Msk) >> NU_PIN_MODINDEX_Pos)
#define NU_PINNAME(PORT, PIN) ((((unsigned int) (PORT)) << (NU_PINPORT_Pos)) | (((unsigned int) (PIN)) << NU_PININDEX_Pos))
#define NU_PINNAME_BIND(PINNAME, modname) NU_PINNAME_BIND_(NU_PINPORT(PINNAME), NU_PININDEX(PINNAME), modname)
#define NU_PINNAME_BIND_(PORT, PIN, modname) ((((unsigned int)(PORT)) << NU_PINPORT_Pos) | (((unsigned int)(PIN)) << NU_PININDEX_Pos) | (NU_MODINDEX(modname) << NU_PIN_MODINDEX_Pos) | NU_PIN_BIND_Msk)
#define NU_PORT_BASE(port) ((GPIO_T *)(((uint32_t) GPIOA_BASE) + 0x40 * port))
#define NU_MFP_POS(pin) ((pin % 8) * 4)
#define NU_MFP_MSK(pin) (0xful << NU_MFP_POS(pin))
// LEGACY
#define NU_PINNAME_TO_PIN(PINNAME) NU_PININDEX(PINNAME)
#define NU_PINNAME_TO_PORT(PINNAME) NU_PINPORT(PINNAME)
#define NU_PINNAME_TO_MODSUBINDEX(PINNAME) NU_PIN_MODINDEX(PINNAME)
#define NU_PORT_N_PIN_TO_PINNAME(PORT, PIN) NU_PINNAME((PORT), (PIN))
typedef enum { typedef enum {
PIN_INPUT, PIN_INPUT,

View File

@ -70,25 +70,27 @@ void analogin_init(analogin_t *obj, PinName pin)
EADC_Open(eadc_base, 0); EADC_Open(eadc_base, 0);
} }
uint32_t chn = NU_MODSUBINDEX(obj->adc); uint32_t smp_chn = NU_MODSUBINDEX(obj->adc);
uint32_t smp_mod = NU_MODINDEX(obj->adc) * 8 + smp_chn;
// Wire pinout // Wire pinout
pinmap_pinout(pin, PinMap_ADC); pinmap_pinout(pin, PinMap_ADC);
// Configure the sample module Nmod for analog input channel Nch and software trigger source // Configure the sample module Nmod for analog input channel Nch and software trigger source
EADC_ConfigSampleModule(eadc_base, chn, EADC_SOFTWARE_TRIGGER, chn % 8); EADC_ConfigSampleModule(eadc_base, smp_mod, EADC_SOFTWARE_TRIGGER, smp_chn);
eadc_modinit_mask |= 1 << chn; eadc_modinit_mask |= 1 << smp_mod;
} }
uint16_t analogin_read_u16(analogin_t *obj) uint16_t analogin_read_u16(analogin_t *obj)
{ {
EADC_T *eadc_base = (EADC_T *) NU_MODBASE(obj->adc); EADC_T *eadc_base = (EADC_T *) NU_MODBASE(obj->adc);
uint32_t chn = NU_MODSUBINDEX(obj->adc); uint32_t smp_chn = NU_MODSUBINDEX(obj->adc);
uint32_t smp_mod = NU_MODINDEX(obj->adc) * 8 + smp_chn;
EADC_START_CONV(eadc_base, 1 << chn); EADC_START_CONV(eadc_base, 1 << smp_mod);
while (EADC_GET_DATA_VALID_FLAG(eadc_base, 1 << chn) != (1 << chn)); while (EADC_GET_DATA_VALID_FLAG(eadc_base, 1 << smp_mod) != (1 << smp_mod));
uint16_t conv_res_12 = EADC_GET_CONV_DATA(eadc_base, chn); uint16_t conv_res_12 = EADC_GET_CONV_DATA(eadc_base, smp_mod);
// Just 12 bits are effective. Convert to 16 bits. // Just 12 bits are effective. Convert to 16 bits.
// conv_res_12: 0000 b11b10b9b8 b7b6b5b4 b3b2b1b0 // conv_res_12: 0000 b11b10b9b8 b7b6b5b4 b3b2b1b0
// conv_res_16: b11b10b9b8 b7b6b5b4 b3b2b1b0 b11b10b9b8 // conv_res_16: b11b10b9b8 b7b6b5b4 b3b2b1b0 b11b10b9b8

View File

@ -75,7 +75,7 @@
PA2 = 0x00; PA2 = 0x00;
PA3 = 0x00; PA3 = 0x00;
CAN_Open((CAN_T *)obj->can, 500000, CAN_NORMAL_MODE); CAN_Open((CAN_T *)NU_MODBASE(obj->can), 500000, CAN_NORMAL_MODE);
can_filter(obj, 0, 0, CANStandard, 0); can_filter(obj, 0, 0, CANStandard, 0);
} }
@ -97,9 +97,9 @@ void can_free(can_t *obj)
int can_frequency(can_t *obj, int hz) int can_frequency(can_t *obj, int hz)
{ {
CAN_SetBaudRate((CAN_T *)obj->can, hz); CAN_SetBaudRate((CAN_T *)NU_MODBASE(obj->can), hz);
return CAN_GetCANBitRate((CAN_T *)obj->can); return CAN_GetCANBitRate((CAN_T *)NU_MODBASE(obj->can));
} }
static void can_irq(CANName name, int id) static void can_irq(CANName name, int id)
@ -188,7 +188,7 @@ void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id)
void can_irq_free(can_t *obj) void can_irq_free(can_t *obj)
{ {
CAN_DisableInt((CAN_T *)obj->can, (CAN_CON_IE_Msk|CAN_CON_SIE_Msk|CAN_CON_EIE_Msk)); CAN_DisableInt((CAN_T *)NU_MODBASE(obj->can), (CAN_CON_IE_Msk|CAN_CON_SIE_Msk|CAN_CON_EIE_Msk));
can_irq_ids[obj->index] = 0; can_irq_ids[obj->index] = 0;
@ -202,25 +202,26 @@ void can_irq_free(can_t *obj)
void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable) void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable)
{ {
CAN_T *can_base = (CAN_T *) NU_MODBASE(obj->can);
CAN_EnterInitMode((CAN_T*)obj->can); CAN_EnterInitMode((CAN_T*)can_base);
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON ) | ((enable != 0 )? CAN_CON_IE_Msk :0); ((CAN_T *)can_base)->CON = (((CAN_T *)can_base)->CON ) | ((enable != 0 )? CAN_CON_IE_Msk :0);
switch (irq) switch (irq)
{ {
case IRQ_ERROR: case IRQ_ERROR:
case IRQ_BUS: case IRQ_BUS:
case IRQ_PASSIVE: case IRQ_PASSIVE:
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_EIE_Msk; can_base->CON = can_base->CON |CAN_CON_EIE_Msk;
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_SIE_Msk; can_base->CON = can_base->CON |CAN_CON_SIE_Msk;
break; break;
case IRQ_RX: case IRQ_RX:
case IRQ_TX: case IRQ_TX:
case IRQ_OVERRUN: case IRQ_OVERRUN:
case IRQ_WAKEUP: case IRQ_WAKEUP:
((CAN_T *)(obj->can))->CON = (((CAN_T *)(obj->can))->CON) |CAN_CON_SIE_Msk; can_base->CON = can_base->CON |CAN_CON_SIE_Msk;
break; break;
default: default:
@ -228,7 +229,7 @@ void can_irq_set(can_t *obj, CanIrqType irq, uint32_t enable)
} }
CAN_LeaveInitMode((CAN_T*)obj->can); CAN_LeaveInitMode(can_base);
if(!obj->index) if(!obj->index)
{ {
@ -253,14 +254,14 @@ int can_write(can_t *obj, CAN_Message msg, int cc)
CMsg.DLC = msg.len; CMsg.DLC = msg.len;
memcpy((void *)&CMsg.Data[0],(const void *)&msg.data[0], (unsigned int)8); memcpy((void *)&CMsg.Data[0],(const void *)&msg.data[0], (unsigned int)8);
return CAN_Transmit((CAN_T *)(obj->can), cc, &CMsg); return CAN_Transmit((CAN_T *)NU_MODBASE(obj->can), cc, &CMsg);
} }
int can_read(can_t *obj, CAN_Message *msg, int handle) int can_read(can_t *obj, CAN_Message *msg, int handle)
{ {
STR_CANMSG_T CMsg; STR_CANMSG_T CMsg;
if(!CAN_Receive((CAN_T *)(obj->can), handle, &CMsg)) if(!CAN_Receive((CAN_T *)NU_MODBASE(obj->can), handle, &CMsg))
return 0; return 0;
msg->format = (CANFormat)CMsg.IdType; msg->format = (CANFormat)CMsg.IdType;
@ -274,32 +275,34 @@ int can_read(can_t *obj, CAN_Message *msg, int handle)
int can_mode(can_t *obj, CanMode mode) int can_mode(can_t *obj, CanMode mode)
{ {
CAN_T *can_base = (CAN_T *) NU_MODBASE(obj->can);
int success = 0; int success = 0;
switch (mode) switch (mode)
{ {
case MODE_RESET: case MODE_RESET:
CAN_LeaveTestMode((CAN_T*)obj->can); CAN_LeaveTestMode(can_base);
success = 1; success = 1;
break; break;
case MODE_NORMAL: case MODE_NORMAL:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_BASIC_Msk); CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk);
success = 1; success = 1;
break; break;
case MODE_SILENT: case MODE_SILENT:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_SILENT_Msk); CAN_EnterTestMode(can_base, CAN_TEST_SILENT_Msk);
success = 1; success = 1;
break; break;
case MODE_TEST_LOCAL: case MODE_TEST_LOCAL:
case MODE_TEST_GLOBAL: case MODE_TEST_GLOBAL:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_LBACK_Msk); CAN_EnterTestMode(can_base, CAN_TEST_LBACK_Msk);
success = 1; success = 1;
break; break;
case MODE_TEST_SILENT: case MODE_TEST_SILENT:
CAN_EnterTestMode((CAN_T*)(obj->can), CAN_TEST_SILENT_Msk | CAN_TEST_LBACK_Msk); CAN_EnterTestMode(can_base, CAN_TEST_SILENT_Msk | CAN_TEST_LBACK_Msk);
success = 1; success = 1;
break; break;
@ -315,7 +318,7 @@ int can_mode(can_t *obj, CanMode mode)
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle)
{ {
return CAN_SetRxMsg((CAN_T *)(obj->can), handle , (uint32_t)format, id); return CAN_SetRxMsg((CAN_T *)NU_MODBASE(obj->can), handle , (uint32_t)format, id);
} }
@ -333,19 +336,19 @@ void can_reset(can_t *obj)
unsigned char can_rderror(can_t *obj) unsigned char can_rderror(can_t *obj)
{ {
CAN_T *can = (CAN_T *)(obj->can); CAN_T *can = (CAN_T *)NU_MODBASE(obj->can);
return ((can->ERR>>8)&0xFF); return ((can->ERR>>8)&0xFF);
} }
unsigned char can_tderror(can_t *obj) unsigned char can_tderror(can_t *obj)
{ {
CAN_T *can = (CAN_T *)(obj->can); CAN_T *can = (CAN_T *)NU_MODBASE(obj->can);
return ((can->ERR)&0xFF); return ((can->ERR)&0xFF);
} }
void can_monitor(can_t *obj, int silent) void can_monitor(can_t *obj, int silent)
{ {
CAN_EnterTestMode((CAN_T *)(obj->can), CAN_TEST_SILENT_Msk); CAN_EnterTestMode((CAN_T *)NU_MODBASE(obj->can), CAN_TEST_SILENT_Msk);
} }
#endif // DEVICE_CAN #endif // DEVICE_CAN

View File

@ -32,6 +32,7 @@ extern "C" {
#define DMA_EVENT_MASK DMA_EVENT_ALL #define DMA_EVENT_MASK DMA_EVENT_ALL
void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t event); void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t event);
PDMA_T *dma_modbase(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -111,6 +111,11 @@ void dma_set_handler(int channelid, uint32_t handler, uint32_t id, uint32_t even
NVIC_EnableIRQ(dma_modinit.irq_n); NVIC_EnableIRQ(dma_modinit.irq_n);
} }
PDMA_T *dma_modbase(void)
{
return (PDMA_T *) NU_MODBASE(dma_modinit.modname);
}
static void pdma_vec(void) static void pdma_vec(void)
{ {
uint32_t intsts = PDMA_GET_INT_STATUS(); uint32_t intsts = PDMA_GET_INT_STATUS();
@ -165,7 +170,7 @@ static void pdma_vec(void)
PDMA->INTSTS = reqto; PDMA->INTSTS = reqto;
while (reqto) { while (reqto) {
int chn_id = nu_ctz(reqto) >> PDMA_INTSTS_REQTOFX_Pos; int chn_id = nu_ctz(reqto) - PDMA_INTSTS_REQTOFX_Pos;
if (dma_chn_mask & (1 << chn_id)) { if (dma_chn_mask & (1 << chn_id)) {
struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id; struct nu_dma_chn_s *dma_chn = dma_chn_arr + chn_id;
if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) { if (dma_chn->handler && (dma_chn->event & DMA_EVENT_TIMEOUT)) {

View File

@ -105,9 +105,11 @@ void pwmout_init(pwmout_t* obj, PinName pin)
((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn; ((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn;
// Mark this module to be inited. if (((struct nu_pwm_var *) modinit->var)->en_msk) {
int i = modinit - pwm_modinit_tab; // Mark this module to be inited.
pwm_modinit_mask |= 1 << i; int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
} }
void pwmout_free(pwmout_t* obj) void pwmout_free(pwmout_t* obj)
@ -143,9 +145,11 @@ void pwmout_free(pwmout_t* obj)
} }
} }
// Mark this module to be deinited. if (((struct nu_pwm_var *) modinit->var)->en_msk == 0) {
int i = modinit - pwm_modinit_tab; // Mark this module to be deinited.
pwm_modinit_mask &= ~(1 << i); int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
} }
void pwmout_write(pwmout_t* obj, float value) void pwmout_write(pwmout_t* obj, float value)

View File

@ -285,7 +285,7 @@ void serial_free(serial_t *obj)
void serial_baud(serial_t *obj, int baudrate) { void serial_baud(serial_t *obj, int baudrate) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
obj->serial.baudrate = baudrate; obj->serial.baudrate = baudrate;
UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate); UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate);
@ -293,7 +293,7 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
// TODO: Assert for not supported parity and data bits // TODO: Assert for not supported parity and data bits
obj->serial.databits = data_bits; obj->serial.databits = data_bits;
@ -357,7 +357,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{ {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
@ -544,7 +544,9 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart); MBED_ASSERT(modinit->modname == obj->serial.uart);
PDMA->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_tx, PDMA_SetTransferMode(obj->serial.dma_chn_id_tx,
((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -555,7 +557,7 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
PDMA_SetTransferAddr(obj->serial.dma_chn_id_tx, PDMA_SetTransferAddr(obj->serial.dma_chn_id_tx,
((uint32_t) tx) + (tx_width / 8) * tx_length, // NOTE: End of source address ((uint32_t) tx) + (tx_width / 8) * tx_length, // NOTE: End of source address
PDMA_SAR_INC, // Source address incremental PDMA_SAR_INC, // Source address incremental
(uint32_t) obj->serial.uart, // Destination address (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address
PDMA_DAR_FIX); // Destination address fixed PDMA_DAR_FIX); // Destination address fixed
PDMA_SetBurstType(obj->serial.dma_chn_id_tx, PDMA_SetBurstType(obj->serial.dma_chn_id_tx,
PDMA_REQ_SINGLE, // Single mode PDMA_REQ_SINGLE, // Single mode
@ -603,7 +605,9 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart); MBED_ASSERT(modinit->modname == obj->serial.uart);
PDMA->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_rx, PDMA_SetTransferMode(obj->serial.dma_chn_id_rx,
((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -612,7 +616,7 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
(rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
rx_length); rx_length);
PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx, PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx,
(uint32_t) obj->serial.uart, // Source address (uint32_t) NU_MODBASE(obj->serial.uart), // Source address
PDMA_SAR_FIX, // Source address fixed PDMA_SAR_FIX, // Source address fixed
((uint32_t) rx) + (rx_width / 8) * rx_length, // NOTE: End of destination address ((uint32_t) rx) + (rx_width / 8) * rx_length, // NOTE: End of destination address
PDMA_DAR_INC); // Destination address incremental PDMA_DAR_INC); // Destination address incremental
@ -631,14 +635,16 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
void serial_tx_abort_asynch(serial_t *obj) void serial_tx_abort_asynch(serial_t *obj)
{ {
// Flush Tx FIFO. Otherwise, output data may get lost on this change. // Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart))); while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) { if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_tx, 0); PDMA_DisableInt(obj->serial.dma_chn_id_tx, 0);
// FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_tx); //PDMA_STOP(obj->serial.dma_chn_id_tx);
PDMA->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx);
} }
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk); UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk);
} }
@ -653,11 +659,13 @@ void serial_tx_abort_asynch(serial_t *obj)
void serial_rx_abort_asynch(serial_t *obj) void serial_rx_abort_asynch(serial_t *obj)
{ {
if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) { if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_rx, 0); PDMA_DisableInt(obj->serial.dma_chn_id_rx, 0);
// FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_rx); //PDMA_STOP(obj->serial.dma_chn_id_rx);
PDMA->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx); pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx);
} }
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk); UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk);
} }

View File

@ -317,8 +317,10 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->spi.spi); MBED_ASSERT(modinit->modname == obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
// Configure tx DMA // Configure tx DMA
PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, PDMA_SetTransferMode(obj->spi.dma_chn_id_tx,
((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -340,7 +342,7 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
// Configure rx DMA // Configure rx DMA
PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, PDMA_SetTransferMode(obj->spi.dma_chn_id_rx,
((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled 0, // Scatter-gather disabled
@ -379,6 +381,7 @@ void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx,
void spi_abort_asynch(spi_t *obj) void spi_abort_asynch(spi_t *obj)
{ {
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
if (obj->spi.dma_usage != DMA_USAGE_NEVER) { if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
// Receive FIFO Overrun in case of tx length > rx length on DMA way // Receive FIFO Overrun in case of tx length > rx length on DMA way
@ -390,7 +393,7 @@ void spi_abort_asynch(spi_t *obj)
PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0); PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0);
// FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->spi.dma_chn_id_tx); //PDMA_STOP(obj->spi.dma_chn_id_tx);
PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx); pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
} }
SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
@ -398,7 +401,7 @@ void spi_abort_asynch(spi_t *obj)
PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0); PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0);
// FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->spi.dma_chn_id_rx); //PDMA_STOP(obj->spi.dma_chn_id_rx);
PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx); pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
} }
SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
} }