Remove the deprecated ethernet APIs

pull/12639/head
Rajkumar Kanagaraj 2020-03-16 10:13:44 -07:00
parent 2a4e48179d
commit 20c3e38349
6 changed files with 0 additions and 2734 deletions

View File

@ -1,105 +0,0 @@
/** \addtogroup hal */
/** @{*/
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_ETHERNET_API_H
#define MBED_ETHERNET_API_H
#include "device.h"
#include "platform/mbed_toolchain.h"
#if DEVICE_ETHERNET
#ifdef __cplusplus
extern "C" {
#endif
// Connection constants
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_init(void);
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
void ethernet_free(void);
// write size bytes from data to ethernet buffer
// return num bytes written
// or -1 if size is too big
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_write(const char *data, int size);
// send ethernet write buffer, returning the packet size sent
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_send(void);
// receive from ethernet buffer, returning packet size, or 0 if no packet
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_receive(void);
// read size bytes in to data, return actual num bytes read (0..size)
// if data == NULL, throw the bytes away
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_read(char *data, int size);
// get the ethernet address
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
void ethernet_address(char *mac);
// see if the link is up
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
int ethernet_link(void);
// force link settings
MBED_DEPRECATED(
"Ethernet drivers are provided by a class derived from `EMAC` attached to"
" either lwIP or Nanostack."
)
void ethernet_set_link(int speed, int duplex);
#ifdef __cplusplus
}
#endif
#endif
#endif
/** @}*/

View File

@ -1,164 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "ethernet_api.h"
#include "mps2_ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#include "ETH_MPS2.h"
#include "mbed_wait_api.h"
#define TX_PKT_SIZE 256
#define RX_PKT_SIZE 300
// Types
#undef FALSE
#undef TRUE
#define FALSE 0
#define TRUE 1
/*----------------------------------------------------------------------------
Ethernet Device initialize
*----------------------------------------------------------------------------*/
int ethernet_init()
{
int error;
error = 0;
if(smsc9220_check_id()) {
error = TRUE;
}
if(smsc9220_soft_reset()) {
error = TRUE;
}
smsc9220_set_txfifo(5);
// Sets automatic flow control thresholds, and backpressure
// threshold to defaults specified.
SMSC9220->AFC_CFG = 0x006E3740;
if(smsc9220_wait_eeprom()) {
error = TRUE;
}
// Configure GPIOs as LED outputs.
SMSC9220->GPIO_CFG = 0x70070000;
smsc9220_init_irqs();
/* Configure MAC addresses here if needed. */
if(smsc9220_check_phy()) {
error = TRUE;
}
if(smsc9220_reset_phy()) {
error = TRUE;
return error;
}
wait_ms(100);
// Checking whether phy reset completed successfully.
{
unsigned short phyreset;
phyreset = 0;
smsc9220_phy_regread(SMSC9220_PHY_BCONTROL, &phyreset);
if(phyreset & (1 << 15)) {
error = TRUE;
return error;
}
}
/* Advertise capabilities */
smsc9220_advertise_cap();
/* Begin to establish link */
smsc9220_establish_link(); // bit [12] of BCONTROL seems self-clearing.
// Although it's not so in the manual.
/* Interrupt threshold */
SMSC9220->FIFO_INT = 0xFF000000;
smsc9220_enable_mac_xmit();
smsc9220_enable_xmit();
SMSC9220->RX_CFG = 0;
smsc9220_enable_mac_recv();
// Rx status FIFO level irq threshold
SMSC9220->FIFO_INT &= ~(0xFF); // Clear 2 bottom nibbles
// This sleep is compulsory otherwise txmit/receive will fail.
wait_ms(2000);
return error;
}
/*----------------------------------------------------------------------------
Ethernet Device Uninitialize
*----------------------------------------------------------------------------*/
void ethernet_free() {
}
int ethernet_write(const char *data, int size)
{
return 0;
}
int ethernet_send()
{
return 0;
}
int ethernet_receive()
{
return 0;
}
// Read from an recevied ethernet packet.
// After receive returnd a number bigger than 0 it is
// possible to read bytes from this packet.
// Read will write up to size bytes into data.
// It is possible to use read multible times.
// Each time read will start reading after the last read byte before.
int ethernet_read(char *data, int dlen)
{
return 0;
}
void ethernet_address(char *mac) {
mbed_mac_address(mac);
}
int ethernet_link(void)
{
return 0;
}
void ethernet_set_link(int speed, int duplex)
{
smsc9220_establish_link();
}

View File

@ -1,164 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "ethernet_api.h"
#include "mps2_ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#include "ETH_MPS2.h"
#include "mbed_wait_api.h"
#define TX_PKT_SIZE 256
#define RX_PKT_SIZE 300
// Types
#undef FALSE
#undef TRUE
#define FALSE 0
#define TRUE 1
/*----------------------------------------------------------------------------
Ethernet Device initialize
*----------------------------------------------------------------------------*/
int ethernet_init()
{
int error;
error = 0;
if(smsc9220_check_id()) {
error = TRUE;
}
if(smsc9220_soft_reset()) {
error = TRUE;
}
smsc9220_set_txfifo(5);
// Sets automatic flow control thresholds, and backpressure
// threshold to defaults specified.
SMSC9220->AFC_CFG = 0x006E3740;
if(smsc9220_wait_eeprom()) {
error = TRUE;
}
// Configure GPIOs as LED outputs.
SMSC9220->GPIO_CFG = 0x70070000;
smsc9220_init_irqs();
/* Configure MAC addresses here if needed. */
if(smsc9220_check_phy()) {
error = TRUE;
}
if(smsc9220_reset_phy()) {
error = TRUE;
return error;
}
wait_ms(100);
// Checking whether phy reset completed successfully.
{
unsigned short phyreset;
phyreset = 0;
smsc9220_phy_regread(SMSC9220_PHY_BCONTROL, &phyreset);
if(phyreset & (1 << 15)) {
error = TRUE;
return error;
}
}
/* Advertise capabilities */
smsc9220_advertise_cap();
/* Begin to establish link */
smsc9220_establish_link(); // bit [12] of BCONTROL seems self-clearing.
// Although it's not so in the manual.
/* Interrupt threshold */
SMSC9220->FIFO_INT = 0xFF000000;
smsc9220_enable_mac_xmit();
smsc9220_enable_xmit();
SMSC9220->RX_CFG = 0;
smsc9220_enable_mac_recv();
// Rx status FIFO level irq threshold
SMSC9220->FIFO_INT &= ~(0xFF); // Clear 2 bottom nibbles
// This sleep is compulsory otherwise txmit/receive will fail.
wait_ms(2000);
return error;
}
/*----------------------------------------------------------------------------
Ethernet Device Uninitialize
*----------------------------------------------------------------------------*/
void ethernet_free() {
}
int ethernet_write(const char *data, int size)
{
return 0;
}
int ethernet_send()
{
return 0;
}
int ethernet_receive()
{
return 0;
}
// Read from an recevied ethernet packet.
// After receive returnd a number bigger than 0 it is
// possible to read bytes from this packet.
// Read will write up to size bytes into data.
// It is possible to use read multible times.
// Each time read will start reading after the last read byte before.
int ethernet_read(char *data, int dlen)
{
return 0;
}
void ethernet_address(char *mac) {
mbed_mac_address(mac);
}
int ethernet_link(void)
{
return 0;
}
void ethernet_set_link(int speed, int duplex)
{
smsc9220_establish_link();
}

View File

@ -1,948 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ethernet_api.h"
#include <string.h>
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#define NEW_LOGIC 0
#define NEW_ETH_BUFFER 0
#if NEW_ETH_BUFFER
#define NUM_RX_FRAG 4 // Number of Rx Fragments (== packets)
#define NUM_TX_FRAG 3 // Number of Tx Fragments (== packets)
#define ETH_MAX_FLEN 1536 // Maximum Ethernet Frame Size
#define ETH_FRAG_SIZE ETH_MAX_FLEN // Packet Fragment size (same as packet length)
#else
// Memfree calculation:
// (16 * 1024) - ((2 * 4 * NUM_RX) + (2 * 4 * NUM_RX) + (0x300 * NUM_RX) +
// (2 * 4 * NUM_TX) + (1 * 4 * NUM_TX) + (0x300 * NUM_TX)) = 8556
/* EMAC Memory Buffer configuration for 16K Ethernet RAM. */
#define NUM_RX_FRAG 4 /* Num.of RX Fragments 4*1536= 6.0kB */
#define NUM_TX_FRAG 3 /* Num.of TX Fragments 3*1536= 4.6kB */
//#define ETH_FRAG_SIZE 1536 /* Packet Fragment size 1536 Bytes */
//#define ETH_MAX_FLEN 1536 /* Max. Ethernet Frame Size */
#define ETH_FRAG_SIZE 0x300 /* Packet Fragment size 1536/2 Bytes */
#define ETH_MAX_FLEN 0x300 /* Max. Ethernet Frame Size */
const int ethernet_MTU_SIZE = 0x300;
#endif
#define ETHERNET_ADDR_SIZE 6
struct RX_DESC_TypeDef { /* RX Descriptor struct */
unsigned int Packet;
unsigned int Ctrl;
} PACKED;
typedef struct RX_DESC_TypeDef RX_DESC_TypeDef;
struct RX_STAT_TypeDef { /* RX Status struct */
unsigned int Info;
unsigned int HashCRC;
} PACKED;
typedef struct RX_STAT_TypeDef RX_STAT_TypeDef;
struct TX_DESC_TypeDef { /* TX Descriptor struct */
unsigned int Packet;
unsigned int Ctrl;
} PACKED;
typedef struct TX_DESC_TypeDef TX_DESC_TypeDef;
struct TX_STAT_TypeDef { /* TX Status struct */
unsigned int Info;
} PACKED;
typedef struct TX_STAT_TypeDef TX_STAT_TypeDef;
/* MAC Configuration Register 1 */
#define MAC1_REC_EN 0x00000001 /* Receive Enable */
#define MAC1_PASS_ALL 0x00000002 /* Pass All Receive Frames */
#define MAC1_RX_FLOWC 0x00000004 /* RX Flow Control */
#define MAC1_TX_FLOWC 0x00000008 /* TX Flow Control */
#define MAC1_LOOPB 0x00000010 /* Loop Back Mode */
#define MAC1_RES_TX 0x00000100 /* Reset TX Logic */
#define MAC1_RES_MCS_TX 0x00000200 /* Reset MAC TX Control Sublayer */
#define MAC1_RES_RX 0x00000400 /* Reset RX Logic */
#define MAC1_RES_MCS_RX 0x00000800 /* Reset MAC RX Control Sublayer */
#define MAC1_SIM_RES 0x00004000 /* Simulation Reset */
#define MAC1_SOFT_RES 0x00008000 /* Soft Reset MAC */
/* MAC Configuration Register 2 */
#define MAC2_FULL_DUP 0x00000001 /* Full Duplex Mode */
#define MAC2_FRM_LEN_CHK 0x00000002 /* Frame Length Checking */
#define MAC2_HUGE_FRM_EN 0x00000004 /* Huge Frame Enable */
#define MAC2_DLY_CRC 0x00000008 /* Delayed CRC Mode */
#define MAC2_CRC_EN 0x00000010 /* Append CRC to every Frame */
#define MAC2_PAD_EN 0x00000020 /* Pad all Short Frames */
#define MAC2_VLAN_PAD_EN 0x00000040 /* VLAN Pad Enable */
#define MAC2_ADET_PAD_EN 0x00000080 /* Auto Detect Pad Enable */
#define MAC2_PPREAM_ENF 0x00000100 /* Pure Preamble Enforcement */
#define MAC2_LPREAM_ENF 0x00000200 /* Long Preamble Enforcement */
#define MAC2_NO_BACKOFF 0x00001000 /* No Backoff Algorithm */
#define MAC2_BACK_PRESSURE 0x00002000 /* Backoff Presurre / No Backoff */
#define MAC2_EXCESS_DEF 0x00004000 /* Excess Defer */
/* Back-to-Back Inter-Packet-Gap Register */
#define IPGT_FULL_DUP 0x00000015 /* Recommended value for Full Duplex */
#define IPGT_HALF_DUP 0x00000012 /* Recommended value for Half Duplex */
/* Non Back-to-Back Inter-Packet-Gap Register */
#define IPGR_DEF 0x00000012 /* Recommended value */
/* Collision Window/Retry Register */
#define CLRT_DEF 0x0000370F /* Default value */
/* PHY Support Register */
#define SUPP_SPEED 0x00000100 /* Reduced MII Logic Current Speed */
//#define SUPP_RES_RMII 0x00000800 /* Reset Reduced MII Logic */
#define SUPP_RES_RMII 0x00000000 /* Reset Reduced MII Logic */
/* Test Register */
#define TEST_SHCUT_PQUANTA 0x00000001 /* Shortcut Pause Quanta */
#define TEST_TST_PAUSE 0x00000002 /* Test Pause */
#define TEST_TST_BACKP 0x00000004 /* Test Back Pressure */
/* MII Management Configuration Register */
#define MCFG_SCAN_INC 0x00000001 /* Scan Increment PHY Address */
#define MCFG_SUPP_PREAM 0x00000002 /* Suppress Preamble */
#define MCFG_CLK_SEL 0x0000003C /* Clock Select Mask */
#define MCFG_RES_MII 0x00008000 /* Reset MII Management Hardware */
/* MII Management Command Register */
#define MCMD_READ 0x00000001 /* MII Read */
#define MCMD_SCAN 0x00000002 /* MII Scan continuously */
#define MII_WR_TOUT 0x00050000 /* MII Write timeout count */
#define MII_RD_TOUT 0x00050000 /* MII Read timeout count */
/* MII Management Address Register */
#define MADR_REG_ADR 0x0000001F /* MII Register Address Mask */
#define MADR_PHY_ADR 0x00001F00 /* PHY Address Mask */
/* MII Management Indicators Register */
#define MIND_BUSY 0x00000001 /* MII is Busy */
#define MIND_SCAN 0x00000002 /* MII Scanning in Progress */
#define MIND_NOT_VAL 0x00000004 /* MII Read Data not valid */
#define MIND_MII_LINK_FAIL 0x00000008 /* MII Link Failed */
/* Command Register */
#define CR_RX_EN 0x00000001 /* Enable Receive */
#define CR_TX_EN 0x00000002 /* Enable Transmit */
#define CR_REG_RES 0x00000008 /* Reset Host Registers */
#define CR_TX_RES 0x00000010 /* Reset Transmit Datapath */
#define CR_RX_RES 0x00000020 /* Reset Receive Datapath */
#define CR_PASS_RUNT_FRM 0x00000040 /* Pass Runt Frames */
#define CR_PASS_RX_FILT 0x00000080 /* Pass RX Filter */
#define CR_TX_FLOW_CTRL 0x00000100 /* TX Flow Control */
#define CR_RMII 0x00000200 /* Reduced MII Interface */
#define CR_FULL_DUP 0x00000400 /* Full Duplex */
/* Status Register */
#define SR_RX_EN 0x00000001 /* Enable Receive */
#define SR_TX_EN 0x00000002 /* Enable Transmit */
/* Transmit Status Vector 0 Register */
#define TSV0_CRC_ERR 0x00000001 /* CRC error */
#define TSV0_LEN_CHKERR 0x00000002 /* Length Check Error */
#define TSV0_LEN_OUTRNG 0x00000004 /* Length Out of Range */
#define TSV0_DONE 0x00000008 /* Tramsmission Completed */
#define TSV0_MCAST 0x00000010 /* Multicast Destination */
#define TSV0_BCAST 0x00000020 /* Broadcast Destination */
#define TSV0_PKT_DEFER 0x00000040 /* Packet Deferred */
#define TSV0_EXC_DEFER 0x00000080 /* Excessive Packet Deferral */
#define TSV0_EXC_COLL 0x00000100 /* Excessive Collision */
#define TSV0_LATE_COLL 0x00000200 /* Late Collision Occured */
#define TSV0_GIANT 0x00000400 /* Giant Frame */
#define TSV0_UNDERRUN 0x00000800 /* Buffer Underrun */
#define TSV0_BYTES 0x0FFFF000 /* Total Bytes Transferred */
#define TSV0_CTRL_FRAME 0x10000000 /* Control Frame */
#define TSV0_PAUSE 0x20000000 /* Pause Frame */
#define TSV0_BACK_PRESS 0x40000000 /* Backpressure Method Applied */
#define TSV0_VLAN 0x80000000 /* VLAN Frame */
/* Transmit Status Vector 1 Register */
#define TSV1_BYTE_CNT 0x0000FFFF /* Transmit Byte Count */
#define TSV1_COLL_CNT 0x000F0000 /* Transmit Collision Count */
/* Receive Status Vector Register */
#define RSV_BYTE_CNT 0x0000FFFF /* Receive Byte Count */
#define RSV_PKT_IGNORED 0x00010000 /* Packet Previously Ignored */
#define RSV_RXDV_SEEN 0x00020000 /* RXDV Event Previously Seen */
#define RSV_CARR_SEEN 0x00040000 /* Carrier Event Previously Seen */
#define RSV_REC_CODEV 0x00080000 /* Receive Code Violation */
#define RSV_CRC_ERR 0x00100000 /* CRC Error */
#define RSV_LEN_CHKERR 0x00200000 /* Length Check Error */
#define RSV_LEN_OUTRNG 0x00400000 /* Length Out of Range */
#define RSV_REC_OK 0x00800000 /* Frame Received OK */
#define RSV_MCAST 0x01000000 /* Multicast Frame */
#define RSV_BCAST 0x02000000 /* Broadcast Frame */
#define RSV_DRIB_NIBB 0x04000000 /* Dribble Nibble */
#define RSV_CTRL_FRAME 0x08000000 /* Control Frame */
#define RSV_PAUSE 0x10000000 /* Pause Frame */
#define RSV_UNSUPP_OPC 0x20000000 /* Unsupported Opcode */
#define RSV_VLAN 0x40000000 /* VLAN Frame */
/* Flow Control Counter Register */
#define FCC_MIRR_CNT 0x0000FFFF /* Mirror Counter */
#define FCC_PAUSE_TIM 0xFFFF0000 /* Pause Timer */
/* Flow Control Status Register */
#define FCS_MIRR_CNT 0x0000FFFF /* Mirror Counter Current */
/* Receive Filter Control Register */
#define RFC_UCAST_EN 0x00000001 /* Accept Unicast Frames Enable */
#define RFC_BCAST_EN 0x00000002 /* Accept Broadcast Frames Enable */
#define RFC_MCAST_EN 0x00000004 /* Accept Multicast Frames Enable */
#define RFC_UCAST_HASH_EN 0x00000008 /* Accept Unicast Hash Filter Frames */
#define RFC_MCAST_HASH_EN 0x00000010 /* Accept Multicast Hash Filter Fram.*/
#define RFC_PERFECT_EN 0x00000020 /* Accept Perfect Match Enable */
#define RFC_MAGP_WOL_EN 0x00001000 /* Magic Packet Filter WoL Enable */
#define RFC_PFILT_WOL_EN 0x00002000 /* Perfect Filter WoL Enable */
/* Receive Filter WoL Status/Clear Registers */
#define WOL_UCAST 0x00000001 /* Unicast Frame caused WoL */
#define WOL_BCAST 0x00000002 /* Broadcast Frame caused WoL */
#define WOL_MCAST 0x00000004 /* Multicast Frame caused WoL */
#define WOL_UCAST_HASH 0x00000008 /* Unicast Hash Filter Frame WoL */
#define WOL_MCAST_HASH 0x00000010 /* Multicast Hash Filter Frame WoL */
#define WOL_PERFECT 0x00000020 /* Perfect Filter WoL */
#define WOL_RX_FILTER 0x00000080 /* RX Filter caused WoL */
#define WOL_MAG_PACKET 0x00000100 /* Magic Packet Filter caused WoL */
/* Interrupt Status/Enable/Clear/Set Registers */
#define INT_RX_OVERRUN 0x00000001 /* Overrun Error in RX Queue */
#define INT_RX_ERR 0x00000002 /* Receive Error */
#define INT_RX_FIN 0x00000004 /* RX Finished Process Descriptors */
#define INT_RX_DONE 0x00000008 /* Receive Done */
#define INT_TX_UNDERRUN 0x00000010 /* Transmit Underrun */
#define INT_TX_ERR 0x00000020 /* Transmit Error */
#define INT_TX_FIN 0x00000040 /* TX Finished Process Descriptors */
#define INT_TX_DONE 0x00000080 /* Transmit Done */
#define INT_SOFT_INT 0x00001000 /* Software Triggered Interrupt */
#define INT_WAKEUP 0x00002000 /* Wakeup Event Interrupt */
/* Power Down Register */
#define PD_POWER_DOWN 0x80000000 /* Power Down MAC */
/* RX Descriptor Control Word */
#define RCTRL_SIZE 0x000007FF /* Buffer size mask */
#define RCTRL_INT 0x80000000 /* Generate RxDone Interrupt */
/* RX Status Hash CRC Word */
#define RHASH_SA 0x000001FF /* Hash CRC for Source Address */
#define RHASH_DA 0x001FF000 /* Hash CRC for Destination Address */
/* RX Status Information Word */
#define RINFO_SIZE 0x000007FF /* Data size in bytes */
#define RINFO_CTRL_FRAME 0x00040000 /* Control Frame */
#define RINFO_VLAN 0x00080000 /* VLAN Frame */
#define RINFO_FAIL_FILT 0x00100000 /* RX Filter Failed */
#define RINFO_MCAST 0x00200000 /* Multicast Frame */
#define RINFO_BCAST 0x00400000 /* Broadcast Frame */
#define RINFO_CRC_ERR 0x00800000 /* CRC Error in Frame */
#define RINFO_SYM_ERR 0x01000000 /* Symbol Error from PHY */
#define RINFO_LEN_ERR 0x02000000 /* Length Error */
#define RINFO_RANGE_ERR 0x04000000 /* Range Error (exceeded max. size) */
#define RINFO_ALIGN_ERR 0x08000000 /* Alignment Error */
#define RINFO_OVERRUN 0x10000000 /* Receive overrun */
#define RINFO_NO_DESCR 0x20000000 /* No new Descriptor available */
#define RINFO_LAST_FLAG 0x40000000 /* Last Fragment in Frame */
#define RINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
//#define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_CRC_ERR | RINFO_SYM_ERR | RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
#define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_SYM_ERR | \
RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
/* TX Descriptor Control Word */
#define TCTRL_SIZE 0x000007FF /* Size of data buffer in bytes */
#define TCTRL_OVERRIDE 0x04000000 /* Override Default MAC Registers */
#define TCTRL_HUGE 0x08000000 /* Enable Huge Frame */
#define TCTRL_PAD 0x10000000 /* Pad short Frames to 64 bytes */
#define TCTRL_CRC 0x20000000 /* Append a hardware CRC to Frame */
#define TCTRL_LAST 0x40000000 /* Last Descriptor for TX Frame */
#define TCTRL_INT 0x80000000 /* Generate TxDone Interrupt */
/* TX Status Information Word */
#define TINFO_COL_CNT 0x01E00000 /* Collision Count */
#define TINFO_DEFER 0x02000000 /* Packet Deferred (not an error) */
#define TINFO_EXCESS_DEF 0x04000000 /* Excessive Deferral */
#define TINFO_EXCESS_COL 0x08000000 /* Excessive Collision */
#define TINFO_LATE_COL 0x10000000 /* Late Collision Occured */
#define TINFO_UNDERRUN 0x20000000 /* Transmit Underrun */
#define TINFO_NO_DESCR 0x40000000 /* No new Descriptor available */
#define TINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
/* ENET Device Revision ID */
#define OLD_EMAC_MODULE_ID 0x39022000 /* Rev. ID for first rev '-' */
/* DP83848C PHY Registers */
#define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
#define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
#define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
#define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
#define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
#define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
#define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
#define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX */
/* PHY Extended Registers */
#define PHY_REG_STS 0x10 /* Status Register */
#define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
#define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
#define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
#define PHY_REG_RECR 0x15 /* Receive Error Counter */
#define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
#define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
#define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
#define PHY_REG_PHYCR 0x19 /* PHY Control Register */
#define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
#define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
#define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
#define PHY_REG_SCSR 0x1F /* PHY Special Control/Status Register */
#define PHY_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
#define PHY_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
#define PHY_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
#define PHY_HALFD_10M 0x0000 /* Half Duplex 10MBit */
#define PHY_AUTO_NEG 0x3000 /* Select Auto Negotiation */
#define DP83848C_DEF_ADR 0x0100 /* Default PHY device address */
#define DP83848C_ID 0x20005C90 /* PHY Identifier - DP83848C */
#define LAN8720_ID 0x0007C0F0 /* PHY Identifier - LAN8720 */
#define PHY_STS_LINK 0x0001 /* PHY Status Link Mask */
#define PHY_STS_SPEED 0x0002 /* PHY Status Speed Mask */
#define PHY_STS_DUPLEX 0x0004 /* PHY Status Duplex Mask */
#define PHY_BMCR_RESET 0x8000 /* PHY Reset */
#define PHY_BMSR_LINK 0x0004 /* PHY BMSR Link valid */
#define PHY_SCSR_100MBIT 0x0008 /* Speed: 1=100 MBit, 0=10Mbit */
#define PHY_SCSR_DUPLEX 0x0010 /* PHY Duplex Mask */
static int phy_read(unsigned int PhyReg);
static int phy_write(unsigned int PhyReg, unsigned short Data);
static void txdscr_init(void);
static void rxdscr_init(void);
#if defined (__ICCARM__)
# define AHBSRAM1
#elif defined(TOOLCHAIN_GCC_CR)
# define AHBSRAM1 __attribute__((section(".data.$RamPeriph32")))
#else
# define AHBSRAM1 __attribute__((section("AHBSRAM1"),aligned))
#endif
AHBSRAM1 volatile uint8_t rxbuf[NUM_RX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile uint8_t txbuf[NUM_TX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile RX_DESC_TypeDef rxdesc[NUM_RX_FRAG];
AHBSRAM1 volatile RX_STAT_TypeDef rxstat[NUM_RX_FRAG];
AHBSRAM1 volatile TX_DESC_TypeDef txdesc[NUM_TX_FRAG];
AHBSRAM1 volatile TX_STAT_TypeDef txstat[NUM_TX_FRAG];
#if NEW_LOGIC
static int rx_consume_offset = -1;
static int tx_produce_offset = -1;
#else
static int send_doff = 0;
static int send_idx = -1;
static int send_size = 0;
static int receive_soff = 0;
static int receive_idx = -1;
#endif
static uint32_t phy_id = 0;
static inline int rinc(int idx, int mod) {
++idx;
idx %= mod;
return idx;
}
//extern unsigned int SystemFrequency;
static inline unsigned int clockselect() {
if(SystemCoreClock < 10000000) {
return 1;
} else if(SystemCoreClock < 15000000) {
return 2;
} else if(SystemCoreClock < 20000000) {
return 3;
} else if(SystemCoreClock < 25000000) {
return 4;
} else if(SystemCoreClock < 35000000) {
return 5;
} else if(SystemCoreClock < 50000000) {
return 6;
} else if(SystemCoreClock < 70000000) {
return 7;
} else if(SystemCoreClock < 80000000) {
return 8;
} else if(SystemCoreClock < 90000000) {
return 9;
} else if(SystemCoreClock < 100000000) {
return 10;
} else if(SystemCoreClock < 120000000) {
return 11;
} else if(SystemCoreClock < 130000000) {
return 12;
} else if(SystemCoreClock < 140000000) {
return 13;
} else if(SystemCoreClock < 150000000) {
return 15;
} else if(SystemCoreClock < 160000000) {
return 16;
} else {
return 0;
}
}
#ifndef min
#define min(x, y) (((x)<(y))?(x):(y))
#endif
/*----------------------------------------------------------------------------
Ethernet Device initialize
*----------------------------------------------------------------------------*/
int ethernet_init() {
int regv, tout;
char mac[ETHERNET_ADDR_SIZE];
unsigned int clock = clockselect();
LPC_SC->PCONP |= 0x40000000; /* Power Up the EMAC controller. */
LPC_PINCON->PINSEL2 = 0x50150105; /* Enable P1 Ethernet Pins. */
LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000005;
/* Reset all EMAC internal modules. */
LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX |
MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES;
LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM;
for(tout = 100; tout; tout--) __NOP(); /* A short delay after reset. */
LPC_EMAC->MAC1 = MAC1_PASS_ALL; /* Initialize MAC control registers. */
LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
LPC_EMAC->MAXF = ETH_MAX_FLEN;
LPC_EMAC->CLRT = CLRT_DEF;
LPC_EMAC->IPGR = IPGR_DEF;
LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM; /* Enable Reduced MII interface. */
LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL; /* Set clock */
LPC_EMAC->MCFG |= MCFG_RES_MII; /* and reset */
for(tout = 100; tout; tout--) __NOP(); /* A short delay */
LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL;
LPC_EMAC->MCMD = 0;
LPC_EMAC->SUPP = SUPP_RES_RMII; /* Reset Reduced MII Logic. */
for (tout = 100; tout; tout--) __NOP(); /* A short delay */
LPC_EMAC->SUPP = 0;
phy_write(PHY_REG_BMCR, PHY_BMCR_RESET); /* perform PHY reset */
for(tout = 0x20000; ; tout--) { /* Wait for hardware reset to end. */
regv = phy_read(PHY_REG_BMCR);
if(regv < 0 || tout == 0) {
return -1; /* Error */
}
if(!(regv & PHY_BMCR_RESET)) {
break; /* Reset complete. */
}
}
phy_id = (phy_read(PHY_REG_IDR1) << 16);
phy_id |= (phy_read(PHY_REG_IDR2) & 0XFFF0);
if (phy_id != DP83848C_ID && phy_id != LAN8720_ID) {
error("Unknown Ethernet PHY (%x)", (unsigned int)phy_id);
}
ethernet_set_link(-1, 0);
/* Set the Ethernet MAC Address registers */
ethernet_address(mac);
LPC_EMAC->SA0 = ((uint32_t)mac[5] << 8) | (uint32_t)mac[4];
LPC_EMAC->SA1 = ((uint32_t)mac[3] << 8) | (uint32_t)mac[2];
LPC_EMAC->SA2 = ((uint32_t)mac[1] << 8) | (uint32_t)mac[0];
txdscr_init(); /* initialize DMA TX Descriptor */
rxdscr_init(); /* initialize DMA RX Descriptor */
LPC_EMAC->RxFilterCtrl = RFC_UCAST_EN | RFC_MCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN;
/* Receive Broadcast, Perfect Match Packets */
LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE; /* Enable EMAC interrupts. */
LPC_EMAC->IntClear = 0xFFFF; /* Reset all interrupts */
LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN); /* Enable receive and transmit mode of MAC Ethernet core */
LPC_EMAC->MAC1 |= MAC1_REC_EN;
#if NEW_LOGIC
rx_consume_offset = -1;
tx_produce_offset = -1;
#else
send_doff = 0;
send_idx = -1;
send_size = 0;
receive_soff = 0;
receive_idx = -1;
#endif
return 0;
}
/*----------------------------------------------------------------------------
Ethernet Device Uninitialize
*----------------------------------------------------------------------------*/
void ethernet_free() {
LPC_EMAC->IntEnable &= ~(INT_RX_DONE | INT_TX_DONE);
LPC_EMAC->IntClear = 0xFFFF;
LPC_SC->PCONP &= ~0x40000000; /* Power down the EMAC controller. */
LPC_PINCON->PINSEL2 &= ~0x50150105; /* Disable P1 ethernet pins. */
LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000000;
}
// if(TxProduceIndex == TxConsumeIndex) buffer array is empty
// if(TxProduceIndex == TxConsumeIndex - 1) buffer is full, should not fill
// TxProduceIndex - The buffer that will/is being fileld by driver, s/w increment
// TxConsumeIndex - The buffer that will/is beign sent by hardware
int ethernet_write(const char *data, int slen) {
#if NEW_LOGIC
if(tx_produce_offset < 0) { // mark as active if not already
tx_produce_offset = 0;
}
int index = LPC_EMAC->TxProduceIndex;
int remaining = ETH_MAX_FLEN - tx_produce_offset - 4; // bytes written plus checksum
int requested = slen;
int ncopy = min(remaining, requested);
void *pdst = (void *)(txdesc[index].Packet + tx_produce_offset);
void *psrc = (void *)(data);
if(ncopy > 0 ){
if(data != NULL) {
memcpy(pdst, psrc, ncopy);
} else {
memset(pdst, 0, ncopy);
}
}
tx_produce_offset += ncopy;
return ncopy;
#else
void *pdst, *psrc;
const int dlen = ETH_FRAG_SIZE;
int copy = 0;
int soff = 0;
if(send_idx == -1) {
send_idx = LPC_EMAC->TxProduceIndex;
}
if(slen + send_doff > ethernet_MTU_SIZE) {
return -1;
}
do {
copy = min(slen - soff, dlen - send_doff);
pdst = (void *)(txdesc[send_idx].Packet + send_doff);
psrc = (void *)(data + soff);
if(send_doff + copy > ETH_FRAG_SIZE) {
txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT);
send_idx = rinc(send_idx, NUM_TX_FRAG);
send_doff = 0;
}
if(data != NULL) {
memcpy(pdst, psrc, copy);
} else {
memset(pdst, 0, copy);
}
soff += copy;
send_doff += copy;
send_size += copy;
} while(soff != slen);
return soff;
#endif
}
int ethernet_send() {
#if NEW_LOGIC
if(tx_produce_offset < 0) { // no buffer active
return -1;
}
// ensure there is a link
if(!ethernet_link()) {
return -2;
}
// we have been writing in to a buffer, so finalise it
int size = tx_produce_offset;
int index = LPC_EMAC->TxProduceIndex;
txdesc[index].Ctrl = (tx_produce_offset-1) | (TCTRL_INT | TCTRL_LAST);
// Increment ProduceIndex to allow it to be sent
// We can only do this if the next slot is free
int next = rinc(index, NUM_TX_FRAG);
while(next == LPC_EMAC->TxConsumeIndex) {
for(int i=0; i<1000; i++) { __NOP(); }
}
LPC_EMAC->TxProduceIndex = next;
tx_produce_offset = -1;
return size;
#else
int s = send_size;
txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT | TCTRL_LAST);
send_idx = rinc(send_idx, NUM_TX_FRAG);
LPC_EMAC->TxProduceIndex = send_idx;
send_doff = 0;
send_idx = -1;
send_size = 0;
return s;
#endif
}
// RxConsmeIndex - The index of buffer the driver will/is reading from. Driver should inc once read
// RxProduceIndex - The index of buffer that will/is being filled by MAC. H/w will inc once rxd
//
// if(RxConsumeIndex == RxProduceIndex) buffer array is empty
// if(RxConsumeIndex == RxProduceIndex + 1) buffer array is full
// Recevies an arrived ethernet packet.
// Receiving an ethernet packet will drop the last received ethernet packet
// and make a new ethernet packet ready to read.
// Returns size of packet, else 0 if nothing to receive
// We read from RxConsumeIndex from position rx_consume_offset
// if rx_consume_offset < 0, then we have not recieved the RxConsumeIndex packet for reading
// rx_consume_offset = -1 // no frame
// rx_consume_offset = 0 // start of frame
// Assumption: A fragment should alway be a whole frame
int ethernet_receive() {
#if NEW_LOGIC
// if we are currently reading a valid RxConsume buffer, increment to the next one
if(rx_consume_offset >= 0) {
LPC_EMAC->RxConsumeIndex = rinc(LPC_EMAC->RxConsumeIndex, NUM_RX_FRAG);
}
// if the buffer is empty, mark it as no valid buffer
if(LPC_EMAC->RxConsumeIndex == LPC_EMAC->RxProduceIndex) {
rx_consume_offset = -1;
return 0;
}
uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
rx_consume_offset = 0;
// check if it is not marked as last or for errors
if(!(info & RINFO_LAST_FLAG) || (info & RINFO_ERR_MASK)) {
return -1;
}
int size = (info & RINFO_SIZE) + 1;
return size - 4; // don't include checksum bytes
#else
if(receive_idx == -1) {
receive_idx = LPC_EMAC->RxConsumeIndex;
} else {
while(!(rxstat[receive_idx].Info & RINFO_LAST_FLAG) && ((uint32_t)receive_idx != LPC_EMAC->RxProduceIndex)) {
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
}
unsigned int info = rxstat[receive_idx].Info;
int slen = (info & RINFO_SIZE) + 1;
if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
/* Invalid frame, ignore it and free buffer. */
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
}
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
receive_soff = 0;
LPC_EMAC->RxConsumeIndex = receive_idx;
}
if((uint32_t)receive_idx == LPC_EMAC->RxProduceIndex) {
receive_idx = -1;
return 0;
}
return (rxstat[receive_idx].Info & RINFO_SIZE) - 3;
#endif
}
// Read from an recevied ethernet packet.
// After receive returnd a number bigger than 0 it is
// possible to read bytes from this packet.
// Read will write up to size bytes into data.
// It is possible to use read multible times.
// Each time read will start reading after the last read byte before.
int ethernet_read(char *data, int dlen) {
#if NEW_LOGIC
// Check we have a valid buffer to read
if(rx_consume_offset < 0) {
return 0;
}
// Assume 1 fragment block
uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
int size = (info & RINFO_SIZE) + 1 - 4; // exclude checksum
int remaining = size - rx_consume_offset;
int requested = dlen;
int ncopy = min(remaining, requested);
void *psrc = (void *)(rxdesc[LPC_EMAC->RxConsumeIndex].Packet + rx_consume_offset);
void *pdst = (void *)(data);
if(data != NULL && ncopy > 0) {
memcpy(pdst, psrc, ncopy);
}
rx_consume_offset += ncopy;
return ncopy;
#else
int slen;
int copy = 0;
unsigned int more;
unsigned int info;
void *pdst, *psrc;
int doff = 0;
if((uint32_t)receive_idx == LPC_EMAC->RxProduceIndex || receive_idx == -1) {
return 0;
}
do {
info = rxstat[receive_idx].Info;
more = !(info & RINFO_LAST_FLAG);
slen = (info & RINFO_SIZE) + 1;
if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
/* Invalid frame, ignore it and free buffer. */
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
} else {
copy = min(slen - receive_soff, dlen - doff);
psrc = (void *)(rxdesc[receive_idx].Packet + receive_soff);
pdst = (void *)(data + doff);
if(data != NULL) {
/* check if Buffer available */
memcpy(pdst, psrc, copy);
}
receive_soff += copy;
doff += copy;
if((more && (receive_soff == slen))) {
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
receive_soff = 0;
}
}
} while(more && !(doff == dlen) && !receive_soff);
return doff;
#endif
}
int ethernet_link(void) {
if (phy_id == DP83848C_ID) {
return (phy_read(PHY_REG_STS) & PHY_STS_LINK);
}
else { // LAN8720_ID
return (phy_read(PHY_REG_BMSR) & PHY_BMSR_LINK);
}
}
static int phy_write(unsigned int PhyReg, unsigned short Data) {
unsigned int timeOut;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MWTD = Data;
for(timeOut = 0; timeOut < MII_WR_TOUT; timeOut++) { /* Wait until operation completed */
if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
return 0;
}
}
return -1;
}
static int phy_read(unsigned int PhyReg) {
unsigned int timeOut;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MCMD = MCMD_READ;
for(timeOut = 0; timeOut < MII_RD_TOUT; timeOut++) { /* Wait until operation completed */
if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
LPC_EMAC->MCMD = 0;
return LPC_EMAC->MRDD; /* Return a 16-bit value. */
}
}
return -1;
}
static void txdscr_init() {
int i;
for(i = 0; i < NUM_TX_FRAG; i++) {
txdesc[i].Packet = (uint32_t)&txbuf[i];
txdesc[i].Ctrl = 0;
txstat[i].Info = 0;
}
LPC_EMAC->TxDescriptor = (uint32_t)txdesc; /* Set EMAC Transmit Descriptor Registers. */
LPC_EMAC->TxStatus = (uint32_t)txstat;
LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG-1;
LPC_EMAC->TxProduceIndex = 0; /* Tx Descriptors Point to 0 */
}
static void rxdscr_init() {
int i;
for(i = 0; i < NUM_RX_FRAG; i++) {
rxdesc[i].Packet = (uint32_t)&rxbuf[i];
rxdesc[i].Ctrl = RCTRL_INT | (ETH_FRAG_SIZE-1);
rxstat[i].Info = 0;
rxstat[i].HashCRC = 0;
}
LPC_EMAC->RxDescriptor = (uint32_t)rxdesc; /* Set EMAC Receive Descriptor Registers. */
LPC_EMAC->RxStatus = (uint32_t)rxstat;
LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG-1;
LPC_EMAC->RxConsumeIndex = 0; /* Rx Descriptors Point to 0 */
}
void ethernet_address(char *mac) {
mbed_mac_address(mac);
}
void ethernet_set_link(int speed, int duplex) {
unsigned short phy_data;
int tout;
if((speed < 0) || (speed > 1)) {
phy_data = PHY_AUTO_NEG;
} else {
phy_data = (((unsigned short) speed << 13) |
((unsigned short) duplex << 8));
}
phy_write(PHY_REG_BMCR, phy_data);
for(tout = 100; tout; tout--) { __NOP(); } /* A short delay */
switch(phy_id) {
case DP83848C_ID:
phy_data = phy_read(PHY_REG_STS);
if(phy_data & PHY_STS_DUPLEX) {
LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
LPC_EMAC->Command |= CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_FULL_DUP;
} else {
LPC_EMAC->MAC2 &= ~MAC2_FULL_DUP;
LPC_EMAC->Command &= ~CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_HALF_DUP;
}
if(phy_data & PHY_STS_SPEED) {
LPC_EMAC->SUPP &= ~SUPP_SPEED;
} else {
LPC_EMAC->SUPP |= SUPP_SPEED;
}
break;
case LAN8720_ID:
phy_data = phy_read(PHY_REG_SCSR);
if (phy_data & PHY_SCSR_DUPLEX) {
LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
LPC_EMAC->Command |= CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_FULL_DUP;
} else {
LPC_EMAC->Command &= ~CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_HALF_DUP;
}
if(phy_data & PHY_SCSR_100MBIT) {
LPC_EMAC->SUPP |= SUPP_SPEED;
} else {
LPC_EMAC->SUPP &= ~SUPP_SPEED;
}
break;
}
}

View File

@ -1,528 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Contribution by Nitin Bhaskar(nitin.bhaskar.27.09@gmail.com)
*/
#include "ethernet_api.h"
#include <string.h>
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#include "pinmap.h"
#define NEW_LOGIC 0
#define NEW_ETH_BUFFER 0
#if NEW_ETH_BUFFER
#define NUM_RX_FRAG 4 // Number of Rx Fragments (== packets)
#define NUM_TX_FRAG 3 // Number of Tx Fragments (== packets)
#define ETH_MAX_FLEN 1536 // Maximum Ethernet Frame Size
#define ETH_FRAG_SIZE ETH_MAX_FLEN // Packet Fragment size (same as packet length)
#else
// Memfree calculation:
// (16 * 1024) - ((2 * 4 * NUM_RX) + (2 * 4 * NUM_RX) + (0x300 * NUM_RX) +
// (2 * 4 * NUM_TX) + (1 * 4 * NUM_TX) + (0x300 * NUM_TX)) = 8556
/* EMAC Memory Buffer configuration for 16K Ethernet RAM. */
#define NUM_RX_FRAG 4 /* Num.of RX Fragments 4*1536= 6.0kB */
#define NUM_TX_FRAG 3 /* Num.of TX Fragments 3*1536= 4.6kB */
//#define ETH_FRAG_SIZE 1536 /* Packet Fragment size 1536 Bytes */
//#define ETH_MAX_FLEN 1536 /* Max. Ethernet Frame Size */
#define ETH_FRAG_SIZE 0x300 /* Packet Fragment size 1536/2 Bytes */
#define ETH_MAX_FLEN 0x300 /* Max. Ethernet Frame Size */
const int ethernet_MTU_SIZE = 0x300;
#endif
#define ETHERNET_ADDR_SIZE 6
/* Descriptors Fields bits */
#define TRDES_OWN_BIT (1U<<31) /* Own bit in RDES0 & TDES0 */
#define RX_END_RING (1<<15) /* Receive End of Ring bit in RDES1 */
#define RX_NXTDESC_FLAG (1<<14) /* Second Address Chained bit in RDES1 */
#define TX_LAST_SEGM (1<<29) /* Last Segment bit in TDES0 */
#define TX_FIRST_SEGM (1<<28) /* First Segment bit in TDES0 */
#define TX_END_RING (1<<21) /* Transmit End of Ring bit in TDES0 */
#define TX_NXTDESC_FLAG (1<<20) /* Second Address Chained bit in TDES0 */
PACKED struct RX_DESC_TypeDef { /* RX Descriptor struct */
unsigned int Status;
unsigned int Ctrl;
unsigned int BufAddr1;
unsigned int NextDescAddr;
};
typedef struct RX_DESC_TypeDef RX_DESC_TypeDef;
PACKED struct TX_DESC_TypeDef { /* TX Descriptor struct */
unsigned int Status;
unsigned int Ctrl;
unsigned int BufAddr1;
unsigned int NextDescAddr;
};
typedef struct TX_DESC_TypeDef TX_DESC_TypeDef;
/* ETHMODE RMII SELECT */
#define RMII_SELECT 0x04
/* define to tell PHY about write operation */
#define MII_WRITE (1 << 1)
/* define to tell PHY about read operation */
#define MII_READ (0 << 1)
/* define to enable duplex mode */
#define MAC_DUPLEX_MODE (1 << 11)
/* MAC_FRAME_FILTER register bit defines */
#define MAC_FRAME_FILTER_PR (1 << 0) /* Promiscuous Mode */
#define MAC_FRAME_FILTER_RA (1UL << 31) /* Receive all */
/* MAC_CONFIG register bit defines */
#define MAC_CONFIG_RE (1 << 2) /* Receiver enable */
#define MAC_CONFIG_TE (1 << 3) /* Transmitter Enable */
/* DMA_OP_MODE register bit defines */
#define DMA_OP_MODE_SSR (1 << 1) /* Start/stop receive */
#define DMA_OP_MODE_SST (1 << 13) /* Start/Stop Transmission Command */
/* DMA_INT_EN register bit defines */
#define DMA_INT_EN_TIE (1 << 0) /* Transmit interrupt enable */
#define DMA_INT_EN_TSE (1 << 1) /* Transmit stopped enable */
#define DMA_INT_EN_TUE (1 << 2) /* Transmit buffer unavailable enable */
#define DMA_INT_EN_TJE (1 << 3) /* Transmit jabber timeout enable */
#define DMA_INT_EN_OVE (1 << 4) /* Overflow interrupt enable */
#define DMA_INT_EN_UNE (1 << 5) /* Underflow interrupt enable */
#define DMA_INT_EN_RIE (1 << 6) /* Receive interrupt enable */
#define DMA_INT_EN_RUE (1 << 7) /* Receive buffer unavailable enable */
#define DMA_INT_EN_RSE (1 << 8) /* Received stopped enable */
#define DMA_INT_EN_RWE (1 << 9) /* Receive watchdog timeout enable */
#define DMA_INT_EN_ETE (1 << 10) /* Early transmit interrupt enable */
#define DMA_INT_EN_FBE (1 << 13) /* Fatal bus error enable */
#define DMA_INT_EN_ERE (1 << 14) /* Early receive interrupt enable */
#define DMA_INT_EN_AIE (1 << 15) /* Abnormal interrupt summary enable */
#define DMA_INT_EN_NIE (1 << 16) /* Normal interrupt summary enable */
/* PHY Support Register */
#define SUPP_SPEED 0x00004000 /* Reduced MII Logic Current Speed */
//#define SUPP_RES_RMII 0x00000800 /* Reset Reduced MII Logic */
#define SUPP_RES_RMII 0x00000000 /* Reset Reduced MII Logic */
/* MII Management Command Register */
#define MCMD_READ 0x00000001 /* MII Read */
#define MCMD_SCAN 0x00000002 /* MII Scan continuously */
#define MII_WR_TOUT 0x00050000 /* MII Write timeout count */
#define MII_RD_TOUT 0x00050000 /* MII Read timeout count */
/* MII Management Address Register */
#define MADR_REG_ADR 0x0000001F /* MII Register Address Mask */
#define MADR_PHY_ADR 0x00001F00 /* PHY Address Mask */
/* MII Management Indicators Register */
#define MIND_BUSY 0x00000001 /* MII is Busy */
#define MIND_SCAN 0x00000002 /* MII Scanning in Progress */
#define MIND_NOT_VAL 0x00000004 /* MII Read Data not valid */
#define MIND_MII_LINK_FAIL 0x00000008 /* MII Link Failed */
/* DP83848C PHY Registers */
#define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
#define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
#define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
#define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
#define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
#define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
#define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
#define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX */
/* PHY Extended Registers */
#define PHY_REG_STS 0x10 /* Status Register */
#define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
#define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
#define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
#define PHY_REG_RECR 0x15 /* Receive Error Counter */
#define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
#define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
#define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
#define PHY_REG_PHYCR 0x19 /* PHY Control Register */
#define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
#define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
#define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
#define PHY_REG_SCSR 0x1F /* PHY Special Control/Status Register */
#define PHY_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
#define PHY_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
#define PHY_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
#define PHY_HALFD_10M 0x0000 /* Half Duplex 10MBit */
#define PHY_AUTO_NEG 0x1000 /* Select Auto Negotiation */
#define DP83848C_DEF_ADR 0x01 /* Default PHY device address */
#define DP83848C_ID 0x20005C90 /* PHY Identifier - DP83848C */
#define LAN8720_ID 0x0007C0F0 /* PHY Identifier - LAN8720 */
#define PHY_STS_LINK 0x0001 /* PHY Status Link Mask */
#define PHY_STS_SPEED 0x0002 /* PHY Status Speed Mask */
#define PHY_STS_DUPLEX 0x0004 /* PHY Status Duplex Mask */
#define PHY_BMCR_RESET 0x8000 /* PHY Reset */
#define PHY_BMSR_LINK 0x0004 /* PHY BMSR Link valid */
#define PHY_SCSR_100MBIT 0x0008 /* Speed: 1=100 MBit, 0=10Mbit */
#define PHY_SCSR_DUPLEX 0x0010 /* PHY Duplex Mask */
static int phy_read(unsigned int PhyReg);
static int phy_write(unsigned int PhyReg, unsigned short Data);
static void txdscr_init(void);
static void rxdscr_init(void);
#if defined (__ICCARM__)
# define AHBSRAM1
#elif defined(TOOLCHAIN_GCC_CR)
# define AHBSRAM1 __attribute__((section(".data.$RamPeriph32")))
#else
# define AHBSRAM1 __attribute__((section("AHBSRAM1"),aligned))
#endif
AHBSRAM1 volatile uint8_t rxbuf[NUM_RX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile uint8_t txbuf[NUM_TX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile RX_DESC_TypeDef rxdesc[NUM_RX_FRAG];
AHBSRAM1 volatile TX_DESC_TypeDef txdesc[NUM_TX_FRAG];
#ifndef min
#define min(x, y) (((x)<(y))?(x):(y))
#endif
static uint32_t phy_id = 0;
static uint32_t TxDescIndex = 0;
static uint32_t RxDescIndex = 0;
static uint32_t RxOffset = 0;
/*----------------------------------------------------------------------------
Ethernet Device initialize
*----------------------------------------------------------------------------*/
int ethernet_init()
{
int regv, tout;
char mac[ETHERNET_ADDR_SIZE];
pin_function(PC_0, (SCU_MODE_INACT | FUNC3)); /* Enable ENET RX CLK */
pin_function(P1_19, (SCU_MODE_INACT | FUNC0)); /* Enable ENET TX CLK */
/* Ethernet pinmuxing */
pin_function(P2_0, SCU_PINIO_FAST | FUNC7); /* ENET_MDC */
pin_function(P1_17, SCU_PINIO_FAST | FUNC3); /* ENET_MDIO */
pin_function(P1_18, SCU_PINIO_FAST | FUNC3); /* ENET_TXD0 */
pin_function(P1_20, SCU_PINIO_FAST | FUNC3); /* ENET_TXD1 */
pin_function(P1_19, SCU_PINIO_FAST | FUNC0); /* ENET_REF */
pin_function(P0_1, SCU_PINIO_FAST | FUNC6); /* ENET_TX_EN */
pin_function(P1_15, SCU_PINIO_FAST | FUNC3); /* ENET_RXD0 */
pin_function(P0_0, SCU_PINIO_FAST | FUNC2); /* ENET_RXD1 */
pin_function(P1_16, SCU_PINIO_FAST | FUNC3); /* ENET_CRS */
pin_function(PC_9, SCU_PINIO_FAST | FUNC3); /* ENET_RX_ER */
pin_function(P1_16, SCU_PINIO_FAST | FUNC7); /* ENET_RXDV */
LPC_CREG->CREG6 |= RMII_SELECT;
/* perform RGU soft reset */
LPC_RGU->RESET_CTRL0 = 1 << 22;
LPC_RGU->RESET_CTRL0 = 0;
/* Wait until reset is performed */
while(1) {
if (LPC_RGU->RESET_ACTIVE_STATUS0 & (1 << 22))
break;
}
/* Reset MAC DMA Controller */
LPC_ETHERNET->DMA_BUS_MODE |= 0x01;
while(LPC_ETHERNET->DMA_BUS_MODE & 0x01);
phy_write(PHY_REG_BMCR, PHY_BMCR_RESET); /* perform PHY reset */
for(tout = 0x20000; ; tout--) { /* Wait for hardware reset to end. */
regv = phy_read(PHY_REG_BMCR);
if(regv < 0 || tout == 0) {
return -1; /* Error */
}
if(!(regv & PHY_BMCR_RESET)) {
break; /* Reset complete. */
}
}
phy_id = (phy_read(PHY_REG_IDR1) << 16);
phy_id |= (phy_read(PHY_REG_IDR2) & 0XFFF0);
if (phy_id != DP83848C_ID && phy_id != LAN8720_ID) {
error("Unknown Ethernet PHY (%x)", (unsigned int)phy_id);
}
ethernet_set_link(-1, 0);
/* Set the Ethernet MAC Address registers */
ethernet_address(mac);
LPC_ETHERNET->MAC_ADDR0_HIGH = (mac[5] << 8) | mac[4];
LPC_ETHERNET->MAC_ADDR0_LOW = (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0];
txdscr_init(); /* initialize DMA TX Descriptor */
rxdscr_init(); /* initialize DMA RX Descriptor */
/* Configure Filter */
LPC_ETHERNET->MAC_FRAME_FILTER = MAC_FRAME_FILTER_PR | MAC_FRAME_FILTER_RA;
/* Enable Receiver and Transmitter */
LPC_ETHERNET->MAC_CONFIG |= (MAC_CONFIG_RE | MAC_CONFIG_TE);
//LPC_ETHERNET->DMA_INT_EN = DMA_INT_EN_NIE | DMA_INT_EN_RIE | DMA_INT_EN_TJE; /* Enable EMAC interrupts. */
/* Start Transmission & Receive processes */
LPC_ETHERNET->DMA_OP_MODE |= (DMA_OP_MODE_SST | DMA_OP_MODE_SSR);
return 0;
}
/*----------------------------------------------------------------------------
Ethernet Device Uninitialize
*----------------------------------------------------------------------------*/
void ethernet_free()
{
}
/*----------------------------------------------------------------------------
Ethernet write
*----------------------------------------------------------------------------*/
int ethernet_write(const char *data, int slen)
{
if (slen > ETH_FRAG_SIZE)
return -1;
txdesc[TxDescIndex].Ctrl = slen;
memcpy((void *)txdesc[TxDescIndex].BufAddr1, data, slen);
return slen;
}
/*----------------------------------------------------------------------------
Ethernet Send
*----------------------------------------------------------------------------*/
int ethernet_send()
{
int s = txdesc[TxDescIndex].Ctrl;
txdesc[TxDescIndex].Status |= TRDES_OWN_BIT;
LPC_ETHERNET->DMA_TRANS_POLL_DEMAND = 1; // Wake Up the DMA if it's in Suspended Mode
TxDescIndex++;
if (TxDescIndex == NUM_TX_FRAG)
TxDescIndex = 0;
return s;
}
/*----------------------------------------------------------------------------
Ethernet receive
*----------------------------------------------------------------------------*/
int ethernet_receive()
{
int i, slen = 0;
for (i = RxDescIndex;; i++) {
if (rxdesc[i].Status & TRDES_OWN_BIT)
return (slen - RxOffset);
else
slen += (rxdesc[i].Status >> 16) & 0x03FFF;
}
return 0;
}
/*----------------------------------------------------------------------------
Ethernet read
*----------------------------------------------------------------------------*/
int ethernet_read(char *data, int dlen)
{
int copylen;
uint32_t *pSrc = (uint32_t *)rxdesc[RxDescIndex].BufAddr1;
copylen = (rxdesc[RxDescIndex].Status >> 16) & 0x03FFF;
if (rxdesc[RxDescIndex].Status & TRDES_OWN_BIT || (dlen + RxOffset) > copylen)
return -1;
if ((dlen + RxOffset) == copylen) {
memcpy(&pSrc[RxOffset], data, copylen);
rxdesc[RxDescIndex].Status = TRDES_OWN_BIT;
RxDescIndex++;
RxOffset = 0;
if (RxDescIndex == NUM_RX_FRAG)
RxDescIndex = 0;
} else if ((dlen + RxOffset) < copylen) {
copylen = dlen;
memcpy(&pSrc[RxOffset], data, copylen);
RxOffset += dlen;
}
return copylen;
}
int ethernet_link(void)
{
if (phy_id == DP83848C_ID) {
return (phy_read(PHY_REG_STS) & PHY_STS_LINK);
} else { // LAN8720_ID
return (phy_read(PHY_REG_BMSR) & PHY_BMSR_LINK);
}
}
static int phy_write(unsigned int PhyReg, unsigned short Data)
{
unsigned int timeOut;
while(LPC_ETHERNET->MAC_MII_ADDR & MIND_BUSY);
LPC_ETHERNET->MAC_MII_ADDR = (DP83848C_DEF_ADR<<11) | (PhyReg<<6) | MII_WRITE;
LPC_ETHERNET->MAC_MII_DATA = Data;
LPC_ETHERNET->MAC_MII_ADDR |= MIND_BUSY; // Start PHY Write Cycle
/* Wait utill operation completed */
for (timeOut = 0; timeOut < MII_WR_TOUT; timeOut++) {
if ((LPC_ETHERNET->MAC_MII_ADDR & MIND_BUSY) == 0) {
break;
}
}
return -1;
}
static int phy_read(unsigned int PhyReg)
{
unsigned int timeOut;
while(LPC_ETHERNET->MAC_MII_ADDR & MIND_BUSY);
LPC_ETHERNET->MAC_MII_ADDR = (DP83848C_DEF_ADR<<11) | (PhyReg<<6) | MII_READ;
LPC_ETHERNET->MAC_MII_ADDR |= MIND_BUSY;
for(timeOut = 0; timeOut < MII_RD_TOUT; timeOut++) { /* Wait until operation completed */
if((LPC_ETHERNET->MAC_MII_ADDR & MIND_BUSY) == 0) {
return LPC_ETHERNET->MAC_MII_DATA; /* Return a 16-bit value. */
}
}
return -1;
}
static void txdscr_init()
{
int i;
for(i = 0; i < NUM_TX_FRAG; i++) {
txdesc[i].Status = TX_LAST_SEGM | TX_FIRST_SEGM;;
txdesc[i].Ctrl = 0;
txdesc[i].BufAddr1 = (uint32_t)&txbuf[i];
if (i == (NUM_TX_FRAG - 1)) {
txdesc[i].Status |= TX_END_RING;
}
}
LPC_ETHERNET->DMA_TRANS_DES_ADDR = (uint32_t)txdesc; /* Set EMAC Transmit Descriptor Registers. */
}
static void rxdscr_init()
{
int i;
for(i = 0; i < NUM_RX_FRAG; i++) {
rxdesc[i].Status = TRDES_OWN_BIT;
rxdesc[i].Ctrl = ETH_FRAG_SIZE;
rxdesc[i].BufAddr1 = (uint32_t)&rxbuf[i];
if (i == (NUM_RX_FRAG - 1)) {
rxdesc[i].Ctrl |= RX_END_RING;
}
}
LPC_ETHERNET->DMA_REC_DES_ADDR = (uint32_t)rxdesc; /* Set EMAC Receive Descriptor Registers. */
}
void ethernet_address(char *mac)
{
mbed_mac_address(mac);
}
void ethernet_set_link(int speed, int duplex)
{
volatile unsigned short phy_data;
int tout;
if((speed < 0) || (speed > 1)) {
phy_data = PHY_AUTO_NEG;
} else {
phy_data = (((unsigned short) speed << 13) |
((unsigned short) duplex << 8));
}
phy_write(PHY_REG_BMCR, phy_data);
for(tout = 100; tout; tout--) {
__NOP(); /* A short delay */
}
switch(phy_id) {
case DP83848C_ID:
phy_data = phy_read(PHY_REG_STS);
if(phy_data & PHY_STS_DUPLEX) {
/* Full duplex is enabled. */
LPC_ETHERNET->MAC_CONFIG |= MAC_DUPLEX_MODE;
} else {
LPC_ETHERNET->MAC_CONFIG &= ~MAC_DUPLEX_MODE;
}
if(phy_data & PHY_STS_SPEED) {
LPC_ETHERNET->MAC_CONFIG &= ~SUPP_SPEED;
} else {
LPC_ETHERNET->MAC_CONFIG |= SUPP_SPEED;
}
break;
case LAN8720_ID:
for(tout = 100; tout; tout--) {
phy_data = phy_read(PHY_REG_BMSR);
if (phy_data & PHY_STS_DUPLEX)
break;
}
if (phy_data & PHY_STS_DUPLEX) {
/* Full duplex is enabled. */
LPC_ETHERNET->MAC_CONFIG |= MAC_DUPLEX_MODE;
} else {
LPC_ETHERNET->MAC_CONFIG &= ~MAC_DUPLEX_MODE;
}
if(phy_data & PHY_STS_SPEED) {
LPC_ETHERNET->MAC_CONFIG &= ~SUPP_SPEED;
} else {
LPC_ETHERNET->MAC_CONFIG |= SUPP_SPEED;
}
break;
}
}

View File

@ -1,825 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "mbed_toolchain.h"
#include "mbed_error.h"
#include "iodefine.h"
#include "ethernetext_api.h"
#if DEVICE_ETHERNET
/* Descriptor info */
#define NUM_OF_TX_DESCRIPTOR (16)
#define NUM_OF_RX_DESCRIPTOR (16)
#define SIZE_OF_BUFFER (1600) /* Must be an integral multiple of 32 */
#define MAX_SEND_SIZE (1514)
/* Ethernet Descriptor Value Define */
#define TD0_TFP_TOP_BOTTOM (0x30000000)
#define TD0_TACT (0x80000000)
#define TD0_TDLE (0x40000000)
#define RD0_RACT (0x80000000)
#define RD0_RDLE (0x40000000)
#define RD0_RFE (0x08000000)
#define RD0_RCSE (0x04000000)
#define RD0_RFS (0x03FF0000)
#define RD0_RCS (0x0000FFFF)
#define RD0_RFS_RFOF (0x02000000)
#define RD0_RFS_RUAF (0x00400000)
#define RD0_RFS_RRF (0x00100000)
#define RD0_RFS_RTLF (0x00080000)
#define RD0_RFS_RTSF (0x00040000)
#define RD0_RFS_PRE (0x00020000)
#define RD0_RFS_CERF (0x00010000)
#define RD0_RFS_ERROR (RD0_RFS_RFOF | RD0_RFS_RUAF | RD0_RFS_RRF | RD0_RFS_RTLF | \
RD0_RFS_RTSF | RD0_RFS_PRE | RD0_RFS_CERF)
#define RD1_RDL_MSK (0x0000FFFF)
/* PHY Register */
#define BASIC_MODE_CONTROL_REG (0)
#define BASIC_MODE_STATUS_REG (1)
#define PHY_IDENTIFIER1_REG (2)
#define PHY_IDENTIFIER2_REG (3)
#define PHY_SP_CTL_STS_REG (31)
/* MII management interface access */
#define PHY_ADDR (0) /* Confirm the pin connection of the PHY-LSI */
#define PHY_ST (1)
#define PHY_WRITE (1)
#define PHY_READ (2)
#define MDC_WAIT (6) /* 400ns/4 */
#define BASIC_STS_MSK_LINK (0x0004) /* Link Status */
#define BASIC_STS_MSK_AUTO_CMP (0x0020) /* Auto-Negotiate Complete */
#define M_PHY_ID (0xFFFFFFF0)
#define PHY_ID_LAN8710A (0x0007C0F0)
/* ETHERPIR0 */
#define PIR0_MDI (0x00000008)
#define PIR0_MDO (0x00000004)
#define PIR0_MMD (0x00000002)
#define PIR0_MDC (0x00000001)
#define PIR0_MDC_HIGH (0x00000001)
#define PIR0_MDC_LOW (0x00000000)
/* ETHEREDRRR0 */
#define EDRRR0_RR (0x00000001)
/* ETHEREDTRR0 */
#define EDTRR0_TR (0x00000003)
/* software wait */
#define LOOP_100us (6700) /* Loop counter for software wait 6666=100us/((1/400MHz)*6cyc) */
#define EDMAC_EESIPR_INI_RECV (0x0205001F) /* 0x02000000 : Detect reception suspended */
/* 0x00040000 : Detect frame reception */
/* 0x00010000 : Receive FIFO overflow */
/* 0x00000010 : Residual bit frame reception */
/* 0x00000008 : Long frame reception */
/* 0x00000004 : Short frame reception */
/* 0x00000002 : PHY-LSI reception error */
/* 0x00000001 : Receive frame CRC error */
#define EDMAC_EESIPR_INI_EtherC (0x00400000) /* 0x00400000 : E-MAC status register */
void ethernet_address(char *);
void ethernet_set_link(int, int);
/* Send descriptor */
typedef struct tag_edmac_send_desc {
uint32_t td0;
uint32_t td1;
uint8_t *td2;
uint32_t padding4;
} edmac_send_desc_t;
/* Receive descriptor */
typedef struct tag_edmac_recv_desc {
uint32_t rd0;
uint32_t rd1;
uint8_t *rd2;
uint32_t padding4;
} edmac_recv_desc_t;
/* memory */
/* The whole transmit/receive descriptors (must be allocated in 16-byte boundaries) */
/* Transmit/receive buffers (must be allocated in 16-byte boundaries) */
#if defined(__ICCARM__)
#pragma data_alignment=16
static uint8_t ethernet_nc_memory[(sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR) +
(sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR) +
(NUM_OF_TX_DESCRIPTOR * SIZE_OF_BUFFER) +
(NUM_OF_RX_DESCRIPTOR * SIZE_OF_BUFFER)] //16 bytes aligned!
@ ".mirrorram";
#else
static uint8_t ethernet_nc_memory[(sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR) +
(sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR) +
(NUM_OF_TX_DESCRIPTOR * SIZE_OF_BUFFER) +
(NUM_OF_RX_DESCRIPTOR * SIZE_OF_BUFFER)]
__attribute((section("NC_BSS"),aligned(16))); //16 bytes aligned!
#endif
static int32_t rx_read_offset; /* read offset */
static int32_t tx_wite_offset; /* write offset */
static uint32_t send_top_index;
static uint32_t recv_top_index;
static int32_t Interrupt_priority;
static edmac_send_desc_t *p_eth_desc_dsend = NULL;
static edmac_recv_desc_t *p_eth_desc_drecv = NULL;
static edmac_recv_desc_t *p_recv_end_desc = NULL;
static ethernetext_cb_fnc *p_recv_cb_fnc = NULL;
static char mac_addr[6] = {0x00, 0x02, 0xF7, 0xF0, 0x00, 0x00}; /* MAC Address */
static uint32_t phy_id = 0;
static uint32_t start_stop = 1; /* 0:stop 1:start */
static uint32_t tsu_ten_tmp = 0;
volatile struct st_ether_from_tsu_adrh0* ETHER_FROM_TSU_ADRH0_ARRAY[ ETHER_FROM_TSU_ADRH0_ARRAY_COUNT ] =
/* ->MISRA 11.3 */ /* ->SEC R2.7.1 */
ETHER_FROM_TSU_ADRH0_ARRAY_ADDRESS_LIST;
/* <-MISRA 11.3 */ /* <-SEC R2.7.1 */
/* function */
static void lan_reg_reset(void);
static void lan_desc_create(void);
static void lan_reg_set(int32_t link);
static uint16_t phy_reg_read(uint16_t reg_addr);
static void phy_reg_write(uint16_t reg_addr, uint16_t data);
static void mii_preamble(void);
static void mii_cmd(uint16_t reg_addr, uint32_t option);
static void mii_reg_read(uint16_t *data);
static void mii_reg_write(uint16_t data);
static void mii_z(void);
static void mii_write_1(void);
static void mii_write_0(void);
static void set_ether_pir(uint32_t set_data);
static void wait_100us(int32_t wait_cnt);
int ethernetext_init(ethernet_cfg_t *p_ethcfg) {
int32_t i;
uint16_t val;
CPGSTBCR7 &= ~(CPG_STBCR7_BIT_MSTP74); /* enable ETHER clock */
#if defined(TARGET_RZ_A1H)
/* P4_2(PHY Reset) */
GPIOP4 &= ~0x0004; /* Outputs low level */
GPIOPMC4 &= ~0x0004; /* Port mode */
GPIOPM4 &= ~0x0004; /* Output mode */
/* GPIO P1 P1_14(ET_COL) */
GPIOPMC1 |= 0x4000;
GPIOPFCAE1 &= ~0x4000;
GPIOPFCE1 |= 0x4000;
GPIOPFC1 |= 0x4000;
/* P3_0(ET_TXCLK), P3_3(ET_MDIO), P3_4(ET_RXCLK), P3_5(ET_RXER), P3_6(ET_RXDV) */
GPIOPMC3 |= 0x0079;
GPIOPFCAE3 &= ~0x0079;
GPIOPFCE3 &= ~0x0079;
GPIOPFC3 |= 0x0079;
GPIOPIPC3 |= 0x0079;
/* P5_9(ET_MDC) */
GPIOPMC5 |= 0x0200;
GPIOPFCAE5 &= ~0x0200;
GPIOPFCE5 &= ~0x0200;
GPIOPFC5 |= 0x0200;
GPIOPIPC5 |= 0x0200;
/* P10_1(ET_TXER), P10_2(ET_TXEN), P10_3(ET_CRS), P10_4(ET_TXD0), P10_5(ET_TXD1) */
/* P10_6(ET_TXD2), P10_7(ET_TXD3), P10_8(ET_RXD0), P10_9(ET_RXD1), P10_10(ET_RXD2), P10_11(ET_RXD3) */
GPIOPMC10 |= 0x0FFE;
GPIOPFCAE10 &= ~0x0FFE;
GPIOPFCE10 |= 0x0FFE;
GPIOPFC10 |= 0x0FFE;
GPIOPIPC10 |= 0x0FFE;
/* Resets the E-MAC,E-DMAC */
lan_reg_reset();
/* PHY Reset */
GPIOP4 &= ~0x0004; /* P4_2 Outputs low level */
wait_100us(250); /* 25msec */
GPIOP4 |= 0x0004; /* P4_2 Outputs high level */
wait_100us(100); /* 10msec */
#elif defined(TARGET_VK_RZ_A1H)
/* -->4F<-- P1_14(ET_COL) */
GPIOPMC1 |= 0x4000;
GPIOPFCAE1 &= ~0x4000;
GPIOPFCE1 |= 0x4000;
GPIOPFC1 |= 0x4000;
GPIOPIPC1 |= 0x4000;
/* -->2F<-- P2_0(ET_TXCLK), P2_1(ET_TXER), P2_2(ET_TXEN), P2_3(ET_CRS), P2_4(ET_TXD0),
P2_5(ET_TXD1), P2_6(ET_TXD2), P2_7(ET_TXD3), P2_8(ET_RXD0), P2_9(ET_RXD1), P2_10(ET_RXD2) P2_11(ET_RXD3) */
GPIOPMC2 |= 0x0FFF;
GPIOPFCAE2 &= ~0x0FFF;
GPIOPFCE2 &= ~0x0FFF;
GPIOPFC2 |= 0x0FFF;
GPIOPIPC2 |= 0x0FFF;
/* -->3F<-- P3_3(ET_MDIO), P3_4(ET_RXCLK), P3_5(ET_RXER), P3_6(ET_RXDV) */
GPIOPMC3 |= 0x0078;
GPIOPFCAE3 &= ~0x0078;
GPIOPFCE3 &= ~0x0078;
GPIOPFC3 |= 0x0078;
GPIOPIPC3 |= 0x0078;
/* -->3F<-- P7_0(ET_MDC) */
GPIOPMC7 |= 0x0001;
GPIOPFCAE7 &= ~0x0001;
GPIOPFCE7 |= 0x0001;
GPIOPFC7 &= ~0x0001;
GPIOPIPC7 |= 0x0001;
/* Resets the E-MAC,E-DMAC */
lan_reg_reset();
#else
#error "There is no initialization processing."
#endif
/* Resets the PHY-LSI */
phy_reg_write(BASIC_MODE_CONTROL_REG, 0x8000);
for (i = 10000; i > 0; i--) {
val = phy_reg_read(BASIC_MODE_CONTROL_REG);
if (((uint32_t)val & 0x8000uL) == 0) {
break; /* Reset complete */
}
}
phy_id = ((uint32_t)phy_reg_read(PHY_IDENTIFIER1_REG) << 16)
| (uint32_t)phy_reg_read(PHY_IDENTIFIER2_REG);
Interrupt_priority = p_ethcfg->int_priority;
p_recv_cb_fnc = p_ethcfg->recv_cb;
start_stop = 1;
if (p_ethcfg->ether_mac != NULL) {
(void)memcpy(mac_addr, p_ethcfg->ether_mac, sizeof(mac_addr));
} else {
ethernet_address(mac_addr); /* Get MAC Address */
}
return 0;
}
void ethernetext_start_stop(int32_t mode) {
if (mode == 1) {
/* start */
ETHEREDTRR0 |= EDTRR0_TR;
ETHEREDRRR0 |= EDRRR0_RR;
start_stop = 1;
} else {
/* stop */
ETHEREDTRR0 &= ~EDTRR0_TR;
ETHEREDRRR0 &= ~EDRRR0_RR;
start_stop = 0;
}
}
int ethernetext_chk_link_mode(void) {
int32_t link;
uint16_t data;
if ((phy_id & M_PHY_ID) == PHY_ID_LAN8710A) {
data = phy_reg_read(PHY_SP_CTL_STS_REG);
switch (((uint32_t)data >> 2) & 0x00000007) {
case 0x0001:
link = HALF_10M;
break;
case 0x0005:
link = FULL_10M;
break;
case 0x0002:
link = HALF_TX;
break;
case 0x0006:
link = FULL_TX;
break;
default:
link = NEGO_FAIL;
break;
}
} else {
link = NEGO_FAIL;
}
return link;
}
void ethernetext_set_link_mode(int32_t link) {
lan_reg_reset(); /* Resets the E-MAC,E-DMAC */
lan_desc_create(); /* Initialize of buffer memory */
lan_reg_set(link); /* E-DMAC, E-MAC initialization */
}
void ethernetext_add_multicast_group(const uint8_t *addr) {
uint32_t cnt;
uint32_t tmp_data_h;
uint32_t tmp_data_l;
if (tsu_ten_tmp == 0xFFFFFFFF) {
ethernetext_set_all_multicast(1);
} else {
tmp_data_h = ((uint32_t)addr[0] << 24) | ((uint32_t)addr[1] << 16) | ((uint32_t)addr[2] << 8) | ((uint32_t)addr[3]);
tmp_data_l = ((uint32_t)addr[4] << 8) | ((uint32_t)addr[5]);
for (cnt = 0; cnt < 32; cnt++) {
if ((tsu_ten_tmp & (0x80000000 >> cnt)) == 0) {
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 = tmp_data_h;
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 = tmp_data_l;
if ((ETHERECMR0 & 0x00002000) != 0) {
ETHERTSU_TEN |= (0x80000000 >> cnt);
}
tsu_ten_tmp |= (0x80000000 >> cnt);
break;
}
}
}
}
void ethernetext_remove_multicast_group(const uint8_t *addr) {
uint32_t cnt;
uint32_t tmp_data_h;
uint32_t tmp_data_l;
tmp_data_h = ((uint32_t)addr[0] << 24) | ((uint32_t)addr[1] << 16) | ((uint32_t)addr[2] << 8) | ((uint32_t)addr[3]);
tmp_data_l = ((uint32_t)addr[4] << 8) | ((uint32_t)addr[5]);
for (cnt = 0; cnt< 32; cnt++) {
if ((ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 == tmp_data_h) &&
(ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 == tmp_data_l)) {
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRH0 = 0;
while ((ETHERTSU_ADSBSY & 0x00000001) != 0) {
;
}
ETHER_FROM_TSU_ADRH0_ARRAY[cnt]->TSU_ADRL0 = 0;
ETHERTSU_TEN &= ~(0x80000000 >> cnt);
tsu_ten_tmp &= ~(0x80000000 >> cnt);
break;
}
}
}
void ethernetext_set_all_multicast(int all) {
if (all != 0) {
ETHERECMR0 &= ~(0x00002000);
ETHERTSU_TEN = 0x00000000;
} else {
ETHERECMR0 |= 0x00002000;
ETHERTSU_TEN = tsu_ten_tmp;
}
}
int ethernet_init() {
ethernet_cfg_t ethcfg;
ethcfg.int_priority = 5;
ethcfg.recv_cb = NULL;
ethcfg.ether_mac = NULL;
ethernetext_init(&ethcfg);
ethernet_set_link(-1, 0); /* Auto-Negotiation */
return 0;
}
void ethernet_free() {
ETHERARSTR |= 0x00000001; /* ETHER software reset */
CPGSTBCR7 |= CPG_STBCR7_BIT_MSTP74; /* disable ETHER clock */
}
int ethernet_write(const char *data, int slen) {
edmac_send_desc_t *p_send_desc;
int32_t copy_size;
if ((p_eth_desc_dsend == NULL) || (data == NULL) || (slen < 0)
|| (tx_wite_offset < 0) || (tx_wite_offset >= MAX_SEND_SIZE)) {
copy_size = 0;
} else {
p_send_desc = &p_eth_desc_dsend[send_top_index]; /* Current descriptor */
if ((p_send_desc->td0 & TD0_TACT) != 0) {
copy_size = 0;
} else {
copy_size = MAX_SEND_SIZE - tx_wite_offset;
if (copy_size > slen) {
copy_size = slen;
}
(void)memcpy(&p_send_desc->td2[tx_wite_offset], data, copy_size);
tx_wite_offset += copy_size;
}
}
return copy_size;
}
int ethernet_send() {
edmac_send_desc_t *p_send_desc;
int32_t ret;
if ((p_eth_desc_dsend == NULL) || (tx_wite_offset <= 0)) {
ret = 0;
} else {
/* Transfer 1 frame */
p_send_desc = &p_eth_desc_dsend[send_top_index]; /* Current descriptor */
/* Sets the frame length */
p_send_desc->td1 = ((uint32_t)tx_wite_offset << 16);
tx_wite_offset = 0;
/* Sets the transmit descriptor to transmit again */
p_send_desc->td0 &= (TD0_TACT | TD0_TDLE | TD0_TFP_TOP_BOTTOM);
p_send_desc->td0 |= TD0_TACT;
if ((start_stop == 1) && ((ETHEREDTRR0 & EDTRR0_TR) != EDTRR0_TR)) {
ETHEREDTRR0 |= EDTRR0_TR;
}
/* Update the current descriptor */
send_top_index++;
if (send_top_index >= NUM_OF_TX_DESCRIPTOR) {
send_top_index = 0;
}
ret = 1;
}
return ret;
}
int ethernet_receive() {
edmac_recv_desc_t *p_recv_desc;
int32_t receive_size = 0;
if (p_eth_desc_drecv != NULL) {
if (p_recv_end_desc != NULL) {
/* Sets the receive descriptor to receive again */
p_recv_end_desc->rd0 &= (RD0_RACT | RD0_RDLE);
p_recv_end_desc->rd0 |= RD0_RACT;
if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
ETHEREDRRR0 |= EDRRR0_RR;
}
p_recv_end_desc = NULL;
}
p_recv_desc = &p_eth_desc_drecv[recv_top_index]; /* Current descriptor */
if ((p_recv_desc->rd0 & RD0_RACT) == 0) {
/* Receives 1 frame */
if (((p_recv_desc->rd0 & RD0_RFE) != 0) && ((p_recv_desc->rd0 & RD0_RFS_ERROR) != 0)) {
/* Receive frame error */
/* Sets the receive descriptor to receive again */
p_recv_desc->rd0 &= (RD0_RACT | RD0_RDLE);
p_recv_desc->rd0 |= RD0_RACT;
if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
ETHEREDRRR0 |= EDRRR0_RR;
}
} else {
/* Copies the received frame */
rx_read_offset = 0;
p_recv_end_desc = p_recv_desc;
receive_size = (p_recv_desc->rd1 & RD1_RDL_MSK); /* number of bytes received */
}
/* Update the current descriptor */
recv_top_index++;
if (recv_top_index >= NUM_OF_TX_DESCRIPTOR) {
recv_top_index = 0;
}
}
}
return receive_size;
}
int ethernet_read(char *data, int dlen) {
edmac_recv_desc_t *p_recv_desc = p_recv_end_desc; /* Read top descriptor */
int32_t copy_size;
if ((data == NULL) || (dlen < 0) || (p_recv_desc == NULL)) {
copy_size = 0;
} else {
copy_size = (p_recv_desc->rd1 & RD1_RDL_MSK) - rx_read_offset;
if (copy_size > dlen) {
copy_size = dlen;
}
(void)memcpy(data, &p_recv_desc->rd2[rx_read_offset], (size_t)copy_size);
rx_read_offset += copy_size;
}
return copy_size;
}
void ethernet_address(char *mac) {
if (mac != NULL) {
mbed_mac_address(mac); /* Get MAC Address */
}
}
int ethernet_link(void) {
int32_t ret;
uint16_t data;
data = phy_reg_read(BASIC_MODE_STATUS_REG);
if (((uint32_t)data & BASIC_STS_MSK_LINK) != 0) {
ret = 1;
} else {
ret = 0;
}
return ret;
}
void ethernet_set_link(int speed, int duplex) {
uint16_t data;
int32_t i;
int32_t link;
if ((speed < 0) || (speed > 1)) {
data = 0x1000; /* Auto-Negotiation Enable */
phy_reg_write(BASIC_MODE_CONTROL_REG, data);
for (i = 0; i < 1000; i++) {
data = phy_reg_read(BASIC_MODE_STATUS_REG);
if (((uint32_t)data & BASIC_STS_MSK_AUTO_CMP) != 0) {
break;
}
wait_100us(10);
}
} else {
data = (uint16_t)(((uint32_t)speed << 13) | ((uint32_t)duplex << 8));
phy_reg_write(BASIC_MODE_CONTROL_REG, data);
wait_100us(1);
}
link = ethernetext_chk_link_mode();
ethernetext_set_link_mode(link);
}
void INT_Ether(void) {
uint32_t stat_edmac;
uint32_t stat_etherc;
/* Clear the interrupt request flag */
stat_edmac = (ETHEREESR0 & ETHEREESIPR0); /* Targets are restricted to allowed interrupts */
ETHEREESR0 = stat_edmac;
/* Reception-related */
if (stat_edmac & EDMAC_EESIPR_INI_RECV) {
if (p_recv_cb_fnc != NULL) {
p_recv_cb_fnc();
}
}
/* E-MAC-related */
if (stat_edmac & EDMAC_EESIPR_INI_EtherC) {
/* Clear the interrupt request flag */
stat_etherc = (ETHERECSR0 & ETHERECSIPR0); /* Targets are restricted to allowed interrupts */
ETHERECSR0 = stat_etherc;
}
}
static void lan_reg_reset(void) {
volatile int32_t j = 400; /* Wait for B dia 256 cycles ((I dia/B dia)*256)/6cyc = 8*256/6 = 342 */
ETHERARSTR |= 0x00000001; /* ETHER software reset */
while (j--) {
/* Do Nothing */
}
ETHEREDSR0 |= 0x00000003; /* E-DMAC software reset */
ETHEREDMR0 |= 0x00000003; /* Set SWRR and SWRT simultaneously */
/* Check clear software reset */
while ((ETHEREDMR0 & 0x00000003) != 0) {
/* Do Nothing */
}
}
static void lan_desc_create(void) {
int32_t i;
uint8_t *p_memory_top;
(void)memset((void *)ethernet_nc_memory, 0, sizeof(ethernet_nc_memory));
p_memory_top = ethernet_nc_memory;
/* Descriptor area configuration */
p_eth_desc_dsend = (edmac_send_desc_t *)p_memory_top;
p_memory_top += (sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR);
p_eth_desc_drecv = (edmac_recv_desc_t *)p_memory_top;
p_memory_top += (sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR);
/* Transmit descriptor */
for (i = 0; i < NUM_OF_TX_DESCRIPTOR; i++) {
p_eth_desc_dsend[i].td2 = p_memory_top; /* TD2 TBA */
p_memory_top += SIZE_OF_BUFFER;
p_eth_desc_dsend[i].td1 = 0; /* TD1 TDL */
p_eth_desc_dsend[i].td0 = TD0_TFP_TOP_BOTTOM; /* TD0:1frame/1buf1buf, transmission disabled */
}
p_eth_desc_dsend[i - 1].td0 |= TD0_TDLE; /* Set the last descriptor */
/* Receive descriptor */
for (i = 0; i < NUM_OF_RX_DESCRIPTOR; i++) {
p_eth_desc_drecv[i].rd2 = p_memory_top; /* RD2 RBA */
p_memory_top += SIZE_OF_BUFFER;
p_eth_desc_drecv[i].rd1 = ((uint32_t)SIZE_OF_BUFFER << 16); /* RD1 RBL */
p_eth_desc_drecv[i].rd0 = RD0_RACT; /* RD0:reception enabled */
}
p_eth_desc_drecv[i - 1].rd0 |= RD0_RDLE; /* Set the last descriptor */
/* Initialize descriptor management information */
send_top_index = 0;
recv_top_index = 0;
rx_read_offset = 0;
tx_wite_offset = 0;
p_recv_end_desc = NULL;
}
static void lan_reg_set(int32_t link) {
/* MAC address setting */
ETHERMAHR0 = ((uint8_t)mac_addr[0] << 24)
| ((uint8_t)mac_addr[1] << 16)
| ((uint8_t)mac_addr[2] << 8)
| (uint8_t)mac_addr[3];
ETHERMALR0 = ((uint8_t)mac_addr[4] << 8)
| (uint8_t)mac_addr[5];
/* E-DMAC */
ETHERTDLAR0 = (uint32_t)&p_eth_desc_dsend[0];
ETHERRDLAR0 = (uint32_t)&p_eth_desc_drecv[0];
ETHERTDFAR0 = (uint32_t)&p_eth_desc_dsend[0];
ETHERRDFAR0 = (uint32_t)&p_eth_desc_drecv[0];
ETHERTDFXR0 = (uint32_t)&p_eth_desc_dsend[NUM_OF_TX_DESCRIPTOR - 1];
ETHERRDFXR0 = (uint32_t)&p_eth_desc_drecv[NUM_OF_RX_DESCRIPTOR - 1];
ETHERTDFFR0 |= 0x00000001; /* TDLF Transmit Descriptor Queue Last Flag : Last descriptor (1) */
ETHERRDFFR0 |= 0x00000001; /* RDLF Receive Descriptor Queue Last Flag : Last descriptor (1) */
ETHEREDMR0 |= 0x00000040; /* Little endian */
ETHERTRSCER0 &= ~0x0003009F; /* All clear */
ETHERTFTR0 &= ~0x000007FF; /* TFT[10:0] Transmit FIFO Threshold : Store and forward modes (H'000) */
ETHERFDR0 |= 0x00000707; /* Transmit FIFO Size:2048 bytes, Receive FIFO Size:2048 bytes */
ETHERRMCR0 |= 0x00000001; /* RNC Receive Enable Control : Continuous reception enabled (1) */
ETHERFCFTR0 &= ~0x001F00FF;
ETHERFCFTR0 |= 0x00070007;
ETHERRPADIR0 &= ~0x001FFFFF; /* Padding Size:No padding insertion, Padding Slot:Inserts at first byte */
/* E-MAC */
ETHERECMR0 &= ~0x04BF2063; /* All clear */
ETHERRFLR0 &= ~0x0003FFFF; /* RFL[17:0] Receive Frame Length : 1518 bytes (H'00000) */
ETHERAPR0 &= ~0x0000FFFF; /* AP[15:0] Automatic PAUSE : Flow control is disabled (H'0000) */
ETHERMPR0 &= ~0x0000FFFF; /* MP[15:0] Manual PAUSE : Flow control is disabled (H'0000) */
ETHERTPAUSER0 &= ~0x0000FFFF; /* Upper Limit for Automatic PAUSE Frame : Retransmit count is unlimited */
ETHERCSMR &= ~0xC000003F; /* The result of checksum is not written back to the receive descriptor */
if ((link == FULL_TX) || (link == FULL_10M) || (link == NEGO_FAIL)) {
ETHERECMR0 |= 0x00000002; /* Set to full-duplex mode */
} else {
ETHERECMR0 &= ~0x00000002; /* Set to half-duplex mode */
}
ETHERECMR0 |= 0x00002000; /* MCT = 1 */
/* Interrupt-related */
if (p_recv_cb_fnc != NULL) {
ETHEREESR0 |= 0xFF7F009F; /* Clear all status (by writing 1) */
ETHEREESIPR0 |= 0x00040000; /* FR Frame Reception (1) */
ETHERECSR0 |= 0x00000011; /* Clear all status (clear by writing 1) */
ETHERECSIPR0 &= ~0x00000011; /* PFROIP Disable, ICDIP Disable */
InterruptHandlerRegister(ETHERI_IRQn, INT_Ether); /* Ethernet interrupt handler registration */
GIC_SetPriority(ETHERI_IRQn, Interrupt_priority); /* Ethernet interrupt priority */
GIC_SetConfiguration(ETHERI_IRQn, 1);
GIC_EnableIRQ(ETHERI_IRQn); /* Enables the E-DMAC interrupt */
}
ETHERECMR0 |= 0x00000060; /* RE Enable, TE Enable */
/* Enable transmission/reception */
if ((start_stop == 1) && ((ETHEREDRRR0 & 0x00000001) == 0)) {
ETHEREDRRR0 |= 0x00000001; /* RR */
}
}
static uint16_t phy_reg_read(uint16_t reg_addr) {
uint16_t data;
mii_preamble();
mii_cmd(reg_addr, PHY_READ);
mii_z();
mii_reg_read(&data);
mii_z();
return data;
}
static void phy_reg_write(uint16_t reg_addr, uint16_t data) {
mii_preamble();
mii_cmd(reg_addr, PHY_WRITE);
mii_write_1();
mii_write_0();
mii_reg_write(data);
mii_z();
}
static void mii_preamble(void) {
int32_t i = 32;
for (i = 32; i > 0; i--) {
/* 1 is output via the MII (Media Independent Interface) block. */
mii_write_1();
}
}
static void mii_cmd(uint16_t reg_addr, uint32_t option) {
int32_t i;
uint16_t data = 0;
data |= (PHY_ST << 14); /* ST code */
data |= (option << 12); /* OP code */
data |= (PHY_ADDR << 7); /* PHY Address */
data |= (uint16_t)(reg_addr << 2); /* Reg Address */
for (i = 14; i > 0; i--) {
if ((data & 0x8000) == 0) {
mii_write_0();
} else {
mii_write_1();
}
data <<= 1;
}
}
static void mii_reg_read(uint16_t *data) {
int32_t i;
uint16_t reg_data = 0;
/* Data are read in one bit at a time */
for (i = 16; i > 0; i--) {
set_ether_pir(PIR0_MDC_LOW);
set_ether_pir(PIR0_MDC_HIGH);
reg_data <<= 1;
reg_data |= (uint16_t)((ETHERPIR0 & PIR0_MDI) >> 3); /* MDI read */
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_LOW);
}
*data = reg_data;
}
static void mii_reg_write(uint16_t data) {
int32_t i;
/* Data are written one bit at a time */
for (i = 16; i > 0; i--) {
if ((data & 0x8000) == 0) {
mii_write_0();
} else {
mii_write_1();
}
data <<= 1;
}
}
static void mii_z(void) {
set_ether_pir(PIR0_MDC_LOW);
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_HIGH);
set_ether_pir(PIR0_MDC_LOW);
}
static void mii_write_1(void) {
set_ether_pir(PIR0_MDO | PIR0_MMD);
set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MDO | PIR0_MMD);
}
static void mii_write_0(void) {
set_ether_pir(PIR0_MMD);
set_ether_pir(PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MMD | PIR0_MDC);
set_ether_pir(PIR0_MMD);
}
static void set_ether_pir(uint32_t set_data) {
int32_t i;
for (i = MDC_WAIT; i > 0; i--) {
ETHERPIR0 = set_data;
}
}
static void wait_100us(int32_t wait_cnt) {
volatile int32_t j = LOOP_100us * wait_cnt;
while (--j) {
/* Do Nothing */
}
}
#endif /* DEVICE_ETHERNET */