Merge pull request #9944 from deepikabhavnani/stm32_splitheap

GCC - Add support to split heap across 2-RAM banks
pull/10512/head
Martin Kojtal 2019-04-30 11:02:51 +01:00 committed by GitHub
commit 1de0712272
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 333 additions and 135 deletions

View File

@ -48,6 +48,12 @@ extern uint32_t mbed_heap_size;
extern uint32_t mbed_stack_isr_start;
extern uint32_t mbed_stack_isr_size;
#if defined(TOOLCHAIN_GCC_ARM) && defined(MBED_SPLIT_HEAP)
extern uint32_t __mbed_sbrk_start_0;
extern uint32_t __mbed_krbs_start_0;
unsigned char *mbed_heap_start_0 = (unsigned char *) &__mbed_sbrk_start_0;;
uint32_t mbed_heap_size_0 = (uint32_t) &__mbed_krbs_start_0 - (uint32_t) &__mbed_sbrk_start_0;
#endif
struct linked_list {
linked_list *next;
@ -121,7 +127,11 @@ static void allocate_and_fill_heap(linked_list *&head)
break;
}
bool result = rangeinrange((uint32_t) temp, sizeof(linked_list), mbed_heap_start, mbed_heap_size);
#if defined(TOOLCHAIN_GCC_ARM) && defined(MBED_SPLIT_HEAP)
if (false == result) {
result = rangeinrange((uint32_t) temp, sizeof(linked_list), (uint32_t)mbed_heap_start_0, mbed_heap_size_0);
}
#endif
TEST_ASSERT_TRUE_MESSAGE(result, "Memory allocation out of range");
// Init
@ -169,7 +179,11 @@ void test_heap_in_range(void)
TEST_ASSERT_NOT_NULL(initial_heap);
bool result = inrange((uint32_t) initial_heap, mbed_heap_start, mbed_heap_size);
#if defined(TOOLCHAIN_GCC_ARM) && defined(MBED_SPLIT_HEAP)
if (false == result) {
result = inrange((uint32_t) initial_heap, (uint32_t)mbed_heap_start_0, mbed_heap_size_0);
}
#endif
TEST_ASSERT_TRUE_MESSAGE(result, "Heap in wrong location");
free(initial_heap);
}

View File

@ -107,6 +107,44 @@ void test_multithread_allocation(void)
TEST_ASSERT_FALSE(thread_alloc_failure);
}
/** Test for multiple heap alloc and free calls */
#define ALLOC_ARRAY_SIZE 100
#define ALLOC_LOOP 20
#define SIZE_INCREMENTS 1023
#define SIZE_MODULO 31
void test_alloc_and_free(void)
{
void *array[ALLOC_ARRAY_SIZE];
void *data = NULL;
long total_allocated = 0;
int count = 0;
int size = SIZE_INCREMENTS;
int loop = ALLOC_LOOP;
while (loop) {
data = malloc(size);
if (NULL != data) {
array[count++] = data;
memset((void *)data, 0xdeadbeef, size);
total_allocated += size;
size += SIZE_INCREMENTS;
if (size > 10000) {
size %= SIZE_MODULO;
}
} else {
for (int i = 0; i < count; i++) {
free(array[i]);
array[i] = NULL;
}
loop--;
printf("Total size dynamically allocated: %luB\n", total_allocated);
total_allocated = 0;
count = 0;
continue;
}
}
}
/** Test for large heap allocation
Given a heap of size mbed_heap_size
@ -167,7 +205,8 @@ Case cases[] = {
Case("Test 0 size allocation", test_zero_allocation),
Case("Test NULL pointer free", test_null_free),
Case("Test multithreaded allocations", test_multithread_allocation),
Case("Test large allocation", test_big_allocation)
Case("Test large allocation", test_big_allocation),
Case("Test multiple alloc and free calls", test_alloc_and_free)
};
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)

View File

@ -1258,6 +1258,46 @@ extern "C" WEAK void __cxa_pure_virtual(void)
// SP. This make it compatible with RTX RTOS thread stacks.
#if defined(TOOLCHAIN_GCC_ARM)
#if defined(MBED_SPLIT_HEAP)
// Default RAM memory used for heap
extern uint32_t __mbed_sbrk_start;
extern uint32_t __mbed_krbs_start;
/* Additional RAM memory used for heap - please note this
* address should be lower address then the previous default address
*/
extern uint32_t __mbed_sbrk_start_0;
extern uint32_t __mbed_krbs_start_0;
extern "C" WEAK caddr_t _sbrk(int incr)
{
static uint32_t heap = (uint32_t) &__mbed_sbrk_start_0;
static bool once = true;
uint32_t prev_heap = heap;
uint32_t new_heap = heap + incr;
/**
* If the new address is outside the first region, start allocating from the second region.
* Jump to second region is done just once, and `static bool once` is used to keep track of that.
*/
if (once && (new_heap > (uint32_t) &__mbed_krbs_start_0)) {
once = false;
prev_heap = (uint32_t) &__mbed_sbrk_start;
new_heap = prev_heap + incr;
} else if (new_heap > (uint32_t) &__mbed_krbs_start) {
/**
* If the new address is outside the second region, return out-of-memory.
*/
errno = ENOMEM;
return (caddr_t) - 1;
}
heap = new_heap;
return (caddr_t) prev_heap;
}
#else
extern "C" uint32_t __end__;
extern "C" uint32_t __HeapLimit;
@ -1282,6 +1322,7 @@ extern "C" WEAK caddr_t _sbrk(int incr)
return (caddr_t) prev_heap;
}
#endif
#endif
#if defined(TOOLCHAIN_GCC_ARM)
extern "C" void _exit(int return_code)

View File

@ -14,7 +14,7 @@ STACK_SIZE = MBED_BOOT_STACK_SIZE;
/* Linker script to configure memory regions. */
MEMORY
{
{
FLASH (rx) : ORIGIN = MBED_APP_START, LENGTH = MBED_APP_SIZE
SRAM2 (rwx) : ORIGIN = 0x10000188, LENGTH = 32k - 0x188
SRAM1 (rwx) : ORIGIN = 0x20000000, LENGTH = 96k
@ -24,7 +24,7 @@ MEMORY
* with other linker script that defines memory regions FLASH and RAM.
* It references following symbols, which must be defined in code:
* Reset_Handler : Entry of reset handler
*
*
* It defines following symbols, which code can use without definition:
* __exidx_start
* __exidx_end
@ -92,6 +92,35 @@ SECTIONS
__etext = .;
_sidata = .;
/* .stack section doesn't contains any symbols. It is only
* used for linker to reserve space for the isr stack section
* WARNING: .stack should come immediately after the last secure memory
* section. This provides stack overflow detection. */
.stack (NOLOAD):
{
__StackLimit = .;
*(.stack*);
. += STACK_SIZE - (. - __StackLimit);
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ADDR(.stack) + SIZEOF(.stack);
_estack = __StackTop;
__StackLimit = ADDR(.stack);
PROVIDE(__stack = __StackTop);
/* Place holder for additional heap */
.heap_0 (COPY):
{
__mbed_sbrk_start_0 = .;
. += (ORIGIN(SRAM2) + LENGTH(SRAM2) - .);
__mbed_krbs_start_0 = .;
} > SRAM2
/* Check if heap exceeds SRAM2 */
ASSERT(__mbed_krbs_start_0 <= (ORIGIN(SRAM2)+LENGTH(SRAM2)), "Heap is too big for SRAM2")
.data : AT (__etext)
{
__data_start__ = .;
@ -99,21 +128,20 @@ SECTIONS
*(vtable)
*(.data*)
. = ALIGN(4);
. = ALIGN(8);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
. = ALIGN(8);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
. = ALIGN(8);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
KEEP(*(SORT(.fini_array.*)))
@ -121,52 +149,43 @@ SECTIONS
PROVIDE_HIDDEN (__fini_array_end = .);
KEEP(*(.jcr*))
. = ALIGN(4);
. = ALIGN(8);
/* All data end */
__data_end__ = .;
_edata = .;
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__data_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), ".data is too big for SRAM1")
.bss :
{
. = ALIGN(4);
. = ALIGN(8);
__bss_start__ = .;
_sbss = .;
*(.bss*)
*(COMMON)
. = ALIGN(4);
. = ALIGN(8);
__bss_end__ = .;
_ebss = .;
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__bss_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "BSS is too big for SRAM1")
/* Placeholder for default single heap */
.heap (COPY):
{
__end__ = .;
end = __end__;
__mbed_sbrk_start = .;
*(.heap*)
. += (ORIGIN(SRAM1) + LENGTH(SRAM1) - .);
__mbed_krbs_start = .;
__HeapLimit = .;
} > SRAM1
PROVIDE(__heap_size = SIZEOF(.heap));
PROVIDE(__mbed_sbrk_start = ADDR(.heap));
PROVIDE(__mbed_krbs_start = ADDR(.heap) + SIZEOF(.heap));
/* Check if data + heap exceeds RAM1 limit */
ASSERT((ORIGIN(SRAM1)+LENGTH(SRAM1)) >= __HeapLimit, "SRAM1 overflow")
/* .stack_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack_dummy (COPY):
{
*(.stack*)
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(SRAM2) + LENGTH(SRAM2);
_estack = __StackTop;
__StackLimit = __StackTop - STACK_SIZE;
PROVIDE(__stack = __StackTop);
/* Check if stack exceeds RAM2 limit */
ASSERT((ORIGIN(SRAM2)+LENGTH(SRAM2)) >= __StackLimit, "SRAM2 overflow")
}
/* Check if heap exceeds SRAM1 */
ASSERT(__HeapLimit <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "Heap is too big for SRAM1")
}

View File

@ -93,6 +93,35 @@ SECTIONS
__etext = .;
_sidata = .;
/* .stack section doesn't contains any symbols. It is only
* used for linker to reserve space for the isr stack section
* WARNING: .stack should come immediately after the last secure memory
* section. This provides stack overflow detection. */
.stack (NOLOAD):
{
__StackLimit = .;
*(.stack*);
. += STACK_SIZE - (. - __StackLimit);
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ADDR(.stack) + SIZEOF(.stack);
_estack = __StackTop;
__StackLimit = ADDR(.stack);
PROVIDE(__stack = __StackTop);
/* Place holder for additional heap */
.heap_0 (COPY):
{
__mbed_sbrk_start_0 = .;
. += (ORIGIN(SRAM2) + LENGTH(SRAM2) - .);
__mbed_krbs_start_0 = .;
} > SRAM2
/* Check if heap exceeds SRAM2 */
ASSERT(__mbed_krbs_start_0 <= (ORIGIN(SRAM2)+LENGTH(SRAM2)), "Heap is too big for SRAM2")
.data : AT (__etext)
{
__data_start__ = .;
@ -129,6 +158,9 @@ SECTIONS
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__data_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), ".data is too big for SRAM1")
.bss :
{
. = ALIGN(8);
@ -141,30 +173,21 @@ SECTIONS
_ebss = .;
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__bss_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "BSS is too big for SRAM1")
/* Placeholder for default single heap */
.heap (COPY):
{
__end__ = .;
end = __end__;
__mbed_sbrk_start = .;
*(.heap*)
. = ORIGIN(SRAM1) + LENGTH(SRAM1) - STACK_SIZE;
. += (ORIGIN(SRAM1) + LENGTH(SRAM1) - .);
__mbed_krbs_start = .;
__HeapLimit = .;
} > SRAM1
/* .stack_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack_dummy (COPY):
{
*(.stack*)
} > SRAM1
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(SRAM1) + LENGTH(SRAM1);
_estack = __StackTop;
__StackLimit = __StackTop - STACK_SIZE;
PROVIDE(__stack = __StackTop);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed with stack")
/* Check if heap exceeds SRAM1 */
ASSERT(__HeapLimit <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "Heap is too big for SRAM1")
}

View File

@ -6,17 +6,17 @@
#define MBED_APP_SIZE 1024k
#endif
M_CRASH_DATA_RAM_SIZE = 0x100;
#if !defined(MBED_BOOT_STACK_SIZE)
#define MBED_BOOT_STACK_SIZE 0x400
#endif
STACK_SIZE = MBED_BOOT_STACK_SIZE;
M_CRASH_DATA_RAM_SIZE = 0x100;
/* Linker script to configure memory regions. */
MEMORY
{
{
FLASH (rx) : ORIGIN = MBED_APP_START, LENGTH = MBED_APP_SIZE
SRAM2 (rwx) : ORIGIN = 0x10000188, LENGTH = 32k - 0x188
SRAM1 (rwx) : ORIGIN = 0x20000000, LENGTH = 96k
@ -26,7 +26,7 @@ MEMORY
* with other linker script that defines memory regions FLASH and RAM.
* It references following symbols, which must be defined in code:
* Reset_Handler : Entry of reset handler
*
*
* It defines following symbols, which code can use without definition:
* __exidx_start
* __exidx_end
@ -93,7 +93,7 @@ SECTIONS
__etext = .;
_sidata = .;
.crash_data_ram :
{
. = ALIGN(8);
@ -104,7 +104,36 @@ SECTIONS
. += M_CRASH_DATA_RAM_SIZE;
. = ALIGN(8);
__CRASH_DATA_RAM_END__ = .; /* Define a global symbol at data end */
} > SRAM1
} > SRAM2
/* .stack section doesn't contains any symbols. It is only
* used for linker to reserve space for the isr stack section
* WARNING: .stack should come immediately after the last secure memory
* section. This provides stack overflow detection. */
.stack (NOLOAD):
{
__StackLimit = .;
*(.stack*);
. += STACK_SIZE - (. - __StackLimit);
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ADDR(.stack) + SIZEOF(.stack);
_estack = __StackTop;
__StackLimit = ADDR(.stack);
PROVIDE(__stack = __StackTop);
/* Place holder for additional heap */
.heap_0 (COPY):
{
__mbed_sbrk_start_0 = .;
. += (ORIGIN(SRAM2) + LENGTH(SRAM2) - .);
__mbed_krbs_start_0 = .;
} > SRAM2
/* Check if heap exceeds SRAM2 */
ASSERT(__mbed_krbs_start_0 <= (ORIGIN(SRAM2)+LENGTH(SRAM2)), "Heap is too big for SRAM2")
.data : AT (__etext)
{
@ -142,6 +171,9 @@ SECTIONS
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__data_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), ".data is too big for SRAM1")
.bss :
{
. = ALIGN(8);
@ -152,37 +184,23 @@ SECTIONS
. = ALIGN(8);
__bss_end__ = .;
_ebss = .;
} > SRAM2
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__bss_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "BSS is too big for SRAM1")
/* Placeholder for default single heap */
.heap (COPY):
{
__end__ = .;
end = __end__;
__mbed_sbrk_start = .;
*(.heap*)
. += (ORIGIN(SRAM1) + LENGTH(SRAM1) - .);
__mbed_krbs_start = .;
__HeapLimit = .;
} > SRAM1
PROVIDE(__heap_size = SIZEOF(.heap));
PROVIDE(__mbed_sbrk_start = ADDR(.heap));
PROVIDE(__mbed_krbs_start = ADDR(.heap) + SIZEOF(.heap));
/* Check if data + heap exceeds RAM1 limit */
ASSERT((ORIGIN(SRAM1)+LENGTH(SRAM1)) >= __HeapLimit, "SRAM1 overflow")
/* .stack_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack_dummy (COPY):
{
*(.stack*)
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(SRAM2) + LENGTH(SRAM2);
_estack = __StackTop;
__StackLimit = __StackTop - STACK_SIZE;
PROVIDE(__stack = __StackTop);
/* Check if stack exceeds RAM2 limit */
ASSERT((ORIGIN(SRAM2)+LENGTH(SRAM2)) >= __StackLimit, "SRAM2 overflow")
/* Check if bss exceeds __StackLimit */
ASSERT(__bss_end__ <= __StackLimit, "BSS is too big for RAM2")
/* Check if heap exceeds SRAM1 */
ASSERT(__HeapLimit <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "Heap is too big for SRAM1")
}

View File

@ -104,7 +104,36 @@ SECTIONS
. += M_CRASH_DATA_RAM_SIZE;
. = ALIGN(8);
__CRASH_DATA_RAM_END__ = .; /* Define a global symbol at data end */
} > SRAM1
} > SRAM2
/* .stack section doesn't contains any symbols. It is only
* used for linker to reserve space for the isr stack section
* WARNING: .stack should come immediately after the last secure memory
* section. This provides stack overflow detection. */
.stack (NOLOAD):
{
__StackLimit = .;
*(.stack*);
. += STACK_SIZE - (. - __StackLimit);
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ADDR(.stack) + SIZEOF(.stack);
_estack = __StackTop;
__StackLimit = ADDR(.stack);
PROVIDE(__stack = __StackTop);
/* Place holder for additional heap */
.heap_0 (COPY):
{
__mbed_sbrk_start_0 = .;
. += (ORIGIN(SRAM2) + LENGTH(SRAM2) - .);
__mbed_krbs_start_0 = .;
} > SRAM2
/* Check if heap exceeds SRAM2 */
ASSERT(__mbed_krbs_start_0 <= (ORIGIN(SRAM2)+LENGTH(SRAM2)), "Heap is too big for SRAM2")
.data : AT (__etext)
{
@ -126,7 +155,6 @@ SECTIONS
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(8);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
@ -142,6 +170,9 @@ SECTIONS
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__data_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), ".data is too big for SRAM1")
.bss :
{
. = ALIGN(8);
@ -154,34 +185,21 @@ SECTIONS
_ebss = .;
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__bss_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "BSS is too big for SRAM1")
/* Placeholder for default single heap */
.heap (COPY):
{
__end__ = .;
end = __end__;
__mbed_sbrk_start = .;
*(.heap*)
. += (ORIGIN(SRAM1) + LENGTH(SRAM1) - .);
__mbed_krbs_start = .;
__HeapLimit = .;
} > SRAM1
PROVIDE(__heap_size = SIZEOF(.heap));
PROVIDE(__mbed_sbrk_start = ADDR(.heap));
PROVIDE(__mbed_krbs_start = ADDR(.heap) + SIZEOF(.heap));
/* Check if data + heap exceeds RAM1 limit */
ASSERT((ORIGIN(SRAM1)+LENGTH(SRAM1)) >= __HeapLimit, "SRAM1 overflow")
/* .stack_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack_dummy (COPY):
{
*(.stack*)
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(SRAM2) + LENGTH(SRAM2);
_estack = __StackTop;
__StackLimit = __StackTop - STACK_SIZE;
PROVIDE(__stack = __StackTop);
/* Check if stack exceeds RAM2 limit */
ASSERT((ORIGIN(SRAM2)+LENGTH(SRAM2)) >= __StackLimit, "SRAM2 overflow")
/* Check if heap exceeds SRAM1 */
ASSERT(__HeapLimit <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "Heap is too big for SRAM1")
}

View File

@ -104,7 +104,36 @@ SECTIONS
. += M_CRASH_DATA_RAM_SIZE;
. = ALIGN(8);
__CRASH_DATA_RAM_END__ = .; /* Define a global symbol at data end */
} > SRAM1
} > SRAM2
/* .stack section doesn't contains any symbols. It is only
* used for linker to reserve space for the isr stack section
* WARNING: .stack should come immediately after the last secure memory
* section. This provides stack overflow detection. */
.stack (NOLOAD):
{
__StackLimit = .;
*(.stack*);
. += STACK_SIZE - (. - __StackLimit);
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ADDR(.stack) + SIZEOF(.stack);
_estack = __StackTop;
__StackLimit = ADDR(.stack);
PROVIDE(__stack = __StackTop);
/* Place holder for additional heap */
.heap_0 (COPY):
{
__mbed_sbrk_start_0 = .;
. += (ORIGIN(SRAM2) + LENGTH(SRAM2) - .);
__mbed_krbs_start_0 = .;
} > SRAM2
/* Check if heap exceeds SRAM2 */
ASSERT(__mbed_krbs_start_0 <= (ORIGIN(SRAM2)+LENGTH(SRAM2)), "Heap is too big for SRAM2")
.data : AT (__etext)
{
@ -126,7 +155,6 @@ SECTIONS
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(8);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
@ -142,6 +170,9 @@ SECTIONS
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__data_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), ".data is too big for SRAM1")
.bss :
{
. = ALIGN(8);
@ -154,34 +185,21 @@ SECTIONS
_ebss = .;
} > SRAM1
/* Check if bss exceeds SRAM1 */
ASSERT(__bss_end__ <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "BSS is too big for SRAM1")
/* Placeholder for default single heap */
.heap (COPY):
{
__end__ = .;
end = __end__;
__mbed_sbrk_start = .;
*(.heap*)
. += (ORIGIN(SRAM1) + LENGTH(SRAM1) - .);
__mbed_krbs_start = .;
__HeapLimit = .;
} > SRAM1
PROVIDE(__heap_size = SIZEOF(.heap));
PROVIDE(__mbed_sbrk_start = ADDR(.heap));
PROVIDE(__mbed_krbs_start = ADDR(.heap) + SIZEOF(.heap));
/* Check if data + heap exceeds RAM1 limit */
ASSERT((ORIGIN(SRAM1)+LENGTH(SRAM1)) >= __HeapLimit, "SRAM1 overflow")
/* .stack_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack_dummy (COPY):
{
*(.stack*)
} > SRAM2
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(SRAM2) + LENGTH(SRAM2);
_estack = __StackTop;
__StackLimit = __StackTop - STACK_SIZE;
PROVIDE(__stack = __StackTop);
/* Check if stack exceeds RAM2 limit */
ASSERT((ORIGIN(SRAM2)+LENGTH(SRAM2)) >= __StackLimit, "SRAM2 overflow")
/* Check if heap exceeds SRAM1 */
ASSERT(__HeapLimit <= (ORIGIN(SRAM1)+LENGTH(SRAM1)), "Heap is too big for SRAM1")
}

View File

@ -3466,7 +3466,7 @@
"MPU"
],
"device_has_remove": ["LPTICKER"],
"macros_add": ["MBEDTLS_CONFIG_HW_SUPPORT"],
"macros_add": ["MBEDTLS_CONFIG_HW_SUPPORT", "MBED_SPLIT_HEAP"],
"device_name": "STM32L443RC",
"detect_code": ["0458"],
"bootloader_supported": true
@ -3491,7 +3491,8 @@
"detect_code": ["0765"],
"macros_add": [
"MBED_TICKLESS",
"USBHOST_OTHER"
"USBHOST_OTHER",
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -3553,7 +3554,8 @@
"macros_add": [
"MBED_TICKLESS",
"USBHOST_OTHER",
"MBEDTLS_CONFIG_HW_SUPPORT"
"MBEDTLS_CONFIG_HW_SUPPORT",
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -3588,7 +3590,8 @@
"detect_code": ["0460"],
"macros_add": [
"MBEDTLS_CONFIG_HW_SUPPORT",
"WISE_1570"
"WISE_1570",
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -4148,7 +4151,8 @@
"detect_code": ["0764"],
"macros_add": [
"MBED_TICKLESS",
"USBHOST_OTHER"
"USBHOST_OTHER",
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -4179,7 +4183,7 @@
}
},
"detect_code": ["0468"],
"macros_add": ["USBHOST_OTHER", "TWO_RAM_REGIONS"],
"macros_add": ["USBHOST_OTHER", "MBED_SPLIT_HEAP"],
"device_has_add": [
"ANALOGOUT",
"CAN",
@ -4212,7 +4216,8 @@
"detect_code": ["0820"],
"macros_add": [
"MBED_TICKLESS",
"USBHOST_OTHER"
"USBHOST_OTHER",
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -4227,7 +4232,7 @@
"device_name": "STM32L476VG",
"bootloader_supported": true
},
"RHOMBIO_L476DMW1K": {
"RHOMBIO_L476DMW1K": {
"components_add": ["FLASHIAP"],
"inherits": ["FAMILY_STM32"],
"core": "Cortex-M4F",
@ -4248,7 +4253,7 @@
"macros_add": [
"MBED_TICKLESS",
"USBHOST_OTHER",
"TWO_RAM_REGIONS"
"MBED_SPLIT_HEAP"
],
"device_has_add": [
"ANALOGOUT",
@ -4357,6 +4362,9 @@
"FLASH",
"MPU"
],
"macros_add": [
"MBED_SPLIT_HEAP"
],
"release_versions": ["2", "5"],
"device_name": "STM32L471QG",
"bootloader_supported": true