Finished compatibility changes for nrfx renaming

pull/10689/head
George Beckstein 2019-03-14 21:24:57 -04:00 committed by aglass0fmilk
parent 2bd024d174
commit 1ab27aff1f
5 changed files with 991 additions and 48 deletions

View File

@ -2370,7 +2370,7 @@
// <e> NRFX_POWER_ENABLED - nrfx_power - POWER peripheral driver
//==========================================================
#ifndef NRFX_POWER_ENABLED
#define NRFX_POWER_ENABLED 0
#define NRFX_POWER_ENABLED 1
#endif
// <o> NRFX_POWER_CONFIG_IRQ_PRIORITY - Interrupt priority

View File

@ -43,7 +43,6 @@
#include "nrf_drv_usbd.h"
#include "nrf.h"
#include "nordic_common.h"
#include "nrf_drv_common.h"
#include "nrf_atomic.h"
#include "nrf_delay.h"
#include "app_util_platform.h"
@ -235,7 +234,7 @@ STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT7) == USBD_EPDATASTATUS_EPOUT7_Po
/**
* @brief Current driver state
*/
static nrf_drv_state_t m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
static nrfx_drv_state_t m_drv_state = NRFX_DRV_STATE_UNINITIALIZED;
/**
* @brief Event handler for the library
@ -496,7 +495,7 @@ bool nrf_drv_usbd_consumer(
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(ep_size >= data_size);
ASSERT((p_transfer->p_data.rx == NULL) ||
nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
nrfx_is_in_ram((const void*)(p_transfer->p_data.ptr)));
size_t size = p_transfer->size;
if (size < data_size)
@ -533,7 +532,7 @@ bool nrf_drv_usbd_feeder_ram(
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
ASSERT(nrfx_is_in_ram((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
if (tx_size > ep_size)
@ -566,7 +565,7 @@ bool nrf_drv_usbd_feeder_ram_zlp(
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
ASSERT(nrfx_is_in_ram((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
if (tx_size > ep_size)
@ -599,7 +598,7 @@ bool nrf_drv_usbd_feeder_flash(
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(!nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
ASSERT(!nrfx_is_in_ram((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
void * p_buffer = nrf_drv_usbd_feeder_buffer_get();
@ -637,7 +636,7 @@ bool nrf_drv_usbd_feeder_flash_zlp(
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(!nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
ASSERT(!nrfx_is_in_ram((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
void * p_buffer = nrf_drv_usbd_feeder_buffer_get();
@ -1583,7 +1582,7 @@ void USBD_IRQHandler(void)
while (to_process)
{
uint8_t event_nr = __CLZ(__RBIT(to_process));
if (nrf_usbd_event_get_and_clear((nrf_usbd_event_t)nrf_drv_bitpos_to_event(event_nr)))
if (nrf_usbd_event_get_and_clear((nrf_usbd_event_t)nrfx_bitpos_to_event(event_nr)))
{
active |= 1UL << event_nr;
}
@ -1709,13 +1708,13 @@ ret_code_t nrf_drv_usbd_init(nrf_drv_usbd_event_handler_t const event_handler)
{
return NRF_ERROR_INVALID_PARAM;
}
if ( m_drv_state != NRF_DRV_STATE_UNINITIALIZED)
if ( m_drv_state != NRFX_DRV_STATE_UNINITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
m_event_handler = event_handler;
m_drv_state = NRF_DRV_STATE_INITIALIZED;
m_drv_state = NRFX_DRV_STATE_INITIALIZED;
uint8_t n;
for (n = 0; n < NRF_USBD_EPIN_CNT; ++n)
@ -1744,19 +1743,19 @@ ret_code_t nrf_drv_usbd_init(nrf_drv_usbd_event_handler_t const event_handler)
ret_code_t nrf_drv_usbd_uninit(void)
{
if (m_drv_state != NRF_DRV_STATE_INITIALIZED)
if (m_drv_state != NRFX_DRV_STATE_INITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
m_event_handler = NULL;
m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
m_drv_state = NRFX_DRV_STATE_UNINITIALIZED;
return NRF_SUCCESS;
}
void nrf_drv_usbd_enable(void)
{
ASSERT(m_drv_state == NRF_DRV_STATE_INITIALIZED);
ASSERT(m_drv_state == NRFX_DRV_STATE_INITIALIZED);
/* Prepare for READY event receiving */
nrf_usbd_eventcause_clear(NRF_USBD_EVENTCAUSE_READY_MASK);
@ -1834,7 +1833,7 @@ void nrf_drv_usbd_enable(void)
usbd_dma_pending_clear();
m_last_setup_dir = NRF_DRV_USBD_EPOUT0;
m_drv_state = NRF_DRV_STATE_POWERED_ON;
m_drv_state = NRFX_DRV_STATE_POWERED_ON;
if (nrf_drv_usbd_errata_187())
{
@ -1855,7 +1854,7 @@ void nrf_drv_usbd_enable(void)
void nrf_drv_usbd_disable(void)
{
ASSERT(m_drv_state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(m_drv_state != NRFX_DRV_STATE_UNINITIALIZED);
/* Stop just in case */
nrf_drv_usbd_stop();
@ -1864,12 +1863,12 @@ void nrf_drv_usbd_disable(void)
nrf_usbd_int_disable(nrf_usbd_int_enable_get());
nrf_usbd_disable();
usbd_dma_pending_clear();
m_drv_state = NRF_DRV_STATE_INITIALIZED;
m_drv_state = NRFX_DRV_STATE_INITIALIZED;
}
void nrf_drv_usbd_start(bool enable_sof)
{
ASSERT(m_drv_state == NRF_DRV_STATE_POWERED_ON);
ASSERT(m_drv_state == NRFX_DRV_STATE_POWERED_ON);
m_bus_suspend = false;
uint32_t ints_to_enable =
@ -1900,7 +1899,7 @@ void nrf_drv_usbd_start(bool enable_sof)
void nrf_drv_usbd_stop(void)
{
ASSERT(m_drv_state == NRF_DRV_STATE_POWERED_ON);
ASSERT(m_drv_state == NRFX_DRV_STATE_POWERED_ON);
/* Clear interrupt */
NRFX_IRQ_PENDING_CLEAR(USBD_IRQn);
@ -1923,12 +1922,12 @@ void nrf_drv_usbd_stop(void)
bool nrf_drv_usbd_is_initialized(void)
{
return (m_drv_state >= NRF_DRV_STATE_INITIALIZED);
return (m_drv_state >= NRFX_DRV_STATE_INITIALIZED);
}
bool nrf_drv_usbd_is_enabled(void)
{
return (m_drv_state >= NRF_DRV_STATE_POWERED_ON);
return (m_drv_state >= NRFX_DRV_STATE_POWERED_ON);
}
bool nrf_drv_usbd_is_started(void)
@ -2127,7 +2126,7 @@ ret_code_t nrf_drv_usbd_ep_transfer(
if (NRF_USBD_EPIN_CHECK(ep))
{
p_context = m_ep_feeder_state + NRF_USBD_EP_NR_GET(ep);
if (nrf_drv_is_in_RAM(p_transfer->p_data.tx))
if (nrfx_is_in_ram(p_transfer->p_data.tx))
{
/* RAM */
if (0 == (p_transfer->flags & NRF_DRV_USBD_TRANSFER_ZLP_FLAG))
@ -2187,7 +2186,7 @@ ret_code_t nrf_drv_usbd_ep_transfer(
else
{
p_context = m_ep_consumer_state + NRF_USBD_EP_NR_GET(ep);
ASSERT((p_transfer->p_data.rx == NULL) || (nrf_drv_is_in_RAM(p_transfer->p_data.rx)));
ASSERT((p_transfer->p_data.rx == NULL) || (nrfx_is_in_ram(p_transfer->p_data.rx)));
p_state->handler.consumer = nrf_drv_usbd_consumer;
}
*p_context = *p_transfer;

View File

@ -0,0 +1,946 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_DRV_USBD_H__
#define NRF_DRV_USBD_H__
#include "sdk_errors.h"
#include "nrf_usbd.h"
#include <stdint.h>
#include <stdbool.h>
#include "app_util.h"
#include "nrf_drv_usbd_errata.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_drv_usbd USB Device HAL and driver
* @ingroup nrf_drivers
* @brief @tagAPI52840 USB Device APIs.
* @details The USB Device HAL provides basic APIs for accessing
* the registers of the USBD.
* The USB Device driver provides APIs on a higher level.
*
* @{
*/
/**
* @name Possible schemes of DMA scheduling
*
* Definition of available configuration constants used by DMA scheduler
* @{
*/
/**
* @brief Highly prioritized access
*
* Endpoint with lower number has always higher priority and its data would
* be transfered first.
* OUT endpoints ale processed before IN endpoints
*/
#define NRF_DRV_USBD_DMASCHEDULER_PRIORITIZED 0
/**
* @brief Round robin scheme
*
* All endpoints are processed in round-robin scheme.
* It means that when one endpoint is processed next in order would be
* the nearest with lower number.
* When no endpoints with lower number requires processing - then
* all endpoints from 0 are tested.
*/
#define NRF_DRV_USBD_DMASCHEDULER_ROUNDROBIN 1
/** @} */
/**
* @brief Number of bytes in the endpoint
*
* Constant that informs about endpoint size
*/
#define NRF_DRV_USBD_EPSIZE 64
/**
* @brief Number of bytes for isochronous endpoints
*
* Number of bytes for isochronous endpoints in total.
* This number would be shared between IN and OUT endpoint.
* It may be also assigned totaly to one endpoint.
* @sa nrf_usbd_isosplit_set
* @sa nrf_usbd_isosplit_get
*/
#define NRF_DRV_USBD_ISOSIZE 1024
/**
* @brief The size of internal feeder buffer.
*
* @sa nrf_drv_usbd_feeder_buffer_get
*/
#define NRF_DRV_USBD_FEEDER_BUFFER_SIZE NRF_DRV_USBD_EPSIZE
/**
* @name Macros for creating endpoint identifiers
*
* Auxiliary macros to be used to create Endpoint identifier that is compatible
* with USB specification.
* @{
*/
/**
* @brief Create identifier for IN endpoint
*
* Simple macro to create IN endpoint identifier for given endpoint number.
*
* @param[in] n Endpoint number.
*
* @return Endpoint identifier that connects endpoint number and endpoint direction.
*/
#define NRF_DRV_USBD_EPIN(n) ((nrf_drv_usbd_ep_t)NRF_USBD_EPIN(n))
/**
* @brief Create identifier for OUT endpoint
*
* Simple macro to create OUT endpoint identifier for given endpoint number.
*
* @param[in] n Endpoint number.
*
* @return Endpoint identifier that connects endpoint number and endpoint direction.
*/
#define NRF_DRV_USBD_EPOUT(n) ((nrf_drv_usbd_ep_t)NRF_USBD_EPOUT(n))
/** @} */
/**
* @brief Endpoint identifier
*
* Endpoint identifier used in the driver.
* This endpoint number is consistent with USB 2.0 specification.
*/
typedef enum
{
NRF_DRV_USBD_EPOUT0 = NRF_USBD_EPOUT(0), /**< Endpoint OUT 0 */
NRF_DRV_USBD_EPOUT1 = NRF_USBD_EPOUT(1), /**< Endpoint OUT 1 */
NRF_DRV_USBD_EPOUT2 = NRF_USBD_EPOUT(2), /**< Endpoint OUT 2 */
NRF_DRV_USBD_EPOUT3 = NRF_USBD_EPOUT(3), /**< Endpoint OUT 3 */
NRF_DRV_USBD_EPOUT4 = NRF_USBD_EPOUT(4), /**< Endpoint OUT 4 */
NRF_DRV_USBD_EPOUT5 = NRF_USBD_EPOUT(5), /**< Endpoint OUT 5 */
NRF_DRV_USBD_EPOUT6 = NRF_USBD_EPOUT(6), /**< Endpoint OUT 6 */
NRF_DRV_USBD_EPOUT7 = NRF_USBD_EPOUT(7), /**< Endpoint OUT 7 */
NRF_DRV_USBD_EPOUT8 = NRF_USBD_EPOUT(8), /**< Endpoint OUT 8 */
NRF_DRV_USBD_EPIN0 = NRF_USBD_EPIN(0), /**< Endpoint IN 0 */
NRF_DRV_USBD_EPIN1 = NRF_USBD_EPIN(1), /**< Endpoint IN 1 */
NRF_DRV_USBD_EPIN2 = NRF_USBD_EPIN(2), /**< Endpoint IN 2 */
NRF_DRV_USBD_EPIN3 = NRF_USBD_EPIN(3), /**< Endpoint IN 3 */
NRF_DRV_USBD_EPIN4 = NRF_USBD_EPIN(4), /**< Endpoint IN 4 */
NRF_DRV_USBD_EPIN5 = NRF_USBD_EPIN(5), /**< Endpoint IN 5 */
NRF_DRV_USBD_EPIN6 = NRF_USBD_EPIN(6), /**< Endpoint IN 6 */
NRF_DRV_USBD_EPIN7 = NRF_USBD_EPIN(7), /**< Endpoint IN 7 */
NRF_DRV_USBD_EPIN8 = NRF_USBD_EPIN(8), /**< Endpoint IN 8 */
}nrf_drv_usbd_ep_t;
/**
* @brief Events generated by the library
*
* Enumeration of possible events that may be generated by the library.
*/
typedef enum
{
NRF_DRV_USBD_EVT_SOF, /**< Start Of Frame event on USB bus detected */
NRF_DRV_USBD_EVT_RESET, /**< Reset condition on USB bus detected */
NRF_DRV_USBD_EVT_SUSPEND, /**< This device should go to suspend mode now */
NRF_DRV_USBD_EVT_RESUME, /**< This device should resume from suspend now */
NRF_DRV_USBD_EVT_WUREQ, /**< Wakeup request - the USBD peripheral is ready to generate WAKEUP signal after exiting low power mode. */
NRF_DRV_USBD_EVT_SETUP, /**< Setup frame received and decoded */
NRF_DRV_USBD_EVT_EPTRANSFER, /**<
* For Rx (OUT: Host->Device):
* 1. The packet has been received but there is no buffer prepared for transfer already.
* 2. Whole transfer has been finished
*
* For Tx (IN: Device->Host):
* The last packet from requested transfer has been transfered over USB bus and acknowledged
*/
NRF_DRV_USBD_EVT_CNT /**< Number of defined events */
}nrf_drv_usbd_event_type_t;
/**
* @brief Possible endpoint error codes
*
* Error codes that may be returned with @ref NRF_DRV_USBD_EVT_EPTRANSFER
*/
typedef enum
{
NRF_USBD_EP_OK, /**< No error */
NRF_USBD_EP_WAITING, /**< Data received, no buffer prepared already - waiting for configured transfer */
NRF_USBD_EP_OVERLOAD, /**< Received number of bytes cannot fit given buffer
* This error would also be returned when next_transfer function has been defined
* but currently received data cannot fit completely in current buffer.
* No data split from single endpoint transmission is supported.
*
* When this error is reported - data is left inside endpoint buffer.
* Clear endpoint or prepare new buffer and read it.
*/
NRF_USBD_EP_ABORTED, /**< EP0 transfer can be aborted when new setup comes.
* Any other transfer can be aborted by USB reset or library stopping.
*/
}nrf_drv_usbd_ep_status_t;
/**
* @brief Event structure
*
* Structure passed to event handler
*/
typedef struct
{
nrf_drv_usbd_event_type_t type;
union
{
struct{
uint16_t framecnt; //!< Current value of frame counter
}sof; //!< Data aviable for @ref NRF_DRV_USBD_EVT_SOF
struct{
nrf_drv_usbd_ep_t ep; //!< Endpoint number
}isocrc;
struct{
nrf_drv_usbd_ep_t ep; //!< Endpoint number
nrf_drv_usbd_ep_status_t status; //!< Status for the endpoint
}eptransfer;
}data;
}nrf_drv_usbd_evt_t;
/**
* @brief USBD event callback function type.
*
* @param[in] p_event Event information structure.
*/
typedef void (*nrf_drv_usbd_event_handler_t)(nrf_drv_usbd_evt_t const * const p_event);
/**
* @brief Universal data pointer.
*
* Universal data pointer that can be used for any type of transfer.
*/
typedef union
{
void const * tx; //!< Constant TX buffer pointer.
void * rx; //!< Writable RX buffer pointer.
uint32_t ptr; //!< Numeric value used internally by the library.
}nrf_drv_usbd_data_ptr_t;
/**
* @brief Structure to be filled with information about the next transfer.
*
* This is used mainly for transfer feeders and consumers.
* It describes a single endpoint transfer and therefore the size of the buffer
* can never be higher than the endpoint size.
*/
typedef struct
{
nrf_drv_usbd_data_ptr_t p_data; //!< Union with available data pointers used by the library.
size_t size; //!< Size of the requested transfer.
}nrf_drv_usbd_ep_transfer_t;
/**
* @brief Flags for the current transfer.
*
* Flags configured for the transfer that can be merged using the bitwise 'or' operator (|).
*/
typedef enum
{
NRF_DRV_USBD_TRANSFER_ZLP_FLAG = 1U << 0, //!< Add a zero-length packet.
}nrf_drv_usbd_transfer_flags_t;
/**
* @brief Total transfer configuration.
*
* This structure is used to configure total transfer information.
* It is used by internal built-in feeders and consumers.
*/
typedef struct
{
nrf_drv_usbd_data_ptr_t p_data; //!< Union with available data pointers used by the library.
size_t size; //!< Total size of the requested transfer.
uint32_t flags; //!< Transfer flags.
/**< Use the @ref nrf_drv_usbd_transfer_flags_t values. */
}nrf_drv_usbd_transfer_t;
/**
* @brief Auxiliary macro for declaring IN transfer description with flags.
*
* The base macro for creating transfers with any configuration option.
*
* @param name Instance name.
* @param tx_buff Buffer to transfer.
* @param tx_size Transfer size.
* @param tx_flags Flags for the transfer (see @ref nrf_drv_usbd_transfer_flags_t).
*
* @return Configured variable with total transfer description.
*/
#define NRF_DRV_USBD_TRANSFER_IN_FLAGS(name, tx_buff, tx_size, tx_flags) \
const nrf_drv_usbd_transfer_t name = { \
.p_data = { .tx = (tx_buff) }, \
.size = (tx_size), \
.flags = (tx_flags) \
}
/**
* @brief Helper macro for declaring IN transfer description
*
* Normal transfer mode, no ZLP would be automatically generated.
*
* @sa nrf_drv_usbd_transfer_t
* @sa NRF_DRV_USBD_TRANSFER_IN_ZLP
*
* @param name Instance name
* @param tx_buff Buffer to transfer
* @param tx_size Transfer size
*
* @return Configured variable with total transfer description
*
*/
#define NRF_DRV_USBD_TRANSFER_IN(name, tx_buff, tx_size) \
NRF_DRV_USBD_TRANSFER_IN_FLAGS(name, tx_buff, tx_size, 0)
/**
* @brief Helper macro for declaring IN transfer description
*
* ZLP mode - Zero Length Packet would be generated on the end of the transfer
* (always!).
*
* @sa nrf_drv_usbd_transfer_t
* @sa NRF_DRV_USBD_TRANSFER_IN
*
* @param name Instance name
* @param tx_buff Buffer to transfer
* @param tx_size Transfer size
*
* @return Configured variable with total transfer description
*/
#define NRF_DRV_USBD_TRANSFER_IN_ZLP(name, tx_buff, tx_size) \
NRF_DRV_USBD_TRANSFER_IN_FLAGS( \
name, \
tx_buff, \
tx_size, \
NRF_DRV_USBD_TRANSFER_ZLP_FLAG)
/**
* @brief Helper macro for declaring OUT transfer item (@ref nrf_drv_usbd_transfer_t)
*
* @param name Instance name
* @param rx_buff Buffer to transfer
* @param rx_size Transfer size
* */
#define NRF_DRV_USBD_TRANSFER_OUT(name, rx_buff, rx_size) \
const nrf_drv_usbd_transfer_t name = { \
.p_data = { .rx = (rx_buff) }, \
.size = (rx_size), \
.flags = 0 \
}
/**
* @brief USBD transfer feeder.
*
* Pointer for a transfer feeder.
* Transfer feeder is a feedback function used to prepare a single
* TX (Device->Host) endpoint transfer.
*
* The transfers provided by the feeder must be simple:
* - The size of the transfer provided by this function is limited to a single endpoint buffer.
* Bigger transfers are not handled automatically in this case.
* - Flash transfers are not automatically supported- you must copy them to the RAM buffer before.
*
* @note
* This function may use @ref nrf_drv_usbd_feeder_buffer_get to gain a temporary buffer
* that can be used to prepare transfer.
*
* @param[out] p_next Structure with the data for the next transfer to be filled.
* Required only if the function returns true.
* @param[in,out] p_context Context variable configured with the transfer.
* @param[in] ep_size The endpoint size.
*
* @retval false The current transfer is the last one - you do not need to call
* the function again.
* @retval true There is more data to be prepared and when the current transfer
* finishes, the feeder function is expected to be called again.
*/
typedef bool (*nrf_drv_usbd_feeder_t)(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size);
/**
* @brief USBD transfer consumer.
*
* Pointer for a transfer consumer.
* Transfer consumer is a feedback function used to prepare a single
* RX (Host->Device) endpoint transfer.
*
* The transfer must provide a buffer big enough to fit the whole data from the endpoint.
* Otherwise, the NRF_USBD_EP_OVERLOAD event is generated.
*
* @param[out] p_next Structure with the data for the next transfer to be filled.
* Required only if the function returns true.
* @param[in,out] p_context Context variable configured with the transfer.
* @param[in] ep_size The endpoint size.
* @param[in] data_size Number of received bytes in the endpoint buffer.
*
* @retval false Current transfer is the last one - you do not need to call
* the function again.
* @retval true There is more data to be prepared and when current transfer
* finishes, the feeder function is expected to be called again.
*/
typedef bool (*nrf_drv_usbd_consumer_t)(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size,
size_t data_size);
/**
* @brief Universal transfer handler.
*
* Union with feeder and consumer function pointer.
*/
typedef union
{
nrf_drv_usbd_feeder_t feeder; //!< Feeder function pointer.
nrf_drv_usbd_consumer_t consumer; //!< Consumer function pointer.
}nrf_drv_usbd_handler_t;
/**
* @brief USBD transfer descriptor.
*
* Universal structure that may hold the setup for callback configuration for
* IN or OUT type of the transfer.
*/
typedef struct
{
nrf_drv_usbd_handler_t handler; //!< Handler for the current transfer, function pointer.
void * p_context; //!< Context for the transfer handler.
}nrf_drv_usbd_handler_desc_t;
/**
* @brief Setup packet structure
*
* Structure that contains interpreted SETUP packet.
*/
typedef struct
{
uint8_t bmRequestType; //!< byte 0
uint8_t bmRequest; //!< byte 1
uint16_t wValue; //!< byte 2
uint16_t wIndex; //!< byte 4, 5
uint16_t wLength; //!< byte 6, 7
}nrf_drv_usbd_setup_t;
/**
* @brief Library initialization
*
* @param[in] event_handler Event handler provided by the user.
*/
ret_code_t nrf_drv_usbd_init(nrf_drv_usbd_event_handler_t const event_handler);
/**
* @brief Library deinitialization
*/
ret_code_t nrf_drv_usbd_uninit(void);
/**
* @brief Enable the USBD port
*
* After calling this function USBD peripheral would be enabled.
* The USB LDO would be enabled.
* Enabled USBD peripheral would request HFCLK.
* This function does not enable external oscillator, so if it is not enabled by other part of the
* program after enabling USBD driver HFINT would be used for the USBD peripheral.
* It is perfectly fine until USBD is started. See @ref nrf_drv_usbd_start.
*
* In normal situation this function should be called in reaction to USBDETECTED
* event from POWER peripheral.
*
* Interrupts and USB pins pull-up would stay disabled until @ref nrf_drv_usbd_start
* function is called.
*/
void nrf_drv_usbd_enable(void);
/**
* @brief Disable the USBD port
*
* After calling this function USBD peripheral would be disabled.
* No events would be detected or processed by the library.
* Clock for the peripheral would be disconnected.
*/
void nrf_drv_usbd_disable(void);
/**
* @brief Start USB functionality
*
* After calling this function USBD peripheral should be fully functional
* and all new incoming events / interrupts would be processed by the library.
*
* Also only after calling this function host sees new connected device.
*
* Call this function when USBD power LDO regulator is ready - on USBPWRRDY event
* from POWER peripheral.
*
* Before USBD interrupts are enabled, external HFXO is requested.
*
* @param enable_sof The flag that is used to enable SOF processing.
* If it is false, SOF interrupt is left disabled and will not be generated.
* This improves power saving if SOF is not required.
*
* @note If the isochronous endpoints are going to be used,
* it is required to enable the SOF.
* In other case any isochronous endpoint would stay busy
* after first transmission.
*/
void nrf_drv_usbd_start(bool enable_sof);
/**
* @brief Stop USB functionality
*
* This function disables USBD pull-up and interrupts.
*
* The HFXO request is released in this function.
*
* @note
* This function can also be used to logically disconnect USB from the HOST that
* would force it to enumerate device after calling @ref nrf_drv_usbd_start.
*/
void nrf_drv_usbd_stop(void);
/**
* @brief Check if driver is initialized
*
* @retval false Driver is not initialized
* @retval true Driver is initialized
*/
bool nrf_drv_usbd_is_initialized(void);
/**
* @brief Check if driver is enabled
*
* @retval false Driver is disabled
* @retval true Driver is enabled
*/
bool nrf_drv_usbd_is_enabled(void);
/**
* @brief Check if driver is started
*
* @retval false Driver is not started
* @retval true Driver is started (fully functional)
* @note The USBD peripheral interrupt state is checked
*/
bool nrf_drv_usbd_is_started(void);
/**
* @brief Suspend USBD operation
*
* The USBD peripheral is forced to go into the low power mode.
* The function has to be called in the reaction to @ref NRF_DRV_USBD_EVT_SUSPEND event
* when the firmware is ready.
*
* After successful call of this function most of the USBD registers would be unavailable.
*
* @note Check returned value for the feedback if suspending was successful.
*
* @retval true USBD peripheral successfully suspended
* @retval false USBD peripheral was not suspended due to resume detection.
*
*/
bool nrf_drv_usbd_suspend(void);
/**
* @brief Start wake up procedure
*
* The USBD peripheral is forced to quit the low power mode.
* After calling this function all the USBD registers would be available.
*
* The hardware starts measuring time when wake up is possible.
* This may take 0-5&nbsp;ms depending on how long the SUSPEND state was kept on the USB line.
* When NRF_DRV_USBD_EVT_WUREQ event is generated it means that Wake Up signaling has just been
* started on the USB lines.
*
* @note Do not expect only @ref NRF_DRV_USBD_EVT_WUREQ event.
* There always may appear @ref NRF_DRV_USBD_EVT_RESUME event.
* @note NRF_DRV_USBD_EVT_WUREQ event means that Remote WakeUp signal
* has just begun to be generated.
* This may take up to 20&nbsp;ms for the bus to become active.
*
* @retval true WakeUp procedure started.
* @retval false No WakeUp procedure started - bus is already active.
*/
bool nrf_drv_usbd_wakeup_req(void);
/**
* @brief Check if USBD is in SUSPEND mode
*
* @note This is the information about peripheral itself, not about the bus state.
*
* @retval true USBD peripheral is suspended
* @retval false USBD peripheral is active
*/
bool nrf_drv_usbd_suspend_check(void);
/**
* @brief Enable only interrupts that should be processed in SUSPEND mode
*
* Auxiliary function to help with SUSPEND mode integration.
* It enables only the interrupts that can be properly processed without stable HFCLK.
*
* Normally all the interrupts are enabled.
* Use this function to suspend interrupt processing that may require stable HFCLK until the
* clock is enabled.
*
* @sa nrf_drv_usbd_active_irq_config
*/
void nrf_drv_usbd_suspend_irq_config(void);
/**
* @brief Default active interrupt configuration
*
* Default interrupt configuration.
* Use in a pair with @ref nrf_drv_usbd_active_irq_config.
*
* @sa nrf_drv_usbd_suspend_irq_config
*/
void nrf_drv_usbd_active_irq_config(void);
/**
* @brief Check the bus state
*
* This function checks if the bus state is suspended
*
* @note The value returned by this function changes on SUSPEND and RESUME event processing.
*
* @retval true USBD bus is suspended
* @retval false USBD bus is active
*/
bool nrf_drv_usbd_bus_suspend_check(void);
/**
* @brief Configure packet size that should be supported by the endpoint
*
* The real endpoint buffer size is always the same.
* This value sets max packet size that would be transmitted over the endpoint.
* This is required by the library
*
* @param[in] ep Endpoint number
* @param[in] size Required maximum packet size
*
* @note Endpoint size is always set to @ref NRF_DRV_USBD_EPSIZE or @ref NRF_DRV_USBD_ISOSIZE / 2
* when @ref nrf_drv_usbd_ep_enable function is called.
*/
void nrf_drv_usbd_ep_max_packet_size_set(nrf_drv_usbd_ep_t ep, uint16_t size);
/**
* @brief Get configured endpoint packet size
*
* Function to get configured endpoint size on the buffer.
*
* @param[in] ep Endpoint number
*
* @return Maximum pocket size configured on selected endpoint
*/
uint16_t nrf_drv_usbd_ep_max_packet_size_get(nrf_drv_usbd_ep_t ep);
/**
* @brief Check if the selected endpoint is enabled.
*
* @param ep Endpoint number to check.
*
* @retval true Endpoint is enabled.
* @retval false Endpoint is disabled.
*/
bool nrf_drv_usbd_ep_enable_check(nrf_drv_usbd_ep_t ep);
/**
* @brief Enable selected endpoint
*
* This function enables endpoint itself and its interrupts.
* @param ep Endpoint number to enable
*
* @note
* Max packet size is set to endpoint default maximum value.
*
* @sa nrf_drv_usbd_ep_max_packet_size_set
*/
void nrf_drv_usbd_ep_enable(nrf_drv_usbd_ep_t ep);
/**
* @brief Disable selected endpoint
*
* This function disables endpoint itself and its interrupts.
* @param ep Endpoint number to disable
*/
void nrf_drv_usbd_ep_disable(nrf_drv_usbd_ep_t ep);
/**
* @brief Disable all endpoints except for EP0
*
* Disable all endpoints that can be disabled in USB device while it is still active.
*/
void nrf_drv_usbd_ep_default_config(void);
/**
* @brief Start sending data over endpoint
*
* Function initializes endpoint transmission.
* This is asynchronous function - it finishes immediately after configuration
* for transmission is prepared.
*
* @note Data buffer pointed by p_data have to be kept active till
* @ref NRF_DRV_USBD_EVT_EPTRANSFER event is generated.
*
* @param[in] ep Endpoint number.
* For IN endpoint sending would be initiated.
* For OUT endpoint receiving would be initiated.
* @param[in] p_transfer
*
* @retval NRF_ERROR_BUSY Selected endpoint is pending.
* @retval NRF_ERROR_INVALID_ADDR Unexpected transfer on EPIN0 or EPOUT0.
* @retval NRF_ERROR_FORBIDDEN Endpoint stalled.
* @retval NRF_SUCCESS Transfer queued or started.
*/
ret_code_t nrf_drv_usbd_ep_transfer(
nrf_drv_usbd_ep_t ep,
nrf_drv_usbd_transfer_t const * const p_transfer);
/**
* @brief Start sending data over the endpoint using the transfer handler function.
*
* This function initializes an endpoint transmission.
* Just before data is transmitted, the transfer handler
* is called and it prepares a data chunk.
*
* @param[in] ep Endpoint number.
* For an IN endpoint, sending is initiated.
* For an OUT endpoint, receiving is initiated.
* @param p_handler Transfer handler - feeder for IN direction and consumer for
* OUT direction.
*
* @retval NRF_ERROR_BUSY Selected endpoint is pending.
* @retval NRF_ERROR_INVALID_ADDR Unexpected transfer on EPIN0 or EPOUT0.
* @retval NRF_ERROR_FORBIDDEN Endpoint stalled.
* @retval NRF_SUCCESS Transfer queued or started.
*/
ret_code_t nrf_drv_usbd_ep_handled_transfer(
nrf_drv_usbd_ep_t ep,
nrf_drv_usbd_handler_desc_t const * const p_handler);
/**
* @brief Get the temporary buffer to be used by the feeder.
*
* This buffer is used for TX transfers and it can be reused automatically
* when the transfer is finished.
* Use it for transfer preparation.
*
* May be used inside the feeder configured in @ref nrf_drv_usbd_ep_handled_transfer.
*
* @return Pointer to the buffer that can be used temporarily.
*
* @sa NRF_DRV_USBD_FEEDER_BUFFER_SIZE
*/
void * nrf_drv_usbd_feeder_buffer_get(void);
/**
* @brief Get the information about last finished or current transfer
*
* Function returns the status of the last buffer set for transfer on selected endpoint.
* The status considers last buffer set by @ref nrf_drv_usbd_ep_transfer function or
* by transfer callback function.
*
* @param[in] ep Endpoint number.
* @param[out] p_size Information about the current/last transfer size.
*
* @retval NRF_SUCCESS Transfer already finished
* @retval NRF_ERROR_BUSY Ongoing transfer
* @retval NRF_ERROR_DATA_SIZE Too much of data received that cannot fit into buffer and cannot be splited into chunks.
* This may happen if buffer size is not a multiplication of endpoint buffer size.
*/
ret_code_t nrf_drv_usbd_ep_status_get(nrf_drv_usbd_ep_t ep, size_t * p_size);
/**
* @brief Get number of received bytes
*
* Get the number of received bytes.
* The function behavior is undefined when called on IN endpoint.
*
* @param ep Endpoint number.
*
* @return Number of received bytes
*/
size_t nrf_drv_usbd_epout_size_get(nrf_drv_usbd_ep_t ep);
/**
* @brief Check if endpoint buffer is ready or is under USB IP control
*
* Function to test if endpoint is busy.
* Endpoint that is busy cannot be accessed by MCU.
* It means that:
* - OUT (TX) endpoint: Last uploaded data is still in endpoint and is waiting
* to be received by the host.
* - IN (RX) endpoint: Endpoint is ready to receive data from the host
* and the endpoint does not have any data.
* When endpoint is not busy:
* - OUT (TX) endpoint: New data can be uploaded.
* - IN (RX) endpoint: New data can be downloaded using @ref nrf_drv_usbd_ep_transfer
* function.
*/
bool nrf_drv_usbd_ep_is_busy(nrf_drv_usbd_ep_t ep);
/**
* @brief Stall endpoint
*
* Stall endpoit to send error information during next transfer request from
* the host.
*
* @note To stall endpoint it is safer to use @ref nrf_drv_usbd_setup_stall
* @note Stalled endpoint would not be cleared when DMA transfer finishes.
*
* @param ep Endpoint number to stall
*
*/
void nrf_drv_usbd_ep_stall(nrf_drv_usbd_ep_t ep);
/**
* @brief Clear stall flag on endpoint
*
* This function clears endpoint that is stalled.
* @note
* If it is OUT endpoint (receiving) it would be also prepared for reception.
* It means that busy flag would be set.
* @note
* In endpoint (transmitting) would not be cleared - it gives possibility to
* write new data before transmitting.
*/
void nrf_drv_usbd_ep_stall_clear(nrf_drv_usbd_ep_t ep);
/**
* @brief Check if endpoint is stalled
*
* This function gets stall state of selected endpoint
*
* @param ep Endpoint number to check
*/
bool nrf_drv_usbd_ep_stall_check(nrf_drv_usbd_ep_t ep);
/**
* @brief Clear current endpoint data toggle
*
* @param ep Endpoint number to clear
*/
void nrf_drv_usbd_ep_dtoggle_clear(nrf_drv_usbd_ep_t ep);
/**
* @brief Get parsed setup data
*
* Function fills the parsed setup data structure.
*
* @param[out] p_setup Pointer to data structure that would be filled by
* parsed data.
*/
void nrf_drv_usbd_setup_get(nrf_drv_usbd_setup_t * const p_setup);
/**
* @brief Clear only for data transmission on setup endpoint
*
* This function may be called if any more data in control write transfer is expected.
* Clears only OUT endpoint to be able to take another OUT data token.
* It does not allow STATUS stage.
* @sa nrf_drv_usbd_setup_clear
*/
void nrf_drv_usbd_setup_data_clear(void);
/**
* @brief Clear setup endpoint
*
* This function acknowledges setup when SETUP command was received and processed.
* It has to be called if no data respond for the SETUP command is sent.
*
* When there is any data transmission after SETUP command the data transmission
* itself would clear the endpoint.
*/
void nrf_drv_usbd_setup_clear(void);
/**
* @brief Stall setup endpoint
*
* Mark and error on setup endpoint.
*/
void nrf_drv_usbd_setup_stall(void);
/**
* @note
* This function locks interrupts that may be costly.
* It is good idea to test if the endpoint is still busy before calling this function:
* @code
(m_ep_dma_waiting & (1U << ep2bit(ep)))
* @endcode
* This function would check it again, but it makes it inside critical section.
*/
void nrf_drv_usbd_ep_abort(nrf_drv_usbd_ep_t ep);
/**
* @brief Get the information about expected transfer SETUP data direction
*
* Function returns the information about last expected transfer direction.
*
* @retval NRF_DRV_USBD_EPOUT0 Expecting OUT (Host->Device) direction or no data
* @retval NRF_DRV_USBD_EPIN0 Expecting IN (Device->Host) direction
*/
nrf_drv_usbd_ep_t nrf_drv_usbd_last_setup_dir_get(void);
/**
* @brief Drop transfer on OUT endpoint
*
* @param[in] ep OUT endpoint ID
*/
void nrf_drv_usbd_transfer_out_drop(nrf_drv_usbd_ep_t ep);
#ifdef __cplusplus
}
#endif
/** @} */
#endif /* NRF_DRV_USBD_H__ */

View File

@ -22,7 +22,7 @@
extern "C" {
#include "nrf_drv_usbd.h"
#include "nrf_drv_power.h"
#include "nrfx_power.h"
}
class USBPhyHw : public USBPhy {
@ -63,7 +63,7 @@ public:
virtual void process();
static void _usb_event_handler(nrf_drv_usbd_evt_t const * const p_event);
static void _usb_power_event_handler(nrf_drv_power_usb_evt_t event);
static void _usb_power_event_handler(nrfx_power_usb_evt_t event);
static void _usb_virtual_status_event_handler(void);
private:
@ -86,7 +86,7 @@ private:
nrf_drv_usbd_evt_t usb_event;
// USB power event buffer
nrf_drv_power_usb_evt_t usb_power_event;
nrfx_power_usb_evt_t usb_power_event;
// Buffer to hold setup packet
nrf_drv_usbd_setup_t setup_buf;

View File

@ -46,7 +46,7 @@ static USBPhyHw *instance = 0;
static volatile bool virtual_status_xfer_event;
static void usbd_event_handler(nrf_drv_usbd_evt_t const * const p_event);
static void power_usb_event_handler(nrf_drv_power_usb_evt_t event);
static void power_usb_event_handler(nrfx_power_usb_evt_t event);
USBPhy *get_usb_phy() {
static USBPhyHw usbphy;
@ -56,7 +56,7 @@ USBPhy *get_usb_phy() {
USBPhyHw::USBPhyHw() :
events(NULL), sof_enabled(false), connect_enabled(false),
usb_event_type(USB_HW_EVENT_NONE),
usb_power_event(NRF_DRV_POWER_USB_EVT_REMOVED) {
usb_power_event(NRFX_POWER_USB_EVT_REMOVED) {
}
@ -73,15 +73,14 @@ void USBPhyHw::init(USBPhyEvents *events) {
ret_code_t ret;
// Initialize power module to track USB Power events
ret = nrf_drv_power_init(NULL);
ret = nrfx_power_init(NULL);
MBED_ASSERT(ret == NRF_SUCCESS);
// Register callback for USB Power events
static const nrf_drv_power_usbevt_config_t config = { .handler =
static const nrfx_power_usbevt_config_t config = { .handler =
power_usb_event_handler };
ret = nrf_drv_power_usbevt_init(&config);
MBED_ASSERT(ret == NRF_SUCCESS);
nrfx_power_usbevt_init(&config);
// Initialize USB Device driver
ret = nrf_drv_usbd_init(usbd_event_handler);
@ -115,15 +114,15 @@ void USBPhyHw::deinit() {
//NVIC_DisableIRQ(USBD_IRQn); // This is handled by the Nordic driver
// Disable the power peripheral driver
nrf_drv_power_uninit();
nrfx_power_uninit();
// Clear the instance pointer
instance = 0;
}
bool USBPhyHw::powered() {
if (nrf_drv_power_usbstatus_get() == NRF_DRV_POWER_USB_STATE_CONNECTED
|| nrf_drv_power_usbstatus_get() == NRF_DRV_POWER_USB_STATE_READY)
if (nrfx_power_usbstatus_get() == NRFX_POWER_USB_STATE_CONNECTED
|| nrfx_power_usbstatus_get() == NRFX_POWER_USB_STATE_READY)
return true;
else
return false;
@ -138,7 +137,7 @@ void USBPhyHw::connect() {
this->connect_enabled = true;
// If VBUS is already available, enable immediately
if(nrf_drv_power_usbstatus_get() == NRF_DRV_POWER_USB_STATE_CONNECTED)
if(nrfx_power_usbstatus_get() == NRFX_POWER_USB_STATE_CONNECTED)
{
// Enabling USB will cause NRF_DRV_POWER_USB_EVT_READY
// to occur, which will start the USBD peripheral
@ -146,7 +145,7 @@ void USBPhyHw::connect() {
if(!nrf_drv_usbd_is_enabled())
nrf_drv_usbd_enable();
if(nrf_drv_power_usbstatus_get() == NRF_DRV_POWER_USB_STATE_READY
if(nrfx_power_usbstatus_get() == NRFX_POWER_USB_STATE_READY
&& !nrf_drv_usbd_is_started())
nrf_drv_usbd_start(true);
}
@ -267,7 +266,7 @@ void USBPhyHw::ep0_read(uint8_t *data, uint32_t size) {
virtual_status_xfer_event = true;
// Trigger an interrupt to process the virtual status event
NVIC_SetPendingIRQ(USBD_IRQn);
NRFX_IRQ_PENDING_SET(USBD_IRQn);
return;
}
@ -310,7 +309,7 @@ void USBPhyHw::ep0_write(uint8_t *buffer, uint32_t size) {
virtual_status_xfer_event = true;
// Trigger an interrupt to process the virtual status event
NVIC_SetPendingIRQ(USBD_IRQn);
NRFX_IRQ_PENDING_SET(USBD_IRQn);
return;
}
@ -457,17 +456,17 @@ void USBPhyHw::process() {
{
// Process USB power-related events
switch (usb_power_event) {
case NRF_DRV_POWER_USB_EVT_DETECTED:
case NRFX_POWER_USB_EVT_DETECTED:
if(this->connect_enabled) {
if(!nrf_drv_usbd_is_enabled())
nrf_drv_usbd_enable();
events->power(true);
}
break;
case NRF_DRV_POWER_USB_EVT_REMOVED:
case NRFX_POWER_USB_EVT_REMOVED:
events->power(false);
break;
case NRF_DRV_POWER_USB_EVT_READY:
case NRFX_POWER_USB_EVT_READY:
if(!nrf_drv_usbd_is_started())
nrf_drv_usbd_start(true);
break;
@ -501,7 +500,7 @@ void USBPhyHw::_usb_event_handler(
instance->events->start_process();
}
void USBPhyHw::_usb_power_event_handler(nrf_drv_power_usb_evt_t event) {
void USBPhyHw::_usb_power_event_handler(nrfx_power_usb_evt_t event) {
disable_usb_interrupts();
// Copy the event data into internal memory
instance->usb_power_event = event;
@ -525,7 +524,6 @@ nrf_drv_usbd_transfer_t* USBPhyHw::get_transfer_buffer(usb_ep_t endpoint) {
nrf_drv_usbd_ep_t USBPhyHw::get_nordic_endpoint(usb_ep_t endpoint) {
// Clear the most-significant-bit (input endpoint flag)
uint8_t endpoint_num = (endpoint & ~(0x80));
return (nrf_drv_usbd_ep_t) endpoint;
}
@ -539,13 +537,13 @@ void USBPhyHw::_reset(void)
usb_event_type = USB_HW_EVENT_NONE;
// Clear all endpoint interrupts
NVIC_ClearPendingIRQ(USBD_IRQn);
NRFX_IRQ_PENDING_CLEAR(USBD_IRQn);
nrf_usbd_event_clear((nrf_usbd_event_t)0x01FFFFFF);
}
void USBPhyHw::enable_usb_interrupts(void) {
// Enable USB and USB-related power interrupts
NVIC_EnableIRQ(USBD_IRQn);
NRFX_IRQ_ENABLE(USBD_IRQn);
nrf_power_int_enable(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK);
@ -553,13 +551,13 @@ void USBPhyHw::enable_usb_interrupts(void) {
void USBPhyHw::disable_usb_interrupts(void) {
// Disable USB and USB-related power interrupts
NVIC_DisableIRQ(USBD_IRQn);
NRFX_IRQ_ENABLE(USBD_IRQn);
nrf_power_int_disable(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK);
}
static void power_usb_event_handler(nrf_drv_power_usb_evt_t event) {
static void power_usb_event_handler(nrfx_power_usb_evt_t event) {
if(instance) {
// Pass the event on to the USBPhyHW instance
instance->_usb_power_event_handler(event);