Added ytsuboi's modifications for using the 1114

pull/17/head
Matthew Else 2013-07-19 11:24:51 +01:00
parent 091fe5c3d0
commit 18c291b7ce
39 changed files with 6637 additions and 2 deletions

View File

@ -0,0 +1,14 @@
LR_IROM1 0x00000000 0x8000 { ; load region size_region (32k)
ER_IROM1 0x00000000 0x8000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
; 8_byte_aligned(48 vect * 4 bytes) = 8_byte_aligned(0xC0) = 0xC0
; 8KB - 0xC0 = 0xF40
RW_IRAM1 0x100000C0 0xF40 {
.ANY (+RW +ZI)
}
}

View File

@ -0,0 +1,286 @@
;/*****************************************************************************
; * @file: startup_LPC11xx.s
; * @purpose: CMSIS Cortex-M0 Core Device Startup File
; * for the NXP LPC11xx Device Series
; * @version: V1.0
; * @date: 25. Nov. 2008
; *------- <<< Use Configuration Wizard in Context Menu >>> ------------------
; *
; * Copyright (C) 2008 ARM Limited. All rights reserved.
; * ARM Limited (ARM) is supplying this software for use with Cortex-M0
; * processor based microcontrollers. This file can be freely distributed
; * within development tools that are supporting such ARM based processors.
; *
; * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
; * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
; * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
; * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
; *
; *****************************************************************************/
__initial_sp EQU 0x10001000 ; Top of RAM from LPC1114
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
DCD FLEX_INT0_IRQHandler ; All GPIO pin can be routed to FLEX_INTx
DCD FLEX_INT1_IRQHandler ;
DCD FLEX_INT2_IRQHandler ;
DCD FLEX_INT3_IRQHandler ;
DCD FLEX_INT4_IRQHandler ;
DCD FLEX_INT5_IRQHandler ;
DCD FLEX_INT6_IRQHandler ;
DCD FLEX_INT7_IRQHandler ;
DCD GINT0_IRQHandler ;
DCD GINT1_IRQHandler ; PIO0 (0:7)
DCD Reserved_IRQHandler ; Reserved
DCD Reserved_IRQHandler ;
DCD Reserved_IRQHandler ;
DCD Reserved_IRQHandler ;
DCD SSP1_IRQHandler ; SSP1
DCD I2C_IRQHandler ; I2C
DCD TIMER16_0_IRQHandler ; 16-bit Timer0
DCD TIMER16_1_IRQHandler ; 16-bit Timer1
DCD TIMER32_0_IRQHandler ; 32-bit Timer0
DCD TIMER32_1_IRQHandler ; 32-bit Timer1
DCD SSP0_IRQHandler ; SSP0
DCD UART_IRQHandler ; UART
DCD USB_IRQHandler ; USB IRQ
DCD USB_FIQHandler ; USB FIQ
DCD ADC_IRQHandler ; A/D Converter
DCD WDT_IRQHandler ; Watchdog timer
DCD BOD_IRQHandler ; Brown Out Detect
DCD FMC_IRQHandler ; IP2111 Flash Memory Controller
DCD Reserved_IRQHandler ; Reserved
DCD Reserved_IRQHandler ; Reserved
DCD Reserved_IRQHandler ; Reserved
DCD Reserved_IRQHandler ; Reserved
;; 48 vector entries. We pad to 128 to fill the 0x0 - 0x1FF REMAP address space
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
DCD 0xFFFFFFFF ; Datafill
IF :LNOT::DEF:NO_CRP
AREA |.ARM.__at_0x02FC|, CODE, READONLY
CRP_Key DCD 0xFFFFFFFF
ENDIF
AREA |.text|, CODE, READONLY
; Reset Handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
; now, under COMMON NMI.c and NMI.h, a real NMI handler is created if NMI is enabled
; for particular peripheral.
;NMI_Handler PROC
; EXPORT NMI_Handler [WEAK]
; B .
; ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Reserved_IRQHandler PROC
EXPORT Reserved_IRQHandler [WEAK]
B .
ENDP
Default_Handler PROC
; for LPC11Uxx (With USB)
EXPORT NMI_Handler [WEAK]
EXPORT FLEX_INT0_IRQHandler [WEAK]
EXPORT FLEX_INT1_IRQHandler [WEAK]
EXPORT FLEX_INT2_IRQHandler [WEAK]
EXPORT FLEX_INT3_IRQHandler [WEAK]
EXPORT FLEX_INT4_IRQHandler [WEAK]
EXPORT FLEX_INT5_IRQHandler [WEAK]
EXPORT FLEX_INT6_IRQHandler [WEAK]
EXPORT FLEX_INT7_IRQHandler [WEAK]
EXPORT GINT0_IRQHandler [WEAK]
EXPORT GINT1_IRQHandler [WEAK]
EXPORT SSP1_IRQHandler [WEAK]
EXPORT I2C_IRQHandler [WEAK]
EXPORT TIMER16_0_IRQHandler [WEAK]
EXPORT TIMER16_1_IRQHandler [WEAK]
EXPORT TIMER32_0_IRQHandler [WEAK]
EXPORT TIMER32_1_IRQHandler [WEAK]
EXPORT SSP0_IRQHandler [WEAK]
EXPORT UART_IRQHandler [WEAK]
EXPORT USB_IRQHandler [WEAK]
EXPORT USB_FIQHandler [WEAK]
EXPORT ADC_IRQHandler [WEAK]
EXPORT WDT_IRQHandler [WEAK]
EXPORT BOD_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT USBWakeup_IRQHandler [WEAK]
NMI_Handler
FLEX_INT0_IRQHandler
FLEX_INT1_IRQHandler
FLEX_INT2_IRQHandler
FLEX_INT3_IRQHandler
FLEX_INT4_IRQHandler
FLEX_INT5_IRQHandler
FLEX_INT6_IRQHandler
FLEX_INT7_IRQHandler
GINT0_IRQHandler
GINT1_IRQHandler
SSP1_IRQHandler
I2C_IRQHandler
TIMER16_0_IRQHandler
TIMER16_1_IRQHandler
TIMER32_0_IRQHandler
TIMER32_1_IRQHandler
SSP0_IRQHandler
UART_IRQHandler
USB_IRQHandler
USB_FIQHandler
ADC_IRQHandler
WDT_IRQHandler
BOD_IRQHandler
FMC_IRQHandler
USBWakeup_IRQHandler
B .
ENDP
ALIGN
END

View File

@ -0,0 +1,31 @@
/* mbed Microcontroller Library - stackheap
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* Setup a fixed single stack/heap memory model,
* between the top of the RW/ZI region and the stackpointer
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <rt_misc.h>
#include <stdint.h>
extern char Image$$RW_IRAM1$$ZI$$Limit[];
extern __value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) {
uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit;
uint32_t sp_limit = __current_sp();
zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned
struct __initial_stackheap r;
r.heap_base = zi_limit;
r.heap_limit = sp_limit;
return r;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,213 @@
/* File: startup_ARMCM0.S
* Purpose: startup file for Cortex-M0 devices. Should use with
* GCC for ARM Embedded Processors
* Version: V1.2
* Date: 15 Nov 2011
*
* Copyright (c) 2011, ARM Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the ARM Limited nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ARM LIMITED BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
.syntax unified
.arch armv6-m
/* Memory Model
The HEAP starts at the end of the DATA section and grows upward.
The STACK starts at the end of the RAM and grows downward.
The HEAP and stack STACK are only checked at compile time:
(DATA_SIZE + HEAP_SIZE + STACK_SIZE) < RAM_SIZE
This is just a check for the bare minimum for the Heap+Stack area before
aborting compilation, it is not the run time limit:
Heap_Size + Stack_Size = 0x80 + 0x80 = 0x100
*/
.section .stack
.align 3
#ifdef __STACK_SIZE
.equ Stack_Size, __STACK_SIZE
#else
.equ Stack_Size, 0x80
#endif
.globl __StackTop
.globl __StackLimit
__StackLimit:
.space Stack_Size
.size __StackLimit, . - __StackLimit
__StackTop:
.size __StackTop, . - __StackTop
.section .heap
.align 3
#ifdef __HEAP_SIZE
.equ Heap_Size, __HEAP_SIZE
#else
.equ Heap_Size, 0x80
#endif
.globl __HeapBase
.globl __HeapLimit
__HeapBase:
.space Heap_Size
.size __HeapBase, . - __HeapBase
__HeapLimit:
.size __HeapLimit, . - __HeapLimit
.section .isr_vector
.align 2
.globl __isr_vector
__isr_vector:
.long __StackTop /* Top of Stack */
.long Reset_Handler /* Reset Handler */
.long NMI_Handler /* NMI Handler */
.long HardFault_Handler /* Hard Fault Handler */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long SVC_Handler /* SVCall Handler */
.long 0 /* Reserved */
.long 0 /* Reserved */
.long PendSV_Handler /* PendSV Handler */
.long SysTick_Handler /* SysTick Handler */
/* LPC11xx interrupts */
.long WAKEUP_IRQHandler /* 16 0 Wake-up on pin PIO0_0 */
.long WAKEUP_IRQHandler /* 17 1 Wake-up on pin PIO0_1 */
.long WAKEUP_IRQHandler /* 18 2 Wake-up on pin PIO0_2 */
.long WAKEUP_IRQHandler /* 19 3 Wake-up on pin PIO0_3 */
.long WAKEUP_IRQHandler /* 20 4 Wake-up on pin PIO0_4 */
.long WAKEUP_IRQHandler /* 21 5 Wake-up on pin PIO0_5 */
.long WAKEUP_IRQHandler /* 22 6 Wake-up on pin PIO0_6 */
.long WAKEUP_IRQHandler /* 23 7 Wake-up on pin PIO0_7 */
.long WAKEUP_IRQHandler /* 24 8 Wake-up on pin PIO0_8 */
.long WAKEUP_IRQHandler /* 25 9 Wake-up on pin PIO0_9 */
.long WAKEUP_IRQHandler /* 26 10 Wake-up on pin PIO0_10 */
.long WAKEUP_IRQHandler /* 27 11 Wake-up on pin PIO0_11 */
.long WAKEUP_IRQHandler /* 28 12 Wake-up on pin PIO1_0 */
.long Default_Handler /* 29 13 */
.long SSP1_IRQHandler /* 30 14 SSP1 */
.long I2C_IRQHandler /* 31 15 I2C0 SI (state change) */
.long TIMER16_0_IRQHandler /* 32 16 CT16B0 16 bit timer 0 */
.long TIMER16_1_IRQHandler /* 33 17 CT16B1 16 bit timer 1 */
.long TIMER32_0_IRQHandler /* 34 18 CT32B0 32 bit timer 0 */
.long TIMER32_1_IRQHandler /* 35 19 CT32B1 32 bit timer 1 */
.long SSP0_IRQHandler /* 36 20 SSP */
.long UART_IRQHandler /* 37 21 UART */
.long Default_Handler /* 38 22 */
.long Default_Handler /* 39 23 */
.long ADC_IRQHandler /* 40 24 ADC end of conversion */
.long WDT_IRQHandler /* 41 25 Watchdog interrupt (WDINT) */
.long BOD_IRQHandler /* 42 26 BOD Brown-out detect */
.long Default_Handler /* 43 27 */
.long PIOINT3_IRQHandler /* 44 28 PIO_3 GPIO interrupt status of port 3 */
.long PIOINT2_IRQHandler /* 45 29 PIO_2 GPIO interrupt status of port 2 */
.long PIOINT1_IRQHandler /* 46 30 PIO_1 GPIO interrupt status of port 1 */
.long PIOINT0_IRQHandler /* 47 31 PIO_0 GPIO interrupt status of port 0 */
.size __isr_vector, . - __isr_vector
.section .text.Reset_Handler
.thumb
.thumb_func
.align 2
.globl Reset_Handler
.type Reset_Handler, %function
Reset_Handler:
/* Loop to copy data from read only memory to RAM. The ranges
* of copy from/to are specified by following symbols evaluated in
* linker script.
* __etext: End of code section, i.e., begin of data sections to copy from.
* __data_start__/__data_end__: RAM address range that data should be
* copied to. Both must be aligned to 4 bytes boundary. */
ldr r1, =__etext
ldr r2, =__data_start__
ldr r3, =__data_end__
subs r3, r2
ble .flash_to_ram_loop_end
movs r4, 0
.flash_to_ram_loop:
ldr r0, [r1,r4]
str r0, [r2,r4]
adds r4, 4
cmp r4, r3
blt .flash_to_ram_loop
.flash_to_ram_loop_end:
ldr r0, =SystemInit
blx r0
ldr r0, =_start
bx r0
.pool
.size Reset_Handler, . - Reset_Handler
.text
/* Macro to define default handlers. Default handler
* will be weak symbol and just dead loops. They can be
* overwritten by other handlers */
.macro def_default_handler handler_name
.align 1
.thumb_func
.weak \handler_name
.type \handler_name, %function
\handler_name :
b .
.size \handler_name, . - \handler_name
.endm
def_default_handler NMI_Handler
def_default_handler HardFault_Handler
def_default_handler SVC_Handler
def_default_handler PendSV_Handler
def_default_handler SysTick_Handler
def_default_handler Default_Handler
def_default_handler WAKEUP_IRQHandler
def_default_handler SSP1_IRQHandler
def_default_handler I2C_IRQHandler
def_default_handler TIMER16_0_IRQHandler
def_default_handler TIMER16_1_IRQHandler
def_default_handler TIMER32_0_IRQHandler
def_default_handler TIMER32_1_IRQHandler
def_default_handler SSP0_IRQHandler
def_default_handler UART_IRQHandler
def_default_handler ADC_IRQHandler
def_default_handler WDT_IRQHandler
def_default_handler BOD_IRQHandler
def_default_handler PIOINT3_IRQHandler
def_default_handler PIOINT2_IRQHandler
def_default_handler PIOINT1_IRQHandler
def_default_handler PIOINT0_IRQHandler
.weak DEF_IRQHandler
.set DEF_IRQHandler, Default_Handler
.end

View File

@ -0,0 +1,161 @@
extern "C" {
#include "LPC11Uxx.h"
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
#define AFTER_VECTORS __attribute__ ((section(".after_vectors")))
void ResetISR (void);
WEAK void NMI_Handler (void);
WEAK void HardFault_Handler (void);
WEAK void SVCall_Handler (void);
WEAK void PendSV_Handler (void);
WEAK void SysTick_Handler (void);
WEAK void IntDefaultHandler (void);
void FLEX_INT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT2_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT3_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT4_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT5_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT6_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLEX_INT7_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT0_IRQHandler (void) ALIAS(IntDefaultHandler);
void GINT1_IRQHandler (void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler (void) ALIAS(IntDefaultHandler);
void I2C_IRQHandler (void) ALIAS(IntDefaultHandler);
void TIMER16_0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER16_1_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER32_0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER32_1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler (void) ALIAS(IntDefaultHandler);
void UART_IRQHandler (void) ALIAS(IntDefaultHandler);
void USB_IRQHandler (void) ALIAS(IntDefaultHandler);
void USB_FIQHandler (void) ALIAS(IntDefaultHandler);
void ADC_IRQHandler (void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler (void) ALIAS(IntDefaultHandler);
void BOD_IRQHandler (void) ALIAS(IntDefaultHandler);
void FMC_IRQHandler (void) ALIAS(IntDefaultHandler);
void USBWakeup_IRQHandler(void) ALIAS(IntDefaultHandler);
extern void __libc_init_array(void);
extern int main(void);
extern void _vStackTop(void);
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
&_vStackTop,
ResetISR,
NMI_Handler,
HardFault_Handler,
0,
0,
0,
0,
0,
0,
0,
SVCall_Handler,
0,
0,
PendSV_Handler,
SysTick_Handler,
FLEX_INT0_IRQHandler,
FLEX_INT1_IRQHandler,
FLEX_INT2_IRQHandler,
FLEX_INT3_IRQHandler,
FLEX_INT4_IRQHandler,
FLEX_INT5_IRQHandler,
FLEX_INT6_IRQHandler,
FLEX_INT7_IRQHandler,
GINT0_IRQHandler,
GINT1_IRQHandler,
0,
0,
0,
0,
SSP1_IRQHandler,
I2C_IRQHandler,
TIMER16_0_IRQHandler,
TIMER16_1_IRQHandler,
TIMER32_0_IRQHandler,
TIMER32_1_IRQHandler,
SSP0_IRQHandler,
UART_IRQHandler,
USB_IRQHandler,
USB_FIQHandler,
ADC_IRQHandler,
WDT_IRQHandler,
BOD_IRQHandler,
FMC_IRQHandler,
0,
0,
USBWakeup_IRQHandler,
0,
};
AFTER_VECTORS void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int *pulSrc = (unsigned int*) romstart;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = *pulSrc++;
}
AFTER_VECTORS void bss_init(unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = 0;
}
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table_end;
AFTER_VECTORS void ResetISR(void) {
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr;
// Data Init
SectionTableAddr = &__data_section_table;
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
}
// BSS Init
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
}
SystemInit();
__libc_init_array();
main();
while (1) {;}
}
AFTER_VECTORS void NMI_Handler (void) {while(1){}}
AFTER_VECTORS void HardFault_Handler(void) {while(1){}}
AFTER_VECTORS void SVCall_Handler (void) {while(1){}}
AFTER_VECTORS void PendSV_Handler (void) {while(1){}}
AFTER_VECTORS void SysTick_Handler (void) {while(1){}}
AFTER_VECTORS void IntDefaultHandler(void) {while(1){}}
#include <stdlib.h>
void *operator new (size_t size) {return malloc(size);}
void *operator new[](size_t size) {return malloc(size);}
void operator delete (void *p) {free(p);}
void operator delete[](void *p) {free(p);}
int __aeabi_atexit(void *object, void (*destructor)(void *), void *dso_handle) {
return 0;
}
}

View File

@ -0,0 +1,112 @@
.equ Stack_Size, 0x80
.section ".stack", "w"
.align 3
.globl __cs3_stack_mem
.globl __cs3_stack_size
__cs3_stack_mem:
.if Stack_Size
.space Stack_Size
.endif
.size __cs3_stack_mem, . - __cs3_stack_mem
.set __cs3_stack_size, . - __cs3_stack_mem
.equ Heap_Size, 0x80
.section ".heap", "w"
.align 3
.globl __cs3_heap_start
.globl __cs3_heap_end
__cs3_heap_start:
.if Heap_Size
.space Heap_Size
.endif
__cs3_heap_end:
.section ".cs3.interrupt_vector"
.globl __cs3_interrupt_vector_cortex_m
.type __cs3_interrupt_vector_cortex_m, %object
__cs3_interrupt_vector_cortex_m:
.long __cs3_stack
.long __cs3_reset
.long NMI_Handler
.long HardFault_Handler
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long 0
.long SVC_Handler
.long 0
.long 0
.long PendSV_Handler
.long SysTick_Handler
.long DEF_IRQHandler
.size __cs3_interrupt_vector_cortex_m, . - __cs3_interrupt_vector_cortex_m
.thumb
.section .cs3.reset,"x",%progbits
.thumb_func
.globl __cs3_reset_cortex_m
.type __cs3_reset_cortex_m, %function
__cs3_reset_cortex_m:
.fnstart
LDR R0, =SystemInit
BLX R0
LDR R0,=__cs3_start_c
BX R0
.pool
.cantunwind
.fnend
.size __cs3_reset_cortex_m,.-__cs3_reset_cortex_m
.section ".text"
.weak NMI_Handler
.type NMI_Handler, %function
NMI_Handler:
B .
.size NMI_Handler, . - NMI_Handler
.weak HardFault_Handler
.type HardFault_Handler, %function
HardFault_Handler:
B .
.size HardFault_Handler, . - HardFault_Handler
.weak SVC_Handler
.type SVC_Handler, %function
SVC_Handler:
B .
.size SVC_Handler, . - SVC_Handler
.weak PendSV_Handler
.type PendSV_Handler, %function
PendSV_Handler:
B .
.size PendSV_Handler, . - PendSV_Handler
.weak SysTick_Handler
.type SysTick_Handler, %function
SysTick_Handler:
B .
.size SysTick_Handler, . - SysTick_Handler
.globl Default_Handler
.type Default_Handler, %function
Default_Handler:
B .
.size Default_Handler, . - Default_Handler
.macro IRQ handler
.weak \handler
.set \handler, Default_Handler
.endm
IRQ DEF_IRQHandler
.end

View File

@ -0,0 +1,79 @@
#include "cmsis.h"
#include <sys/types.h>
#include <errno.h>
extern "C" {
struct SCS3Regions {
unsigned long Dummy;
unsigned long* InitRam;
unsigned long* StartRam;
unsigned long InitSizeRam;
unsigned long ZeroSizeRam;
};
extern unsigned long __cs3_regions;
extern unsigned long __cs3_heap_start;
int main(void);
void __libc_init_array(void);
void exit(int ErrorCode);
static void *heap_pointer = NULL;
void __cs3_start_c(void) {
static SCS3Regions* pCS3Regions = (SCS3Regions*)&__cs3_regions;
unsigned long* pulDest;
unsigned long* pulSrc;
unsigned long ByteCount;
unsigned long i;
pulSrc = pCS3Regions->InitRam;
pulDest = pCS3Regions->StartRam;
ByteCount = pCS3Regions->InitSizeRam;
if (pulSrc != pulDest) {
for(i = 0 ; i < ByteCount ; i += sizeof(unsigned long)) {
*(pulDest++) = *(pulSrc++);
}
} else {
pulDest = (unsigned long*)(void*)((char*)pulDest + ByteCount);
}
ByteCount = pCS3Regions->ZeroSizeRam;
for(i = 0 ; i < ByteCount ; i += sizeof(unsigned long)) {
*(pulDest++) = 0;
}
heap_pointer = &__cs3_heap_start;
__libc_init_array();
exit(main());
}
int _kill(int pid, int sig) {
errno = EINVAL;
return -1;
}
void _exit(int status) {
exit(status);
}
int _getpid(void) {
return 1;
}
void *_sbrk(unsigned int incr) {
void *mem;
unsigned int next = ((((unsigned int)heap_pointer + incr) + 7) & ~7);
if (next > __get_MSP()) {
mem = NULL;
} else {
mem = (void *)heap_pointer;
}
heap_pointer = (void *)next;
return mem;
}
}

View File

@ -0,0 +1,602 @@
/****************************************************************************
* $Id:: LPC11xx.h 9198 2012-05-29 usb00175 $
* Project: NXP LPC11xx software example
*
* Description:
* CMSIS Cortex-M0 Core Peripheral Access Layer Header File for
* NXP LPC11xx Device Series
****************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
****************************************************************************/
#ifndef __LPC11xx_H__
#define __LPC11xx_H__
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup LPC11xx_Definitions LPC11xx Definitions
This file defines all structures and symbols for LPC11xx:
- Registers and bitfields
- peripheral base address
- peripheral ID
- PIO definitions
@{
*/
/******************************************************************************/
/* Processor and Core Peripherals */
/******************************************************************************/
/** @addtogroup LPC11xx_CMSIS LPC11xx CMSIS Definitions
Configuration of the Cortex-M0 Processor and Core Peripherals
@{
*/
/*
* ==========================================================================
* ---------- Interrupt Number Definition -----------------------------------
* ==========================================================================
*/
typedef enum IRQn
{
/****** Cortex-M0 Processor Exceptions Numbers ***************************************************/
NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
HardFault_IRQn = -13, /*!< 3 Cortex-M0 Hard Fault Interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M0 SV Call Interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M0 Pend SV Interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M0 System Tick Interrupt */
/****** LPC11Cxx or LPC11xx Specific Interrupt Numbers *******************************************************/
WAKEUP0_IRQn = 0, /*!< All I/O pins can be used as wakeup source. */
WAKEUP1_IRQn = 1, /*!< There are 13 pins in total for LPC11xx */
WAKEUP2_IRQn = 2,
WAKEUP3_IRQn = 3,
WAKEUP4_IRQn = 4,
WAKEUP5_IRQn = 5,
WAKEUP6_IRQn = 6,
WAKEUP7_IRQn = 7,
WAKEUP8_IRQn = 8,
WAKEUP9_IRQn = 9,
WAKEUP10_IRQn = 10,
WAKEUP11_IRQn = 11,
WAKEUP12_IRQn = 12,
CAN_IRQn = 13, /*!< CAN Interrupt */
SSP1_IRQn = 14, /*!< SSP1 Interrupt */
I2C_IRQn = 15, /*!< I2C Interrupt */
TIMER_16_0_IRQn = 16, /*!< 16-bit Timer0 Interrupt */
TIMER_16_1_IRQn = 17, /*!< 16-bit Timer1 Interrupt */
TIMER_32_0_IRQn = 18, /*!< 32-bit Timer0 Interrupt */
TIMER_32_1_IRQn = 19, /*!< 32-bit Timer1 Interrupt */
SSP0_IRQn = 20, /*!< SSP0 Interrupt */
UART_IRQn = 21, /*!< UART Interrupt */
Reserved0_IRQn = 22, /*!< Reserved Interrupt */
Reserved1_IRQn = 23,
ADC_IRQn = 24, /*!< A/D Converter Interrupt */
WDT_IRQn = 25, /*!< Watchdog timer Interrupt */
BOD_IRQn = 26, /*!< Brown Out Detect(BOD) Interrupt */
FMC_IRQn = 27, /*!< Flash Memory Controller Interrupt */
EINT3_IRQn = 28, /*!< External Interrupt 3 Interrupt */
EINT2_IRQn = 29, /*!< External Interrupt 2 Interrupt */
EINT1_IRQn = 30, /*!< External Interrupt 1 Interrupt */
EINT0_IRQn = 31, /*!< External Interrupt 0 Interrupt */
} IRQn_Type;
/*
* ==========================================================================
* ----------- Processor and Core Peripheral Section ------------------------
* ==========================================================================
*/
/* Configuration of the Cortex-M0 Processor and Core Peripherals */
#define __MPU_PRESENT 0 /*!< MPU present or not */
#define __NVIC_PRIO_BITS 2 /*!< Number of Bits used for Priority Levels */
#define __Vendor_SysTickConfig 0 /*!< Set to 1 if different SysTick Config is used */
/*@}*/ /* end of group LPC11xx_CMSIS */
#include "core_cm0.h" /* Cortex-M0 processor and core peripherals */
#include "system_LPC11xx.h" /* System Header */
/******************************************************************************/
/* Device Specific Peripheral Registers structures */
/******************************************************************************/
#if defined ( __CC_ARM )
#pragma anon_unions
#endif
/*------------- System Control (SYSCON) --------------------------------------*/
/** @addtogroup LPC11xx_SYSCON LPC11xx System Control Block
@{
*/
typedef struct
{
__IO uint32_t SYSMEMREMAP; /*!< Offset: 0x000 System memory remap (R/W) */
__IO uint32_t PRESETCTRL; /*!< Offset: 0x004 Peripheral reset control (R/W) */
__IO uint32_t SYSPLLCTRL; /*!< Offset: 0x008 System PLL control (R/W) */
__I uint32_t SYSPLLSTAT; /*!< Offset: 0x00C System PLL status (R/ ) */
uint32_t RESERVED0[4];
__IO uint32_t SYSOSCCTRL; /*!< Offset: 0x020 System oscillator control (R/W) */
__IO uint32_t WDTOSCCTRL; /*!< Offset: 0x024 Watchdog oscillator control (R/W) */
__IO uint32_t IRCCTRL; /*!< Offset: 0x028 IRC control (R/W) */
uint32_t RESERVED1[1];
__IO uint32_t SYSRSTSTAT; /*!< Offset: 0x030 System reset status Register (R/ ) */
uint32_t RESERVED2[3];
__IO uint32_t SYSPLLCLKSEL; /*!< Offset: 0x040 System PLL clock source select (R/W) */
__IO uint32_t SYSPLLCLKUEN; /*!< Offset: 0x044 System PLL clock source update enable (R/W) */
uint32_t RESERVED3[10];
__IO uint32_t MAINCLKSEL; /*!< Offset: 0x070 Main clock source select (R/W) */
__IO uint32_t MAINCLKUEN; /*!< Offset: 0x074 Main clock source update enable (R/W) */
__IO uint32_t SYSAHBCLKDIV; /*!< Offset: 0x078 System AHB clock divider (R/W) */
uint32_t RESERVED4[1];
__IO uint32_t SYSAHBCLKCTRL; /*!< Offset: 0x080 System AHB clock control (R/W) */
uint32_t RESERVED5[4];
__IO uint32_t SSP0CLKDIV; /*!< Offset: 0x094 SSP0 clock divider (R/W) */
__IO uint32_t UARTCLKDIV; /*!< Offset: 0x098 UART clock divider (R/W) */
__IO uint32_t SSP1CLKDIV; /*!< Offset: 0x09C SSP1 clock divider (R/W) */
uint32_t RESERVED6[12];
__IO uint32_t WDTCLKSEL; /*!< Offset: 0x0D0 WDT clock source select (R/W) */
__IO uint32_t WDTCLKUEN; /*!< Offset: 0x0D4 WDT clock source update enable (R/W) */
__IO uint32_t WDTCLKDIV; /*!< Offset: 0x0D8 WDT clock divider (R/W) */
uint32_t RESERVED8[1];
__IO uint32_t CLKOUTCLKSEL; /*!< Offset: 0x0E0 CLKOUT clock source select (R/W) */
__IO uint32_t CLKOUTUEN; /*!< Offset: 0x0E4 CLKOUT clock source update enable (R/W) */
__IO uint32_t CLKOUTDIV; /*!< Offset: 0x0E8 CLKOUT clock divider (R/W) */
uint32_t RESERVED9[5];
__IO uint32_t PIOPORCAP0; /*!< Offset: 0x100 POR captured PIO status 0 (R/ ) */
__IO uint32_t PIOPORCAP1; /*!< Offset: 0x104 POR captured PIO status 1 (R/ ) */
uint32_t RESERVED10[18];
__IO uint32_t BODCTRL; /*!< Offset: 0x150 BOD control (R/W) */
__IO uint32_t SYSTCKCAL; /*!< Offset: 0x154 System tick counter calibration (R/W) */
uint32_t RESERVED13[7];
__IO uint32_t NMISRC; /*!< Offset: 0x174 NMI source selection register (R/W) */
uint32_t RESERVED14[34];
__IO uint32_t STARTAPRP0; /*!< Offset: 0x200 Start logic edge control Register 0 (R/W) */
__IO uint32_t STARTERP0; /*!< Offset: 0x204 Start logic signal enable Register 0 (R/W) */
__O uint32_t STARTRSRP0CLR; /*!< Offset: 0x208 Start logic reset Register 0 ( /W) */
__I uint32_t STARTSRP0; /*!< Offset: 0x20C Start logic status Register 0 (R/) */
__IO uint32_t STARTAPRP1; /*!< Offset: 0x210 Start logic edge control Register 0 (R/W). (LPC11UXX only) */
__IO uint32_t STARTERP1; /*!< Offset: 0x214 Start logic signal enable Register 0 (R/W). (LPC11UXX only) */
__O uint32_t STARTRSRP1CLR; /*!< Offset: 0x218 Start logic reset Register 0 ( /W). (LPC11UXX only) */
__IO uint32_t STARTSRP1; /*!< Offset: 0x21C Start logic status Register 0 (R/W). (LPC11UXX only) */
uint32_t RESERVED17[4];
__IO uint32_t PDSLEEPCFG; /*!< Offset: 0x230 Power-down states in Deep-sleep mode (R/W) */
__IO uint32_t PDAWAKECFG; /*!< Offset: 0x234 Power-down states after wake-up (R/W) */
__IO uint32_t PDRUNCFG; /*!< Offset: 0x238 Power-down configuration Register (R/W) */
uint32_t RESERVED15[110];
__I uint32_t DEVICE_ID; /*!< Offset: 0x3F4 Device ID (R/ ) */
} LPC_SYSCON_TypeDef;
/*@}*/ /* end of group LPC11xx_SYSCON */
/*------------- Pin Connect Block (IOCON) --------------------------------*/
/** @addtogroup LPC11xx_IOCON LPC11xx I/O Configuration Block
@{
*/
typedef struct
{
__IO uint32_t PIO2_6; /*!< Offset: 0x000 I/O configuration for pin PIO2_6 (R/W) */
uint32_t RESERVED0[1];
__IO uint32_t PIO2_0; /*!< Offset: 0x008 I/O configuration for pin PIO2_0/DTR/SSEL1 (R/W) */
__IO uint32_t RESET_PIO0_0; /*!< Offset: 0x00C I/O configuration for pin RESET/PIO0_0 (R/W) */
__IO uint32_t PIO0_1; /*!< Offset: 0x010 I/O configuration for pin PIO0_1/CLKOUT/CT32B0_MAT2 (R/W) */
__IO uint32_t PIO1_8; /*!< Offset: 0x014 I/O configuration for pin PIO1_8/CT16B1_CAP0 (R/W) */
__IO uint32_t SSEL1_LOC; /*!< Offset: 0x018 IOCON SSEL1 location register (IOCON_SSEL1_LOC, address 0x4004 4018) */
__IO uint32_t PIO0_2; /*!< Offset: 0x01C I/O configuration for pin PIO0_2/SSEL0/CT16B0_CAP0 (R/W) */
__IO uint32_t PIO2_7; /*!< Offset: 0x020 I/O configuration for pin PIO2_7 (R/W) */
__IO uint32_t PIO2_8; /*!< Offset: 0x024 I/O configuration for pin PIO2_8 (R/W) */
__IO uint32_t PIO2_1; /*!< Offset: 0x028 I/O configuration for pin PIO2_1/nDSR/SCK1 (R/W) */
__IO uint32_t PIO0_3; /*!< Offset: 0x02C I/O configuration for pin PIO0_3 (R/W) */
__IO uint32_t PIO0_4; /*!< Offset: 0x030 I/O configuration for pin PIO0_4/SCL (R/W) */
__IO uint32_t PIO0_5; /*!< Offset: 0x034 I/O configuration for pin PIO0_5/SDA (R/W) */
__IO uint32_t PIO1_9; /*!< Offset: 0x038 I/O configuration for pin PIO1_9/CT16B1_MAT0 (R/W) */
__IO uint32_t PIO3_4; /*!< Offset: 0x03C I/O configuration for pin PIO3_4 (R/W) */
__IO uint32_t PIO2_4; /*!< Offset: 0x040 I/O configuration for pin PIO2_4 (R/W) */
__IO uint32_t PIO2_5; /*!< Offset: 0x044 I/O configuration for pin PIO2_5 (R/W) */
__IO uint32_t PIO3_5; /*!< Offset: 0x048 I/O configuration for pin PIO3_5 (R/W) */
__IO uint32_t PIO0_6; /*!< Offset: 0x04C I/O configuration for pin PIO0_6/SCK0 (R/W) */
__IO uint32_t PIO0_7; /*!< Offset: 0x050 I/O configuration for pin PIO0_7/nCTS (R/W) */
__IO uint32_t PIO2_9; /*!< Offset: 0x054 I/O configuration for pin PIO2_9 (R/W) */
__IO uint32_t PIO2_10; /*!< Offset: 0x058 I/O configuration for pin PIO2_10 (R/W) */
__IO uint32_t PIO2_2; /*!< Offset: 0x05C I/O configuration for pin PIO2_2/DCD/MISO1 (R/W) */
__IO uint32_t PIO0_8; /*!< Offset: 0x060 I/O configuration for pin PIO0_8/MISO0/CT16B0_MAT0 (R/W) */
__IO uint32_t PIO0_9; /*!< Offset: 0x064 I/O configuration for pin PIO0_9/MOSI0/CT16B0_MAT1 (R/W) */
__IO uint32_t SWCLK_PIO0_10; /*!< Offset: 0x068 I/O configuration for pin SWCLK/PIO0_10/SCK0/CT16B0_MAT2 (R/W) */
__IO uint32_t PIO1_10; /*!< Offset: 0x06C I/O configuration for pin PIO1_10/AD6/CT16B1_MAT1 (R/W) */
__IO uint32_t PIO2_11; /*!< Offset: 0x070 I/O configuration for pin PIO2_11/SCK0 (R/W) */
__IO uint32_t R_PIO0_11; /*!< Offset: 0x074 I/O configuration for pin TDI/PIO0_11/AD0/CT32B0_MAT3 (R/W) */
__IO uint32_t R_PIO1_0; /*!< Offset: 0x078 I/O configuration for pin TMS/PIO1_0/AD1/CT32B1_CAP0 (R/W) */
__IO uint32_t R_PIO1_1; /*!< Offset: 0x07C I/O configuration for pin TDO/PIO1_1/AD2/CT32B1_MAT0 (R/W) */
__IO uint32_t R_PIO1_2; /*!< Offset: 0x080 I/O configuration for pin nTRST/PIO1_2/AD3/CT32B1_MAT1 (R/W) */
__IO uint32_t PIO3_0; /*!< Offset: 0x084 I/O configuration for pin PIO3_0/nDTR (R/W) */
__IO uint32_t PIO3_1; /*!< Offset: 0x088 I/O configuration for pin PIO3_1/nDSR (R/W) */
__IO uint32_t PIO2_3; /*!< Offset: 0x08C I/O configuration for pin PIO2_3/RI/MOSI1 (R/W) */
__IO uint32_t SWDIO_PIO1_3; /*!< Offset: 0x090 I/O configuration for pin SWDIO/PIO1_3/AD4/CT32B1_MAT2 (R/W) */
__IO uint32_t PIO1_4; /*!< Offset: 0x094 I/O configuration for pin PIO1_4/AD5/CT32B1_MAT3 (R/W) */
__IO uint32_t PIO1_11; /*!< Offset: 0x098 I/O configuration for pin PIO1_11/AD7 (R/W) */
__IO uint32_t PIO3_2; /*!< Offset: 0x09C I/O configuration for pin PIO3_2/nDCD (R/W) */
__IO uint32_t PIO1_5; /*!< Offset: 0x0A0 I/O configuration for pin PIO1_5/nRTS/CT32B0_CAP0 (R/W) */
__IO uint32_t PIO1_6; /*!< Offset: 0x0A4 I/O configuration for pin PIO1_6/RXD/CT32B0_MAT0 (R/W) */
__IO uint32_t PIO1_7; /*!< Offset: 0x0A8 I/O configuration for pin PIO1_7/TXD/CT32B0_MAT1 (R/W) */
__IO uint32_t PIO3_3; /*!< Offset: 0x0AC I/O configuration for pin PIO3_3/nRI (R/W) */
__IO uint32_t SCK_LOC; /*!< Offset: 0x0B0 SCK pin location select Register (R/W) */
__IO uint32_t DSR_LOC; /*!< Offset: 0x0B4 DSR pin location select Register (R/W) */
__IO uint32_t DCD_LOC; /*!< Offset: 0x0B8 DCD pin location select Register (R/W) */
__IO uint32_t RI_LOC; /*!< Offset: 0x0BC RI pin location Register (R/W) */
__IO uint32_t CT16B0_CAP0_LOC; /*!< Offset: 0x0C0 IOCON CT16B0_CAP0 location register (IOCON_CT16B0_CAP0_LOC, address 0x4004 40C0) */
__IO uint32_t SCK1_LOC; /*!< Offset: 0x0C4 IOCON SCK1 location register (IOCON_SCK1_LOC, address 0x4004 40C4) */
__IO uint32_t MISO1_LOC; /*!< Offset: 0x0C8 IOCON MISO1 location register (IOCON_MISO1_LOC, address 0x4004 40C8) */
__IO uint32_t MOSI1_LOC; /*!< Offset: 0x0CC IOCON MOSI1 location register (IOCON_MOSI1_LOC, address 0x4004 40CC) */
__IO uint32_t CT32B0_CAP0_LOC; /*!< Offset: 0x0D0 IOCON CT32B0_CAP0 location register (IOCON_CT32B0_CAP0_LOC, address 0x4004 40D0) */
__IO uint32_t RXD_LOC; /*!< Offset: 0x0D4 IOCON RXD location register (IOCON_RXD_LOC, address 0x4004 40D4) */
} LPC_IOCON_TypeDef;
/*@}*/ /* end of group LPC11xx_IOCON */
/*------------- Power Management Unit (PMU) --------------------------*/
/** @addtogroup LPC11xx_PMU LPC11xx Power Management Unit
@{
*/
typedef struct
{
__IO uint32_t PCON; /*!< Offset: 0x000 Power control Register (R/W) */
__IO uint32_t GPREG0; /*!< Offset: 0x004 General purpose Register 0 (R/W) */
__IO uint32_t GPREG1; /*!< Offset: 0x008 General purpose Register 1 (R/W) */
__IO uint32_t GPREG2; /*!< Offset: 0x00C General purpose Register 2 (R/W) */
__IO uint32_t GPREG3; /*!< Offset: 0x010 General purpose Register 3 (R/W) */
__IO uint32_t GPREG4; /*!< Offset: 0x014 General purpose Register 4 (R/W) */
} LPC_PMU_TypeDef;
/*@}*/ /* end of group LPC11xx_PMU */
// ------------------------------------------------------------------------------------------------
// ----- FLASHCTRL -----
// ------------------------------------------------------------------------------------------------
typedef struct { /*!< (@ 0x4003C000) FLASHCTRL Structure */
__I uint32_t RESERVED0[4];
__IO uint32_t FLASHCFG; /*!< (@ 0x4003C010) Flash memory access time configuration register */
__I uint32_t RESERVED1[3];
__IO uint32_t FMSSTART; /*!< (@ 0x4003C020) Signature start address register */
__IO uint32_t FMSSTOP; /*!< (@ 0x4003C024) Signature stop-address register */
__I uint32_t RESERVED2[1];
__I uint32_t FMSW0; /*!< (@ 0x4003C02C) Word 0 [31:0] */
__I uint32_t FMSW1; /*!< (@ 0x4003C030) Word 1 [63:32] */
__I uint32_t FMSW2; /*!< (@ 0x4003C034) Word 2 [95:64] */
__I uint32_t FMSW3; /*!< (@ 0x4003C038) Word 3 [127:96] */
__I uint32_t RESERVED3[1001];
__I uint32_t FMSTAT; /*!< (@ 0x4003CFE0) Signature generation status register */
__I uint32_t RESERVED4[1];
__IO uint32_t FMSTATCLR; /*!< (@ 0x4003CFE8) Signature generation status clear register */
} LPC_FLASHCTRL_Type;
/*------------- General Purpose Input/Output (GPIO) --------------------------*/
/** @addtogroup LPC11xx_GPIO LPC11xx General Purpose Input/Output
@{
*/
typedef struct
{
union {
__IO uint32_t MASKED_ACCESS[4096]; /*!< Offset: 0x0000 to 0x3FFC Port data Register for pins PIOn_0 to PIOn_11 (R/W) */
struct {
uint32_t RESERVED0[4095];
__IO uint32_t DATA; /*!< Offset: 0x3FFC Port data Register (R/W) */
};
};
uint32_t RESERVED1[4096];
__IO uint32_t DIR; /*!< Offset: 0x8000 Data direction Register (R/W) */
__IO uint32_t IS; /*!< Offset: 0x8004 Interrupt sense Register (R/W) */
__IO uint32_t IBE; /*!< Offset: 0x8008 Interrupt both edges Register (R/W) */
__IO uint32_t IEV; /*!< Offset: 0x800C Interrupt event Register (R/W) */
__IO uint32_t IE; /*!< Offset: 0x8010 Interrupt mask Register (R/W) */
__I uint32_t RIS; /*!< Offset: 0x8014 Raw interrupt status Register (R/ ) */
__I uint32_t MIS; /*!< Offset: 0x8018 Masked interrupt status Register (R/ ) */
__O uint32_t IC; /*!< Offset: 0x801C Interrupt clear Register (/W) */
} LPC_GPIO_TypeDef;
/*@}*/ /* end of group LPC11xx_GPIO */
/*------------- Timer (TMR) --------------------------------------------------*/
/** @addtogroup LPC11xx_TMR LPC11xx 16/32-bit Counter/Timer
@{
*/
typedef struct
{
__IO uint32_t IR; /*!< Offset: 0x000 Interrupt Register (R/W) */
__IO uint32_t TCR; /*!< Offset: 0x004 Timer Control Register (R/W) */
__IO uint32_t TC; /*!< Offset: 0x008 Timer Counter Register (R/W) */
__IO uint32_t PR; /*!< Offset: 0x00C Prescale Register (R/W) */
__IO uint32_t PC; /*!< Offset: 0x010 Prescale Counter Register (R/W) */
__IO uint32_t MCR; /*!< Offset: 0x014 Match Control Register (R/W) */
union {
__IO uint32_t MR[4]; /*!< (@ 0x40014018) Match Register */
struct{
__IO uint32_t MR0; /*!< Offset: 0x018 Match Register 0 (R/W) */
__IO uint32_t MR1; /*!< Offset: 0x01C Match Register 1 (R/W) */
__IO uint32_t MR2; /*!< Offset: 0x020 Match Register 2 (R/W) */
__IO uint32_t MR3; /*!< Offset: 0x024 Match Register 3 (R/W) */
};
};
__IO uint32_t CCR; /*!< Offset: 0x028 Capture Control Register (R/W) */
__I uint32_t CR0; /*!< Offset: 0x02C Capture Register 0 (R/ ) */
__I uint32_t CR1; /*!< Offset: 0x030 Capture Register 1 (R/ ) */
uint32_t RESERVED1[2];
__IO uint32_t EMR; /*!< Offset: 0x03C External Match Register (R/W) */
uint32_t RESERVED2[12];
__IO uint32_t CTCR; /*!< Offset: 0x070 Count Control Register (R/W) */
__IO uint32_t PWMC; /*!< Offset: 0x074 PWM Control Register (R/W) */
} LPC_TMR_TypeDef;
/*@}*/ /* end of group LPC11xx_TMR */
/*------------- Universal Asynchronous Receiver Transmitter (UART) -----------*/
/** @addtogroup LPC11xx_UART LPC11xx Universal Asynchronous Receiver/Transmitter
@{
*/
typedef struct
{
union {
__I uint32_t RBR; /*!< Offset: 0x000 Receiver Buffer Register (R/ ) */
__O uint32_t THR; /*!< Offset: 0x000 Transmit Holding Register ( /W) */
__IO uint32_t DLL; /*!< Offset: 0x000 Divisor Latch LSB (R/W) */
};
union {
__IO uint32_t DLM; /*!< Offset: 0x004 Divisor Latch MSB (R/W) */
__IO uint32_t IER; /*!< Offset: 0x000 Interrupt Enable Register (R/W) */
};
union {
__I uint32_t IIR; /*!< Offset: 0x008 Interrupt ID Register (R/ ) */
__O uint32_t FCR; /*!< Offset: 0x008 FIFO Control Register ( /W) */
};
__IO uint32_t LCR; /*!< Offset: 0x00C Line Control Register (R/W) */
__IO uint32_t MCR; /*!< Offset: 0x010 Modem control Register (R/W) */
__I uint32_t LSR; /*!< Offset: 0x014 Line Status Register (R/ ) */
__I uint32_t MSR; /*!< Offset: 0x018 Modem status Register (R/ ) */
__IO uint32_t SCR; /*!< Offset: 0x01C Scratch Pad Register (R/W) */
__IO uint32_t ACR; /*!< Offset: 0x020 Auto-baud Control Register (R/W) */
uint32_t RESERVED0;
__IO uint32_t FDR; /*!< Offset: 0x028 Fractional Divider Register (R/W) */
uint32_t RESERVED1;
__IO uint32_t TER; /*!< Offset: 0x030 Transmit Enable Register (R/W) */
uint32_t RESERVED2[6];
__IO uint32_t RS485CTRL; /*!< Offset: 0x04C RS-485/EIA-485 Control Register (R/W) */
__IO uint32_t ADRMATCH; /*!< Offset: 0x050 RS-485/EIA-485 address match Register (R/W) */
__IO uint32_t RS485DLY; /*!< Offset: 0x054 RS-485/EIA-485 direction control delay Register (R/W) */
__I uint32_t FIFOLVL; /*!< Offset: 0x058 FIFO Level Register (R) */
} LPC_UART_TypeDef;
/*@}*/ /* end of group LPC11xx_UART */
/*------------- Synchronous Serial Communication (SSP) -----------------------*/
/** @addtogroup LPC11xx_SSP LPC11xx Synchronous Serial Port
@{
*/
typedef struct
{
__IO uint32_t CR0; /*!< Offset: 0x000 Control Register 0 (R/W) */
__IO uint32_t CR1; /*!< Offset: 0x004 Control Register 1 (R/W) */
__IO uint32_t DR; /*!< Offset: 0x008 Data Register (R/W) */
__I uint32_t SR; /*!< Offset: 0x00C Status Registe (R/ ) */
__IO uint32_t CPSR; /*!< Offset: 0x010 Clock Prescale Register (R/W) */
__IO uint32_t IMSC; /*!< Offset: 0x014 Interrupt Mask Set and Clear Register (R/W) */
__I uint32_t RIS; /*!< Offset: 0x018 Raw Interrupt Status Register (R/) */
__I uint32_t MIS; /*!< Offset: 0x01C Masked Interrupt Status Register (R/) */
__O uint32_t ICR; /*!< Offset: 0x020 SSPICR Interrupt Clear Register (/W) */
} LPC_SSP_TypeDef;
/*@}*/ /* end of group LPC11xx_SSP */
/*------------- Inter-Integrated Circuit (I2C) -------------------------------*/
/** @addtogroup LPC11xx_I2C LPC11xx I2C-Bus Interface
@{
*/
typedef struct
{
__IO uint32_t CONSET; /*!< Offset: 0x000 I2C Control Set Register (R/W) */
__I uint32_t STAT; /*!< Offset: 0x004 I2C Status Register (R/ ) */
__IO uint32_t DAT; /*!< Offset: 0x008 I2C Data Register (R/W) */
__IO uint32_t ADR0; /*!< Offset: 0x00C I2C Slave Address Register 0 (R/W) */
__IO uint32_t SCLH; /*!< Offset: 0x010 SCH Duty Cycle Register High Half Word (R/W) */
__IO uint32_t SCLL; /*!< Offset: 0x014 SCL Duty Cycle Register Low Half Word (R/W) */
__O uint32_t CONCLR; /*!< Offset: 0x018 I2C Control Clear Register ( /W) */
__IO uint32_t MMCTRL; /*!< Offset: 0x01C Monitor mode control register (R/W) */
__IO uint32_t ADR1; /*!< Offset: 0x020 I2C Slave Address Register 1 (R/W) */
__IO uint32_t ADR2; /*!< Offset: 0x024 I2C Slave Address Register 2 (R/W) */
__IO uint32_t ADR3; /*!< Offset: 0x028 I2C Slave Address Register 3 (R/W) */
__I uint32_t DATA_BUFFER; /*!< Offset: 0x02C Data buffer register ( /W) */
__IO uint32_t MASK0; /*!< Offset: 0x030 I2C Slave address mask register 0 (R/W) */
__IO uint32_t MASK1; /*!< Offset: 0x034 I2C Slave address mask register 1 (R/W) */
__IO uint32_t MASK2; /*!< Offset: 0x038 I2C Slave address mask register 2 (R/W) */
__IO uint32_t MASK3; /*!< Offset: 0x03C I2C Slave address mask register 3 (R/W) */
} LPC_I2C_TypeDef;
/*@}*/ /* end of group LPC11xx_I2C */
/*------------- Watchdog Timer (WDT) -----------------------------------------*/
/** @addtogroup LPC11xx_WDT LPC11xx WatchDog Timer
@{
*/
typedef struct
{
__IO uint32_t MOD; /*!< Offset: 0x000 Watchdog mode register (R/W) */
__IO uint32_t TC; /*!< Offset: 0x004 Watchdog timer constant register (R/W) */
__O uint32_t FEED; /*!< Offset: 0x008 Watchdog feed sequence register (W) */
__I uint32_t TV; /*!< Offset: 0x00C Watchdog timer value register (R) */
uint32_t RESERVED0;
__IO uint32_t WARNINT; /*!< Offset: 0x014 Watchdog timer warning int. register (R/W) */
__IO uint32_t WINDOW; /*!< Offset: 0x018 Watchdog timer window value register (R/W) */
} LPC_WDT_TypeDef;
/*@}*/ /* end of group LPC11xx_WDT */
/*------------- Analog-to-Digital Converter (ADC) ----------------------------*/
/** @addtogroup LPC11xx_ADC LPC11xx Analog-to-Digital Converter
@{
*/
typedef struct
{
__IO uint32_t CR; /*!< Offset: 0x000 A/D Control Register (R/W) */
__IO uint32_t GDR; /*!< Offset: 0x004 A/D Global Data Register (R/W) */
uint32_t RESERVED0;
__IO uint32_t INTEN; /*!< Offset: 0x00C A/D Interrupt Enable Register (R/W) */
__IO uint32_t DR[8]; /*!< Offset: 0x010-0x02C A/D Channel 0..7 Data Register (R/W) */
__I uint32_t STAT; /*!< Offset: 0x030 A/D Status Register (R/ ) */
} LPC_ADC_TypeDef;
/*@}*/ /* end of group LPC11xx_ADC */
/*------------- CAN Controller (CAN) ----------------------------*/
/** @addtogroup LPC11xx_CAN LPC11xx Controller Area Network(CAN)
@{
*/
typedef struct
{
__IO uint32_t CNTL; /* 0x000 */
__IO uint32_t STAT;
__IO uint32_t EC;
__IO uint32_t BT;
__IO uint32_t INT;
__IO uint32_t TEST;
__IO uint32_t BRPE;
uint32_t RESERVED0;
__IO uint32_t IF1_CMDREQ; /* 0x020 */
__IO uint32_t IF1_CMDMSK;
__IO uint32_t IF1_MSK1;
__IO uint32_t IF1_MSK2;
__IO uint32_t IF1_ARB1;
__IO uint32_t IF1_ARB2;
__IO uint32_t IF1_MCTRL;
__IO uint32_t IF1_DA1;
__IO uint32_t IF1_DA2;
__IO uint32_t IF1_DB1;
__IO uint32_t IF1_DB2;
uint32_t RESERVED1[13];
__IO uint32_t IF2_CMDREQ; /* 0x080 */
__IO uint32_t IF2_CMDMSK;
__IO uint32_t IF2_MSK1;
__IO uint32_t IF2_MSK2;
__IO uint32_t IF2_ARB1;
__IO uint32_t IF2_ARB2;
__IO uint32_t IF2_MCTRL;
__IO uint32_t IF2_DA1;
__IO uint32_t IF2_DA2;
__IO uint32_t IF2_DB1;
__IO uint32_t IF2_DB2;
uint32_t RESERVED2[21];
__I uint32_t TXREQ1; /* 0x100 */
__I uint32_t TXREQ2;
uint32_t RESERVED3[6];
__I uint32_t ND1; /* 0x120 */
__I uint32_t ND2;
uint32_t RESERVED4[6];
__I uint32_t IR1; /* 0x140 */
__I uint32_t IR2;
uint32_t RESERVED5[6];
__I uint32_t MSGV1; /* 0x160 */
__I uint32_t MSGV2;
uint32_t RESERVED6[6];
__IO uint32_t CLKDIV; /* 0x180 */
} LPC_CAN_TypeDef;
/*@}*/ /* end of group LPC11xx_CAN */
#if defined ( __CC_ARM )
#pragma no_anon_unions
#endif
/******************************************************************************/
/* Peripheral memory map */
/******************************************************************************/
/* Base addresses */
#define LPC_FLASH_BASE (0x00000000UL)
#define LPC_RAM_BASE (0x10000000UL)
#define LPC_APB0_BASE (0x40000000UL)
#define LPC_AHB_BASE (0x50000000UL)
/* APB0 peripherals */
#define LPC_I2C_BASE (LPC_APB0_BASE + 0x00000)
#define LPC_WDT_BASE (LPC_APB0_BASE + 0x04000)
#define LPC_UART_BASE (LPC_APB0_BASE + 0x08000)
#define LPC_CT16B0_BASE (LPC_APB0_BASE + 0x0C000)
#define LPC_CT16B1_BASE (LPC_APB0_BASE + 0x10000)
#define LPC_CT32B0_BASE (LPC_APB0_BASE + 0x14000)
#define LPC_CT32B1_BASE (LPC_APB0_BASE + 0x18000)
#define LPC_ADC_BASE (LPC_APB0_BASE + 0x1C000)
#define LPC_PMU_BASE (LPC_APB0_BASE + 0x38000)
#define LPC_FLASHCTRL_BASE (LPC_APB0_BASE + 0x3C000)
#define LPC_SSP0_BASE (LPC_APB0_BASE + 0x40000)
#define LPC_IOCON_BASE (LPC_APB0_BASE + 0x44000)
#define LPC_SYSCON_BASE (LPC_APB0_BASE + 0x48000)
#define LPC_CAN_BASE (LPC_APB0_BASE + 0x50000)
#define LPC_SSP1_BASE (LPC_APB0_BASE + 0x58000)
/* AHB peripherals */
#define LPC_GPIO_BASE (LPC_AHB_BASE + 0x00000)
#define LPC_GPIO0_BASE (LPC_AHB_BASE + 0x00000)
#define LPC_GPIO1_BASE (LPC_AHB_BASE + 0x10000)
#define LPC_GPIO2_BASE (LPC_AHB_BASE + 0x20000)
#define LPC_GPIO3_BASE (LPC_AHB_BASE + 0x30000)
/******************************************************************************/
/* Peripheral declaration */
/******************************************************************************/
#define LPC_I2C ((LPC_I2C_TypeDef *) LPC_I2C_BASE )
#define LPC_WDT ((LPC_WDT_TypeDef *) LPC_WDT_BASE )
#define LPC_UART ((LPC_UART_TypeDef *) LPC_UART_BASE )
#define LPC_TMR16B0 ((LPC_TMR_TypeDef *) LPC_CT16B0_BASE)
#define LPC_TMR16B1 ((LPC_TMR_TypeDef *) LPC_CT16B1_BASE)
#define LPC_TMR32B0 ((LPC_TMR_TypeDef *) LPC_CT32B0_BASE)
#define LPC_TMR32B1 ((LPC_TMR_TypeDef *) LPC_CT32B1_BASE)
#define LPC_ADC ((LPC_ADC_TypeDef *) LPC_ADC_BASE )
#define LPC_PMU ((LPC_PMU_TypeDef *) LPC_PMU_BASE )
#define LPC_FLASHCTRL ((LPC_FLASHCTRL_Type *) LPC_FLASHCTRL_BASE)
#define LPC_SSP0 ((LPC_SSP_TypeDef *) LPC_SSP0_BASE )
#define LPC_SSP1 ((LPC_SSP_TypeDef *) LPC_SSP1_BASE )
#define LPC_CAN ((LPC_CAN_TypeDef *) LPC_CAN_BASE )
#define LPC_IOCON ((LPC_IOCON_TypeDef *) LPC_IOCON_BASE )
#define LPC_SYSCON ((LPC_SYSCON_TypeDef *) LPC_SYSCON_BASE)
#define LPC_GPIO0 ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE )
#define LPC_GPIO1 ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE )
#define LPC_GPIO2 ((LPC_GPIO_TypeDef *) LPC_GPIO2_BASE )
#define LPC_GPIO3 ((LPC_GPIO_TypeDef *) LPC_GPIO3_BASE )
#ifdef __cplusplus
}
#endif
#endif /* __LPC11xx_H__ */

View File

@ -0,0 +1,13 @@
/* mbed Microcontroller Library - CMSIS
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* A generic CMSIS include header, pulling in LPC11U24 specifics
*/
#ifndef MBED_CMSIS_H
#define MBED_CMSIS_H
#include "LPC11xx.h"
#include "cmsis_nvic.h"
#endif

View File

@ -0,0 +1,58 @@
/* mbed Microcontroller Library - cmsis_nvic for LPC11U24
* Copyright (c) 2011 ARM Limited. All rights reserved.
*
* CMSIS-style functionality to support dynamic vectors
*/
#include "cmsis_nvic.h"
/* In the M0, there is no VTOR. In the LPC range such as the LPC11U,
* whilst the vector table may only be something like 48 entries (192 bytes, 0xC0),
* the SYSMEMREMAP register actually remaps the memory from 0x10000000-0x100001FF
* to adress 0x0-0x1FF. In this case, RAM can be addressed at both 0x10000000 and 0x0
*
* If we just copy the vectors to RAM and switch the SYSMEMMAP, any accesses to FLASH
* above the vector table before 0x200 will actually go to RAM. So we need to provide
* a solution where the compiler gets the right results based on the memory map
*
* Option 1 - We allocate and copy 0x200 of RAM rather than just the table
* - const data and instructions before 0x200 will be copied to and fetched/exec from RAM
* - RAM overhead: 0x200 - 0xC0 = 320 bytes, FLASH overhead: 0
*
* Option 2 - We pad the flash to 0x200 to ensure the compiler doesn't allocate anything there
* - No flash accesses will go to ram, as there will be nothing there
* - RAM only needs to be allocated for the vectors, as all other ram addresses are normal
* - RAM overhead: 0, FLASH overhead: 320 bytes
*
* Option 2 is the one to go for, as RAM is the most valuable resource
*/
#define NVIC_NUM_VECTORS (16 + 32) // CORE + MCU Peripherals
#define NVIC_RAM_VECTOR_ADDRESS (0x10000000) // Vectors positioned at start of RAM
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
int i;
// Space for dynamic vectors, initialised to allocate in R/W
static volatile uint32_t* vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
// Copy and switch to dynamic vectors if first time called
if((LPC_SYSCON->SYSMEMREMAP & 0x3) != 0x1) {
uint32_t *old_vectors = (uint32_t *)0; // FLASH vectors are at 0x0
for(i = 0; i < NVIC_NUM_VECTORS; i++) {
vectors[i] = old_vectors[i];
}
LPC_SYSCON->SYSMEMREMAP = 0x1; // Remaps 0x0-0x1FF FLASH block to RAM block
}
// Set the vector
vectors[IRQn + 16] = vector;
}
uint32_t NVIC_GetVector(IRQn_Type IRQn) {
// We can always read vectors at 0x0, as the addresses are remapped
uint32_t *vectors = (uint32_t*)0;
// Return the vector
return vectors[IRQn + 16];
}

View File

@ -0,0 +1,23 @@
/* mbed Microcontroller Library - cmsis_nvic
* Copyright (c) 2009-2011 ARM Limited. All rights reserved.
*
* CMSIS-style functionality to support dynamic vectors
*/
#ifndef MBED_CMSIS_NVIC_H
#define MBED_CMSIS_NVIC_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector);
uint32_t NVIC_GetVector(IRQn_Type IRQn);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,279 @@
/**************************************************************************//**
* @file core_cm0.c
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Source File
* @version V2.00
* @date 10. September 2010
*
* @note
* Copyright (C) 2009-2010 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#include <stdint.h>
/* define compiler specific symbols */
#if defined ( __CC_ARM )
#define __ASM __asm /*!< asm keyword for ARM Compiler */
#define __INLINE __inline /*!< inline keyword for ARM Compiler */
#elif defined ( __ICCARM__ )
#define __ASM __asm /*!< asm keyword for IAR Compiler */
#define __INLINE inline /*!< inline keyword for IAR Compiler. Only avaiable in High optimization mode! */
#elif defined ( __GNUC__ )
#define __ASM __asm /*!< asm keyword for GNU Compiler */
#define __INLINE inline /*!< inline keyword for GNU Compiler */
#elif defined ( __TASKING__ )
#define __ASM __asm /*!< asm keyword for TASKING Compiler */
#define __INLINE inline /*!< inline keyword for TASKING Compiler */
#endif
/* ########################## Core Instruction Access ######################### */
#if defined ( __CC_ARM ) /*------------------ RealView Compiler ----------------*/
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
#if (__ARMCC_VERSION < 400677)
__ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
#if (__ARMCC_VERSION < 400677)
__ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#if (__ARMCC_VERSION < 400000)
__ASM void __CLREX(void)
{
clrex
}
#endif /* __ARMCC_VERSION */
#elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
/* obsolete */
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* obsolete */
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
/* obsolete */
#endif
/* ########################### Core Function Access ########################### */
#if defined ( __CC_ARM ) /*------------------ RealView Compiler ----------------*/
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_CONTROL(void)
{
mrs r0, control
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
#if (__ARMCC_VERSION < 400000)
__ASM void __set_CONTROL(uint32_t control)
{
msr control, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get ISPR Register
This function returns the content of the ISPR Register.
\return ISPR Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_IPSR(void)
{
mrs r0, ipsr
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_APSR(void)
{
mrs r0, apsr
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_xPSR(void)
{
mrs r0, xpsr
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_PSP(void)
{
mrs r0, psp
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
#if (__ARMCC_VERSION < 400000)
__ASM void __set_PSP(uint32_t topOfProcStack)
{
msr psp, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_MSP(void)
{
mrs r0, msp
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
#if (__ARMCC_VERSION < 400000)
__ASM void __set_MSP(uint32_t mainStackPointer)
{
msr msp, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
#if (__ARMCC_VERSION < 400000)
__ASM uint32_t __get_PRIMASK(void)
{
mrs r0, primask
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
#if (__ARMCC_VERSION < 400000)
__ASM void __set_PRIMASK(uint32_t priMask)
{
msr primask, r0
bx lr
}
#endif /* __ARMCC_VERSION */
#elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
/* obsolete */
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* obsolete */
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
/* obsolete */
#endif

View File

@ -0,0 +1,667 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V3.02
* @date 05. November 2012
*
* @note
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
/** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/** \ingroup Cortex_M0
@{
*/
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (0x03) /*!< [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (0x01) /*!< [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16) | \
__CM0_CMSIS_VERSION_SUB ) /*!< CMSIS HAL version number */
#define __CORTEX_M (0x00) /*!< Cortex-M Core */
#if defined ( __CC_ARM )
#define __ASM __asm /*!< asm keyword for ARM Compiler */
#define __INLINE __inline /*!< inline keyword for ARM Compiler */
#define __STATIC_INLINE static __inline
#elif defined ( __ICCARM__ )
#define __ASM __asm /*!< asm keyword for IAR Compiler */
#define __INLINE inline /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
#define __STATIC_INLINE static inline
#elif defined ( __GNUC__ )
#define __ASM __asm /*!< asm keyword for GNU Compiler */
#define __INLINE inline /*!< inline keyword for GNU Compiler */
#define __STATIC_INLINE static inline
#elif defined ( __TASKING__ )
#define __ASM __asm /*!< asm keyword for TASKING Compiler */
#define __INLINE inline /*!< inline keyword for TASKING Compiler */
#define __STATIC_INLINE static inline
#endif
/** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all
*/
#define __FPU_USED 0
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include <stdint.h> /* standard types definitions */
#include <core_cmInstr.h> /* Core Instruction Access */
#include <core_cmFunc.h> /* Core Function Access */
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/** \defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/** \ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/** \brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
#if (__CORTEX_M != 0x04)
uint32_t _reserved0:27; /*!< bit: 0..26 Reserved */
#else
uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */
#endif
uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/** \brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/** \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
#if (__CORTEX_M != 0x04)
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
#else
uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */
#endif
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */
uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/** \brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t FPCA:1; /*!< bit: 2 FP extension active flag */
uint32_t _reserved0:29; /*!< bit: 3..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/*@} end of group CMSIS_CORE */
/** \ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IO uint32_t ISER[1]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31];
__IO uint32_t ICER[1]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31];
__IO uint32_t ISPR[1]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31];
__IO uint32_t ICPR[1]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31];
uint32_t RESERVED4[64];
__IO uint32_t IP[8]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/** \ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/** \brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__I uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IO uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IO uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IO uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IO uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IO uint32_t SHP[2]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IO uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24 /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20 /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16 /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4 /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0 /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL << SCB_CPUID_REVISION_Pos) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31 /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28 /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27 /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26 /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25 /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23 /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22 /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12 /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0 /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL << SCB_ICSR_VECTACTIVE_Pos) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16 /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16 /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15 /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2 /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1 /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4 /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2 /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1 /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9 /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3 /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15 /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/** \ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/** \brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IO uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IO uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IO uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__I uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16 /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2 /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1 /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0 /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL << SysTick_CTRL_ENABLE_Pos) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0 /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0 /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31 /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30 /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0 /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/** \ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR)
are only accessible over DAP and not via processor. Therefore
they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/** \ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Cortex-M0 Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
/* Interrupt Priorities are WORD accessible only under ARMv6M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( (((uint32_t)(IRQn) ) & 0x03) * 8 )
#define _SHP_IDX(IRQn) ( ((((uint32_t)(IRQn) & 0x0F)-8) >> 2) )
#define _IP_IDX(IRQn) ( ((uint32_t)(IRQn) >> 2) )
/** \brief Enable External Interrupt
The function enables a device-specific interrupt in the NVIC interrupt controller.
\param [in] IRQn External interrupt number. Value cannot be negative.
*/
__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn)
{
NVIC->ISER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
}
/** \brief Disable External Interrupt
The function disables a device-specific interrupt in the NVIC interrupt controller.
\param [in] IRQn External interrupt number. Value cannot be negative.
*/
__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn)
{
NVIC->ICER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
}
/** \brief Get Pending Interrupt
The function reads the pending register in the NVIC and returns the pending bit
for the specified interrupt.
\param [in] IRQn Interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
*/
__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
return((uint32_t) ((NVIC->ISPR[0] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0));
}
/** \brief Set Pending Interrupt
The function sets the pending bit of an external interrupt.
\param [in] IRQn Interrupt number. Value cannot be negative.
*/
__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
NVIC->ISPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
}
/** \brief Clear Pending Interrupt
The function clears the pending bit of an external interrupt.
\param [in] IRQn External interrupt number. Value cannot be negative.
*/
__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
NVIC->ICPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* Clear pending interrupt */
}
/** \brief Set Interrupt Priority
The function sets the priority of an interrupt.
\note The priority cannot be set for every core interrupt.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
*/
__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if(IRQn < 0) {
SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
else {
NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
}
/** \brief Get Interrupt Priority
The function reads the priority of an interrupt. The interrupt
number can be positive to specify an external (device specific)
interrupt, or negative to specify an internal (core) interrupt.
\param [in] IRQn Interrupt number.
\return Interrupt Priority. Value is aligned automatically to the implemented
priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn)
{
if(IRQn < 0) {
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & 0xFF) >> (8 - __NVIC_PRIO_BITS))); } /* get priority for Cortex-M0 system interrupts */
else {
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & 0xFF) >> (8 - __NVIC_PRIO_BITS))); } /* get priority for device specific interrupts */
}
/** \brief System Reset
The function initiates a system reset request to reset the MCU.
*/
__STATIC_INLINE void NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
while(1); /* wait until reset */
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ################################## SysTick function ############################################ */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if (__Vendor_SysTickConfig == 0)
/** \brief System Tick Configuration
The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */
SysTick->LOAD = ticks - 1; /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Systick Interrupt */
SysTick->VAL = 0; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,616 @@
/**************************************************************************//**
* @file core_cmFunc.h
* @brief CMSIS Cortex-M Core Function Access Header File
* @version V3.02
* @date 24. May 2012
*
* @note
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMFUNC_H
#define __CORE_CMFUNC_H
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/* intrinsic void __enable_irq(); */
/* intrinsic void __disable_irq(); */
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xff);
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1);
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief Enable IRQ Interrupts
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i" : : : "memory");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i" : : : "memory");
}
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) );
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
return(result);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
return(result);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f" : : : "memory");
}
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f" : : : "memory");
}
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
return(result);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
{
__ASM volatile ("MSR basepri, %0" : : "r" (value) );
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
uint32_t result;
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
return(result);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) );
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all instrinsics,
* Including the CMSIS ones.
*/
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CMFUNC_H */

View File

@ -0,0 +1,643 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V3.03
* @date 29. August 2012
*
* @note
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#endif
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
{
__ASM volatile ("isb");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
{
__ASM volatile ("dsb");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
{
__ASM volatile ("dmb");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
{
uint32_t result;
__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
__ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );
return(op1);
}
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint8_t result;
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint16_t result;
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
{
__ASM volatile ("clrex");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
{
uint8_t result;
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H */

View File

@ -0,0 +1,367 @@
/**************************************************************************//**
* @file system_LPC11xx.c
* @brief CMSIS Cortex-M0 Device Peripheral Access Layer Source File
* for the NXP LPC11xx/LPC11Cxx Devices
* @version V1.10
* @date 24. November 2010
*
* @note
* Copyright (C) 2009-2010 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#include <stdint.h>
#include "LPC11xx.h"
/*
//-------- <<< Use Configuration Wizard in Context Menu >>> ------------------
*/
/*--------------------- Clock Configuration ----------------------------------
//
// <e> Clock Configuration
// <h> System Oscillator Control Register (SYSOSCCTRL)
// <o1.0> BYPASS: System Oscillator Bypass Enable
// <i> If enabled then PLL input (sys_osc_clk) is fed
// <i> directly from XTALIN and XTALOUT pins.
// <o1.9> FREQRANGE: System Oscillator Frequency Range
// <i> Determines frequency range for Low-power oscillator.
// <0=> 1 - 20 MHz
// <1=> 15 - 25 MHz
// </h>
//
// <h> Watchdog Oscillator Control Register (WDTOSCCTRL)
// <o2.0..4> DIVSEL: Select Divider for Fclkana
// <i> wdt_osc_clk = Fclkana/ (2 × (1 + DIVSEL))
// <0-31>
// <o2.5..8> FREQSEL: Select Watchdog Oscillator Analog Output Frequency (Fclkana)
// <0=> Undefined
// <1=> 0.5 MHz
// <2=> 0.8 MHz
// <3=> 1.1 MHz
// <4=> 1.4 MHz
// <5=> 1.6 MHz
// <6=> 1.8 MHz
// <7=> 2.0 MHz
// <8=> 2.2 MHz
// <9=> 2.4 MHz
// <10=> 2.6 MHz
// <11=> 2.7 MHz
// <12=> 2.9 MHz
// <13=> 3.1 MHz
// <14=> 3.2 MHz
// <15=> 3.4 MHz
// </h>
//
// <h> System PLL Control Register (SYSPLLCTRL)
// <i> F_clkout = M * F_clkin = F_CCO / (2 * P)
// <i> F_clkin must be in the range of 10 MHz to 25 MHz
// <i> F_CCO must be in the range of 156 MHz to 320 MHz
// <o3.0..4> MSEL: Feedback Divider Selection
// <i> M = MSEL + 1
// <0-31>
// <o3.5..6> PSEL: Post Divider Selection
// <0=> P = 1
// <1=> P = 2
// <2=> P = 4
// <3=> P = 8
// </h>
//
// <h> System PLL Clock Source Select Register (SYSPLLCLKSEL)
// <o4.0..1> SEL: System PLL Clock Source
// <0=> IRC Oscillator
// <1=> System Oscillator
// <2=> Reserved
// <3=> Reserved
// </h>
//
// <h> Main Clock Source Select Register (MAINCLKSEL)
// <o5.0..1> SEL: Clock Source for Main Clock
// <0=> IRC Oscillator
// <1=> Input Clock to System PLL
// <2=> WDT Oscillator
// <3=> System PLL Clock Out
// </h>
//
// <h> System AHB Clock Divider Register (SYSAHBCLKDIV)
// <o6.0..7> DIV: System AHB Clock Divider
// <i> Divides main clock to provide system clock to core, memories, and peripherals.
// <i> 0 = is disabled
// <0-255>
// </h>
// </e>
*/
#define CLOCK_SETUP 1
#define SYSOSCCTRL_Val 0x00000000 // Reset: 0x000
#define WDTOSCCTRL_Val 0x00000000 // Reset: 0x000
#define SYSPLLCTRL_Val 0x00000023 // Reset: 0x000
#define SYSPLLCLKSEL_Val 0x00000001 // Reset: 0x000
#define MAINCLKSEL_Val 0x00000000 // Reset: 0x000
#define SYSAHBCLKDIV_Val 0x00000001 // Reset: 0x001
/*
//-------- <<< end of configuration section >>> ------------------------------
*/
/*----------------------------------------------------------------------------
Check the register settings
*----------------------------------------------------------------------------*/
#define CHECK_RANGE(val, min, max) ((val < min) || (val > max))
#define CHECK_RSVD(val, mask) (val & mask)
/* Clock Configuration -------------------------------------------------------*/
#if (CHECK_RSVD((SYSOSCCTRL_Val), ~0x00000003))
#error "SYSOSCCTRL: Invalid values of reserved bits!"
#endif
#if (CHECK_RSVD((WDTOSCCTRL_Val), ~0x000001FF))
#error "WDTOSCCTRL: Invalid values of reserved bits!"
#endif
#if (CHECK_RANGE((SYSPLLCLKSEL_Val), 0, 2))
#error "SYSPLLCLKSEL: Value out of range!"
#endif
#if (CHECK_RSVD((SYSPLLCTRL_Val), ~0x000001FF))
#error "SYSPLLCTRL: Invalid values of reserved bits!"
#endif
#if (CHECK_RSVD((MAINCLKSEL_Val), ~0x00000003))
#error "MAINCLKSEL: Invalid values of reserved bits!"
#endif
#if (CHECK_RANGE((SYSAHBCLKDIV_Val), 0, 255))
#error "SYSAHBCLKDIV: Value out of range!"
#endif
/*----------------------------------------------------------------------------
DEFINES
*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
Define clocks
*----------------------------------------------------------------------------*/
#define __XTAL (12000000UL) /* Oscillator frequency */
#define __SYS_OSC_CLK ( __XTAL) /* Main oscillator frequency */
#define __IRC_OSC_CLK (12000000UL) /* Internal RC oscillator frequency */
#define __FREQSEL ((WDTOSCCTRL_Val >> 5) & 0x0F)
#define __DIVSEL (((WDTOSCCTRL_Val & 0x1F) << 1) + 2)
#if (CLOCK_SETUP) /* Clock Setup */
#if (__FREQSEL == 0)
#define __WDT_OSC_CLK ( 0) /* undefined */
#elif (__FREQSEL == 1)
#define __WDT_OSC_CLK ( 500000 / __DIVSEL)
#elif (__FREQSEL == 2)
#define __WDT_OSC_CLK ( 800000 / __DIVSEL)
#elif (__FREQSEL == 3)
#define __WDT_OSC_CLK (1100000 / __DIVSEL)
#elif (__FREQSEL == 4)
#define __WDT_OSC_CLK (1400000 / __DIVSEL)
#elif (__FREQSEL == 5)
#define __WDT_OSC_CLK (1600000 / __DIVSEL)
#elif (__FREQSEL == 6)
#define __WDT_OSC_CLK (1800000 / __DIVSEL)
#elif (__FREQSEL == 7)
#define __WDT_OSC_CLK (2000000 / __DIVSEL)
#elif (__FREQSEL == 8)
#define __WDT_OSC_CLK (2200000 / __DIVSEL)
#elif (__FREQSEL == 9)
#define __WDT_OSC_CLK (2400000 / __DIVSEL)
#elif (__FREQSEL == 10)
#define __WDT_OSC_CLK (2600000 / __DIVSEL)
#elif (__FREQSEL == 11)
#define __WDT_OSC_CLK (2700000 / __DIVSEL)
#elif (__FREQSEL == 12)
#define __WDT_OSC_CLK (2900000 / __DIVSEL)
#elif (__FREQSEL == 13)
#define __WDT_OSC_CLK (3100000 / __DIVSEL)
#elif (__FREQSEL == 14)
#define __WDT_OSC_CLK (3200000 / __DIVSEL)
#else
#define __WDT_OSC_CLK (3400000 / __DIVSEL)
#endif
/* sys_pllclkin calculation */
#if ((SYSPLLCLKSEL_Val & 0x03) == 0)
#define __SYS_PLLCLKIN (__IRC_OSC_CLK)
#elif ((SYSPLLCLKSEL_Val & 0x03) == 1)
#define __SYS_PLLCLKIN (__SYS_OSC_CLK)
#else
#define __SYS_PLLCLKIN (0)
#endif
#define __SYS_PLLCLKOUT (__SYS_PLLCLKIN * ((SYSPLLCTRL_Val & 0x01F) + 1))
/* main clock calculation */
#if ((MAINCLKSEL_Val & 0x03) == 0)
#define __MAIN_CLOCK (__IRC_OSC_CLK)
#elif ((MAINCLKSEL_Val & 0x03) == 1)
#define __MAIN_CLOCK (__SYS_PLLCLKIN)
#elif ((MAINCLKSEL_Val & 0x03) == 2)
#if (__FREQSEL == 0)
#error "MAINCLKSEL: WDT Oscillator selected but FREQSEL is undefined!"
#else
#define __MAIN_CLOCK (__WDT_OSC_CLK)
#endif
#elif ((MAINCLKSEL_Val & 0x03) == 3)
#define __MAIN_CLOCK (__SYS_PLLCLKOUT)
#else
#define __MAIN_CLOCK (0)
#endif
#define __SYSTEM_CLOCK (__MAIN_CLOCK / SYSAHBCLKDIV_Val)
#else
#define __SYSTEM_CLOCK (__IRC_OSC_CLK)
#endif // CLOCK_SETUP
/*----------------------------------------------------------------------------
Clock Variable definitions
*----------------------------------------------------------------------------*/
uint32_t SystemCoreClock = __SYSTEM_CLOCK;/*!< System Clock Frequency (Core Clock)*/
/*----------------------------------------------------------------------------
Clock functions
*----------------------------------------------------------------------------*/
void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */
{
uint32_t wdt_osc = 0;
/* Determine clock frequency according to clock register values */
switch ((LPC_SYSCON->WDTOSCCTRL >> 5) & 0x0F) {
case 0: wdt_osc = 0; break;
case 1: wdt_osc = 500000; break;
case 2: wdt_osc = 800000; break;
case 3: wdt_osc = 1100000; break;
case 4: wdt_osc = 1400000; break;
case 5: wdt_osc = 1600000; break;
case 6: wdt_osc = 1800000; break;
case 7: wdt_osc = 2000000; break;
case 8: wdt_osc = 2200000; break;
case 9: wdt_osc = 2400000; break;
case 10: wdt_osc = 2600000; break;
case 11: wdt_osc = 2700000; break;
case 12: wdt_osc = 2900000; break;
case 13: wdt_osc = 3100000; break;
case 14: wdt_osc = 3200000; break;
case 15: wdt_osc = 3400000; break;
}
wdt_osc /= ((LPC_SYSCON->WDTOSCCTRL & 0x1F) << 1) + 2;
switch (LPC_SYSCON->MAINCLKSEL & 0x03) {
case 0: /* Internal RC oscillator */
SystemCoreClock = __IRC_OSC_CLK;
break;
case 1: /* Input Clock to System PLL */
switch (LPC_SYSCON->SYSPLLCLKSEL & 0x03) {
case 0: /* Internal RC oscillator */
SystemCoreClock = __IRC_OSC_CLK;
break;
case 1: /* System oscillator */
SystemCoreClock = __SYS_OSC_CLK;
break;
case 2: /* Reserved */
case 3: /* Reserved */
SystemCoreClock = 0;
break;
}
break;
case 2: /* WDT Oscillator */
SystemCoreClock = wdt_osc;
break;
case 3: /* System PLL Clock Out */
switch (LPC_SYSCON->SYSPLLCLKSEL & 0x03) {
case 0: /* Internal RC oscillator */
if (LPC_SYSCON->SYSPLLCTRL & 0x180) {
SystemCoreClock = __IRC_OSC_CLK;
} else {
SystemCoreClock = __IRC_OSC_CLK * ((LPC_SYSCON->SYSPLLCTRL & 0x01F) + 1);
}
break;
case 1: /* System oscillator */
if (LPC_SYSCON->SYSPLLCTRL & 0x180) {
SystemCoreClock = __SYS_OSC_CLK;
} else {
SystemCoreClock = __SYS_OSC_CLK * ((LPC_SYSCON->SYSPLLCTRL & 0x01F) + 1);
}
break;
case 2: /* Reserved */
case 3: /* Reserved */
SystemCoreClock = 0;
break;
}
break;
}
SystemCoreClock /= LPC_SYSCON->SYSAHBCLKDIV;
}
/**
* Initialize the system
*
* @param none
* @return none
*
* @brief Setup the microcontroller system.
* Initialize the System.
*/
void SystemInit (void) {
volatile uint32_t i;
#if (CLOCK_SETUP) /* Clock Setup */
#if ((SYSPLLCLKSEL_Val & 0x03) == 1)
LPC_SYSCON->PDRUNCFG &= ~(1 << 5); /* Power-up System Osc */
LPC_SYSCON->SYSOSCCTRL = SYSOSCCTRL_Val;
for (i = 0; i < 200; i++) __NOP();
#endif
LPC_SYSCON->SYSPLLCLKSEL = SYSPLLCLKSEL_Val; /* Select PLL Input */
LPC_SYSCON->SYSPLLCLKUEN = 0x01; /* Update Clock Source */
LPC_SYSCON->SYSPLLCLKUEN = 0x00; /* Toggle Update Register */
LPC_SYSCON->SYSPLLCLKUEN = 0x01;
while (!(LPC_SYSCON->SYSPLLCLKUEN & 0x01)); /* Wait Until Updated */
#if ((MAINCLKSEL_Val & 0x03) == 3) /* Main Clock is PLL Out */
LPC_SYSCON->SYSPLLCTRL = SYSPLLCTRL_Val;
LPC_SYSCON->PDRUNCFG &= ~(1 << 7); /* Power-up SYSPLL */
while (!(LPC_SYSCON->SYSPLLSTAT & 0x01)); /* Wait Until PLL Locked */
#endif
#if (((MAINCLKSEL_Val & 0x03) == 2) )
LPC_SYSCON->WDTOSCCTRL = WDTOSCCTRL_Val;
LPC_SYSCON->PDRUNCFG &= ~(1 << 6); /* Power-up WDT Clock */
for (i = 0; i < 200; i++) __NOP();
#endif
LPC_SYSCON->MAINCLKSEL = MAINCLKSEL_Val; /* Select PLL Clock Output */
LPC_SYSCON->MAINCLKUEN = 0x01; /* Update MCLK Clock Source */
LPC_SYSCON->MAINCLKUEN = 0x00; /* Toggle Update Register */
LPC_SYSCON->MAINCLKUEN = 0x01;
while (!(LPC_SYSCON->MAINCLKUEN & 0x01)); /* Wait Until Updated */
LPC_SYSCON->SYSAHBCLKDIV = SYSAHBCLKDIV_Val;
#endif
/* System clock to the IOCON needs to be enabled or
most of the I/O related peripherals won't work. */
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<16);
}

View File

@ -0,0 +1,64 @@
/**************************************************************************//**
* @file system_LPC11xx.h
* @brief CMSIS Cortex-M0 Device Peripheral Access Layer Header File
* for the NXP LPC11xx/LPC11Cxx Device Series
* @version V1.10
* @date 24. November 2010
*
* @note
* Copyright (C) 2009-2010 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __SYSTEM_LPC11xx_H
#define __SYSTEM_LPC11xx_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
/**
* Initialize the system
*
* @param none
* @return none
*
* @brief Setup the microcontroller system.
* Initialize the System and update the SystemCoreClock variable.
*/
extern void SystemInit (void);
/**
* Update SystemCoreClock variable
*
* @param none
* @return none
*
* @brief Updates the SystemCoreClock with current core Clock
* retrieved from cpu registers.
*/
extern void SystemCoreClockUpdate (void);
#ifdef __cplusplus
}
#endif
#endif /* __SYSTEM_LPC11xx_H */

View File

@ -0,0 +1,14 @@
LR_IROM1 0x00000000 0x8000 { ; load region size_region (32k)
ER_IROM1 0x00000000 0x8000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
; 8_byte_aligned(48 vect * 4 bytes) = 8_byte_aligned(0xC0) = 0xC0
; 8KB - 0xC0 = 0xF40
RW_IRAM1 0x100000C0 0xF40 {
.ANY (+RW +ZI)
}
}

View File

@ -0,0 +1,234 @@
;/**************************************************************************//**
; * @file startup_LPC11xx.s
; * @brief CMSIS Cortex-M0 Core Device Startup File
; * for the NXP LPC11xx/LPC11Cxx Device Series
; * @version V1.10
; * @date 24. November 2010
; *------- <<< Use Configuration Wizard in Context Menu >>> ------------------
; *
; * @note
; * Copyright (C) 2009-2010 ARM Limited. All rights reserved.
; *
; * @par
; * ARM Limited (ARM) is supplying this software for use with Cortex-M
; * processor based microcontrollers. This file can be freely distributed
; * within development tools that are supporting such ARM based processors.
; *
; * @par
; * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
; * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
; * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
; * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
; *
; ******************************************************************************/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000200
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000000
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WAKEUP_IRQHandler ; 16+ 0: Wakeup PIO0.0
DCD WAKEUP_IRQHandler ; 16+ 1: Wakeup PIO0.1
DCD WAKEUP_IRQHandler ; 16+ 2: Wakeup PIO0.2
DCD WAKEUP_IRQHandler ; 16+ 3: Wakeup PIO0.3
DCD WAKEUP_IRQHandler ; 16+ 4: Wakeup PIO0.4
DCD WAKEUP_IRQHandler ; 16+ 5: Wakeup PIO0.5
DCD WAKEUP_IRQHandler ; 16+ 6: Wakeup PIO0.6
DCD WAKEUP_IRQHandler ; 16+ 7: Wakeup PIO0.7
DCD WAKEUP_IRQHandler ; 16+ 8: Wakeup PIO0.8
DCD WAKEUP_IRQHandler ; 16+ 9: Wakeup PIO0.9
DCD WAKEUP_IRQHandler ; 16+10: Wakeup PIO0.10
DCD WAKEUP_IRQHandler ; 16+11: Wakeup PIO0.11
DCD WAKEUP_IRQHandler ; 16+12: Wakeup PIO1.0
DCD CAN_IRQHandler ; 16+13: CAN
DCD SSP1_IRQHandler ; 16+14: SSP1
DCD I2C_IRQHandler ; 16+15: I2C
DCD TIMER16_0_IRQHandler ; 16+16: 16-bit Counter-Timer 0
DCD TIMER16_1_IRQHandler ; 16+17: 16-bit Counter-Timer 1
DCD TIMER32_0_IRQHandler ; 16+18: 32-bit Counter-Timer 0
DCD TIMER32_1_IRQHandler ; 16+19: 32-bit Counter-Timer 1
DCD SSP0_IRQHandler ; 16+20: SSP0
DCD UART_IRQHandler ; 16+21: UART
DCD USB_IRQHandler ; 16+22: USB IRQ
DCD USB_FIQHandler ; 16+24: USB FIQ
DCD ADC_IRQHandler ; 16+24: A/D Converter
DCD WDT_IRQHandler ; 16+25: Watchdog Timer
DCD BOD_IRQHandler ; 16+26: Brown Out Detect
DCD FMC_IRQHandler ; 16+27: IP2111 Flash Memory Controller
DCD PIOINT3_IRQHandler ; 16+28: PIO INT3
DCD PIOINT2_IRQHandler ; 16+29: PIO INT2
DCD PIOINT1_IRQHandler ; 16+30: PIO INT1
DCD PIOINT0_IRQHandler ; 16+31: PIO INT0
IF :LNOT::DEF:NO_CRP
AREA |.ARM.__at_0x02FC|, CODE, READONLY
CRP_Key DCD 0xFFFFFFFF
ENDIF
AREA |.text|, CODE, READONLY
; Reset Handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WAKEUP_IRQHandler [WEAK]
EXPORT CAN_IRQHandler [WEAK]
EXPORT SSP1_IRQHandler [WEAK]
EXPORT I2C_IRQHandler [WEAK]
EXPORT TIMER16_0_IRQHandler [WEAK]
EXPORT TIMER16_1_IRQHandler [WEAK]
EXPORT TIMER32_0_IRQHandler [WEAK]
EXPORT TIMER32_1_IRQHandler [WEAK]
EXPORT SSP0_IRQHandler [WEAK]
EXPORT UART_IRQHandler [WEAK]
EXPORT USB_IRQHandler [WEAK]
EXPORT USB_FIQHandler [WEAK]
EXPORT ADC_IRQHandler [WEAK]
EXPORT WDT_IRQHandler [WEAK]
EXPORT BOD_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT PIOINT3_IRQHandler [WEAK]
EXPORT PIOINT2_IRQHandler [WEAK]
EXPORT PIOINT1_IRQHandler [WEAK]
EXPORT PIOINT0_IRQHandler [WEAK]
WAKEUP_IRQHandler
CAN_IRQHandler
SSP1_IRQHandler
I2C_IRQHandler
TIMER16_0_IRQHandler
TIMER16_1_IRQHandler
TIMER32_0_IRQHandler
TIMER32_1_IRQHandler
SSP0_IRQHandler
UART_IRQHandler
USB_IRQHandler
USB_FIQHandler
ADC_IRQHandler
WDT_IRQHandler
BOD_IRQHandler
FMC_IRQHandler
PIOINT3_IRQHandler
PIOINT2_IRQHandler
PIOINT1_IRQHandler
PIOINT0_IRQHandler
B .
ENDP
ALIGN
; User Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END

View File

@ -0,0 +1,31 @@
/* mbed Microcontroller Library - stackheap
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* Setup a fixed single stack/heap memory model,
* between the top of the RW/ZI region and the stackpointer
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <rt_misc.h>
#include <stdint.h>
extern char Image$$RW_IRAM1$$ZI$$Limit[];
extern __value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) {
uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit;
uint32_t sp_limit = __current_sp();
zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned
struct __initial_stackheap r;
r.heap_base = zi_limit;
r.heap_limit = sp_limit;
return r;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,71 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PERIPHERALNAMES_H
#define MBED_PERIPHERALNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
UART_0 = (int)LPC_UART_BASE
} UARTName;
typedef enum {
I2C_0 = (int)LPC_I2C_BASE
} I2CName;
typedef enum {
ADC0_0 = 0,
ADC0_1,
ADC0_2,
ADC0_3,
ADC0_4,
ADC0_5,
ADC0_6,
ADC0_7
} ADCName;
typedef enum {
SPI_0 = (int)LPC_SSP0_BASE,
SPI_1 = (int)LPC_SSP1_BASE
} SPIName;
typedef enum {
PWM_1 = 0,
PWM_2,
PWM_3,
PWM_4,
PWM_5,
PWM_6,
PWM_7,
PWM_8,
PWM_9,
PWM_10,
PWM_11
} PWMName;
#define STDIO_UART_TX USBTX
#define STDIO_UART_RX USBRX
#define STDIO_UART UART_0
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,191 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PINNAMES_H
#define MBED_PINNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
PIN_INPUT,
PIN_OUTPUT
} PinDirection;
#define PORT_SHIFT 5
typedef enum {
// LPC1114 Pin Names (PORT[15:12] + PIN[11:8] + IOCON offset[7:0])
P0_0 = 0x000c,
P0_1 = 0x0110,
P0_2 = 0x021c,
P0_3 = 0x032c,
P0_4 = 0x0430,
P0_5 = 0x0534,
P0_6 = 0x064c,
P0_7 = 0x0750,
P0_8 = 0x0860,
P0_9 = 0x0964,
P0_10 = 0x0a68,
P0_11 = 0x0b74,
P1_0 = 0x1078,
P1_1 = 0x117c,
P1_2 = 0x1280,
P1_3 = 0x1390,
P1_4 = 0x1494,
P1_5 = 0x15a0,
P1_6 = 0x16a4,
P1_7 = 0x17a8,
P1_8 = 0x1814,
P1_9 = 0x1938,
P1_10 = 0x1a6c,
P1_11 = 0x1b98,
P2_0 = 0x2008,
P2_1 = 0x2128,
P2_2 = 0x225c,
P2_3 = 0x238c,
P2_4 = 0x2440,
P2_5 = 0x2544,
P2_6 = 0x2600,
P2_7 = 0x2720,
P2_8 = 0x2824,
P2_9 = 0x2954,
P2_10 = 0x2a58,
P2_11 = 0x2b70,
P3_0 = 0x3084,
P3_1 = 0x3188,
P3_2 = 0x329c,
P3_3 = 0x33ac,
P3_4 = 0x343c,
P3_5 = 0x3548,
// mbed DIP Pin Names (CQ board)
p4 = P0_0,
p5 = P0_9,
p6 = P0_8,
p7 = P0_6,
p8 = P1_5,
p9 = P1_7,
p10 = P1_6,
p11 = P0_7,
p12 = P1_0,
p13 = P1_1,
p14 = P1_2,
p15 = P0_11,
p16 = P1_0,
p17 = P1_1,
p18 = P1_2,
p19 = P1_3,
p20 = P1_4,
p21 = P0_10,
p22 = P0_2,
p23 = P0_11,
p24 = P0_2,
p25 = P1_8,
p26 = P1_9,
p27 = P0_4,
p28 = P0_5,
p29 = P0_3,
p30 = P0_1,
// Other mbed Pin Names
LED1 = P1_5,
LED2 = P0_7,
LED3 = P1_5,
LED4 = P0_7,
USBTX = P1_7,
USBRX = P1_6,
// mbed DIP Pin Names (LPCXpresso LPC1114)
xp4 = P0_0,
xp5 = P0_9,
xp6 = P0_8,
xp7 = P2_11,
xp8 = P0_2,
xp9 = P1_7,
xp10 = P1_6,
xp11 = P0_7,
xp12 = P2_0,
xp13 = P2_1,
xp14 = P2_2,
xp15 = P0_11,
xp16 = P1_0,
xp17 = P1_1,
xp18 = P1_2,
xp19 = P1_3,
xp20 = P1_4,
xp21 = P1_5,
xp22 = P1_8,
xp23 = P0_6,
xp24 = P0_10,
xp25 = P3_0,
xp26 = P3_1,
xp27 = P3_2,
xp29 = P3_3,
xp30 = P2_10,
xp31 = P2_9,
xp32 = P2_8,
xp33 = P2_7,
xp34 = P2_6,
xp35 = P2_5,
xp36 = P2_4,
xp37 = P2_3,
xp38 = P1_11,
xp39 = P1_10,
xp40 = P1_9,
xp41 = P0_4,
xp42 = P0_5,
xp43 = P0_3,
xp44 = P0_1,
// Other mbed Pin Names
xLED1 = P0_7,
// Not connected
NC = (int)0xFFFFFFFF,
} PinName;
typedef enum {
CHANNEL0 = WAKEUP0_IRQn,
CHANNEL1 = WAKEUP1_IRQn,
CHANNEL2 = WAKEUP2_IRQn,
CHANNEL3 = WAKEUP3_IRQn,
CHANNEL4 = WAKEUP4_IRQn,
CHANNEL5 = WAKEUP5_IRQn,
CHANNEL6 = WAKEUP6_IRQn,
CHANNEL7 = WAKEUP7_IRQn
} Channel;
typedef enum {
PullUp = 2,
PullDown = 1,
PullNone = 0,
Repeater = 3,
OpenDrain = 4
} PinMode;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,33 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PORTNAMES_H
#define MBED_PORTNAMES_H
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
Port0 = 0,
Port1 = 1,
Port2 = 2,
Port3 = 3
} PortName;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,123 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "analogin_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
#define ANALOGIN_MEDIAN_FILTER 1
#define ADC_10BIT_RANGE 0x3FF
#define ADC_12BIT_RANGE 0xFFF
static inline int div_round_up(int x, int y) {
return (x + (y - 1)) / y;
}
static const PinMap PinMap_ADC[] = {
{P0_11, ADC0_0, 2},
{P1_0 , ADC0_1, 2},
{P1_1 , ADC0_2, 2},
{P1_2 , ADC0_3, 2},
{P1_3 , ADC0_4, 2},
{P1_4 , ADC0_5, 1},
{P1_10, ADC0_6, 1},
{P1_11, ADC0_7, 1},
{NC , NC , 0}
};
#define ADC_RANGE ADC_10BIT_RANGE
void analogin_init(analogin_t *obj, PinName pin) {
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
if (obj->adc == (uint32_t)NC) {
error("ADC pin mapping failed");
}
// Power up ADC
LPC_SYSCON->PDRUNCFG &= ~ (1 << 4);
LPC_SYSCON->SYSAHBCLKCTRL |= ((uint32_t)1 << 13);
uint32_t offset = (uint32_t)pin & 0xff;
__IO uint32_t *reg = (__IO uint32_t*)(LPC_IOCON_BASE + offset);
// set pin to ADC mode
*reg &= ~(1 << 7); // set ADMODE = 0 (analog mode)
uint32_t PCLK = SystemCoreClock;
uint32_t MAX_ADC_CLK = 4500000;
uint32_t clkdiv = div_round_up(PCLK, MAX_ADC_CLK) - 1;
LPC_ADC->CR = (0 << 0) // no channels selected
| (clkdiv << 8) // max of 4.5MHz
| (0 << 16) // BURST = 0, software controlled
| ( 0 << 17 ); // CLKS = 0, not applicable
pinmap_pinout(pin, PinMap_ADC);
}
static inline uint32_t adc_read(analogin_t *obj) {
// Select the appropriate channel and start conversion
LPC_ADC->CR &= ~0xFF;
LPC_ADC->CR |= 1 << (int)obj->adc;
LPC_ADC->CR |= 1 << 24;
// Repeatedly get the sample data until DONE bit
unsigned int data;
do {
data = LPC_ADC->GDR;
} while ((data & ((unsigned int)1 << 31)) == 0);
// Stop conversion
LPC_ADC->CR &= ~(1 << 24);
return (data >> 6) & ADC_RANGE; // 10 bit
}
static inline void order(uint32_t *a, uint32_t *b) {
if (*a > *b) {
uint32_t t = *a;
*a = *b;
*b = t;
}
}
static inline uint32_t adc_read_u32(analogin_t *obj) {
uint32_t value;
#if ANALOGIN_MEDIAN_FILTER
uint32_t v1 = adc_read(obj);
uint32_t v2 = adc_read(obj);
uint32_t v3 = adc_read(obj);
order(&v1, &v2);
order(&v2, &v3);
order(&v1, &v2);
value = v2;
#else
value = adc_read(obj);
#endif
return value;
}
uint16_t analogin_read_u16(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (value << 6) | ((value >> 4) & 0x003F); // 10 bit
}
float analogin_read(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (float)value * (1.0f / (float)ADC_RANGE);
}

View File

@ -0,0 +1,59 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H
#define DEVICE_PORTIN 0
#define DEVICE_PORTOUT 0
#define DEVICE_PORTINOUT 0
#define DEVICE_INTERRUPTIN 1
#define DEVICE_ANALOGIN 1
#define DEVICE_ANALOGOUT 0
#define DEVICE_SERIAL 1
#define DEVICE_I2C 1
#define DEVICE_I2CSLAVE 1
#define DEVICE_SPI 1
#define DEVICE_SPISLAVE 1
#define DEVICE_CAN 0
#define DEVICE_RTC 0
#define DEVICE_ETHERNET 0
#define DEVICE_PWMOUT 1
#define DEVICE_SEMIHOST 1
#define DEVICE_LOCALFILESYSTEM 1
#define DEVICE_ID_LENGTH 32
#define DEVICE_MAC_OFFSET 20
#define DEVICE_SLEEP 1
#define DEVICE_DEBUG_AWARENESS 0
#define DEVICE_STDIO_MESSAGES 1
#define DEVICE_ERROR_PATTERN 1
#include "objects.h"
#endif

View File

@ -0,0 +1,83 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpio_api.h"
#include "pinmap.h"
uint32_t gpio_set(PinName pin) {
// PIO default value of following ports are not same as others
int f = ((pin == P0_0 ) || // RESET
(pin == P0_10) || // SWCLK
(pin == P0_11) || // R
(pin == P1_0 ) || // R
(pin == P1_1 ) || // R
(pin == P1_2 ) || // R
(pin == P1_3 )) ? //
(1) : (0);
pin_function(pin, f);
int pin_number = ((pin & 0x0F00) >> 8);
return (pin_number + 1); // port n data address offset
}
void gpio_init(gpio_t *obj, PinName pin, PinDirection direction) {
if(pin == NC) return;
obj->pin = pin;
LPC_GPIO_TypeDef *port_reg;
switch (pin & 0xF000) {
case 0x0000:
port_reg = LPC_GPIO0;
break;
case 0x1000:
port_reg = LPC_GPIO1;
break;
case 0x2000:
port_reg = LPC_GPIO2;
break;
case 0x3000:
port_reg = LPC_GPIO3;
break;
default:
return;
}
#warning TODO (@toyowata): Need to check array offset
obj->mask = &port_reg->MASKED_ACCESS[gpio_set(pin)];
obj->reg_dir = &port_reg->DIR;
obj->reg_in = &port_reg->DATA;
obj->reg_data= &port_reg->DATA;
gpio_dir(obj, direction);
switch (direction) {
case PIN_OUTPUT: pin_mode(pin, PullNone); break;
case PIN_INPUT : pin_mode(pin, PullDown); break;
}
}
void gpio_mode(gpio_t *obj, PinMode mode) {
pin_mode(obj->pin, mode);
}
void gpio_dir(gpio_t *obj, PinDirection direction) {
int pin_number = ((obj->pin & 0x0F00) >> 8);
switch (direction) {
case PIN_INPUT : *obj->reg_dir &= ~(1 << pin_number); break;
case PIN_OUTPUT: *obj->reg_dir |= (1 << pin_number); break;
}
}

View File

@ -0,0 +1,132 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stddef.h>
#include "cmsis.h"
#include "gpio_irq_api.h"
#include "error.h"
#define CHANNEL_NUM 4
#define PININT_IRQ 28+3
static uint32_t channel_ids[CHANNEL_NUM] = {0};
static gpio_irq_handler irq_handler;
#warning TODO(@toyowata): need implimentation
#if 0
static inline void handle_interrupt_in(uint32_t channel) {
uint32_t ch_bit = (1 << channel);
LPC_GPIO_TypeDef *port_reg = ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE + (channel * 0x10000));
// Return immediately if:
// * The interrupt was already served
// * There is no user handler
// * It is a level interrupt, not an edge interrupt
if ( ((&port_reg->IST & ch_bit) == 0) ||
(channel_ids[channel] == 0 ) ||
(&port_reg->ISEL & ch_bit ) ) return;
if ((&port_reg->IENR & ch_bit) && (&port_reg->RISE & ch_bit)) {
irq_handler(channel_ids[channel], IRQ_RISE);
&port_reg->RISE = ch_bit;
}
if ((&port_reg->IENF & ch_bit) && (&port_reg->FALL & ch_bit)) {
irq_handler(channel_ids[channel], IRQ_FALL);
}
&port_reg->IST = ch_bit;
}
void gpio_irq0(void) {handle_interrupt_in(0);}
void gpio_irq1(void) {handle_interrupt_in(1);}
void gpio_irq2(void) {handle_interrupt_in(2);}
void gpio_irq3(void) {handle_interrupt_in(3);}
int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id) {
if (pin == NC) return -1;
irq_handler = handler;
int found_free_channel = 0;
int i = 0;
for (i=0; i<CHANNEL_NUM; i++) {
if (channel_ids[i] == 0) {
channel_ids[i] = id;
obj->ch = i;
found_free_channel = 1;
break;
}
}
if (!found_free_channel) return -1;
/* Enable AHB clock to the GPIO domain. */
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<6);
/* Enable AHB clock to the FlexInt, GroupedInt domain. */
LPC_SYSCON->SYSAHBCLKCTRL |= ((1<<19) | (1<<23) | (1<<24));
/* To select a pin for any of the eight pin interrupts, write the pin number
* as 0 to 23 for pins PIO0_0 to PIO0_23 and 24 to 55.
* @see: mbed_capi/PinNames.h
*/
LPC_SYSCON->PINTSEL[obj->ch] = (pin >> 5) ? (pin - 8) : (pin);
// Interrupt Wake-Up Enable
LPC_SYSCON->STARTERP0 |= 1 << obj->ch;
void (*channels_irq)(void) = NULL;
switch (obj->ch) {
case 0: channels_irq = &gpio_irq0; break;
case 1: channels_irq = &gpio_irq1; break;
case 2: channels_irq = &gpio_irq2; break;
case 3: channels_irq = &gpio_irq3; break;
}
NVIC_SetVector((IRQn_Type)(PININT_IRQ - obj->ch)), (uint32_t)channels_irq);
NVIC_EnableIRQ((IRQn_Type)(PININT_IRQ - obj->ch));
return 0;
}
void gpio_irq_free(gpio_irq_t *obj) {
channel_ids[obj->ch] = 0;
LPC_SYSCON->STARTERP0 &= ~(1 << obj->ch);
}
void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
unsigned int ch_bit = (1 << obj->ch);
LPC_GPIO_TypeDef *port_reg = ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE + (obj->ch * 0x10000));
// Clear interrupt
if (!(&port_reg->ISEL & ch_bit))
&port_reg->IST = ch_bit;
// Edge trigger
&port_reg->ISEL &= ~ch_bit;
if (event == IRQ_RISE) {
if (enable) {
&port_reg->IENR |= ch_bit;
} else {
&port_reg->IENR &= ~ch_bit;
}
} else {
if (enable) {
&port_reg->IENF |= ch_bit;
} else {
&port_reg->IENF &= ~ch_bit;
}
}
}
#endif

View File

@ -0,0 +1,47 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_GPIO_OBJECT_H
#define MBED_GPIO_OBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PinName pin;
__IO uint32_t *mask;
__IO uint32_t *reg_dir;
__IO uint32_t *reg_data;
__I uint32_t *reg_in;
} gpio_t;
static inline void gpio_write(gpio_t *obj, int value) {
uint32_t pin_number = ((obj->pin & 0x0F00) >> 8);
if (value)
*obj->reg_data |= (1 << pin_number);
else
*obj->reg_data &= ~(1 << pin_number);
}
static inline int gpio_read(gpio_t *obj) {
return ((*obj->mask) ? 1 : 0);
}
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,377 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
static const PinMap PinMap_I2C_SDA[] = {
{P0_5, I2C_0, 1},
{NC , NC , 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{P0_4, I2C_0, 1},
{NC , NC, 0}
};
#define I2C_CONSET(x) (x->i2c->CONSET)
#define I2C_CONCLR(x) (x->i2c->CONCLR)
#define I2C_STAT(x) (x->i2c->STAT)
#define I2C_DAT(x) (x->i2c->DAT)
#define I2C_SCLL(x, val) (x->i2c->SCLL = val)
#define I2C_SCLH(x, val) (x->i2c->SCLH = val)
static const uint32_t I2C_addr_offset[4] = {
0x0C, 0x20, 0x24, 0x28
};
static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONCLR(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONSET(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
// Clear the Serial Interrupt (SI)
static inline void i2c_clear_SI(i2c_t *obj) {
i2c_conclr(obj, 0, 0, 1, 0);
}
static inline int i2c_status(i2c_t *obj) {
return I2C_STAT(obj);
}
// Wait until the Serial Interrupt (SI) is set
static int i2c_wait_SI(i2c_t *obj) {
int timeout = 0;
while (!(I2C_CONSET(obj) & (1 << 3))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
static inline void i2c_interface_enable(i2c_t *obj) {
I2C_CONSET(obj) = 0x40;
}
static inline void i2c_power_enable(i2c_t *obj) {
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5);
LPC_SYSCON->PRESETCTRL |= 1 << 1;
}
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// determine the SPI to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (LPC_I2C_TypeDef *)pinmap_merge(i2c_sda, i2c_scl);
if ((int)obj->i2c == NC) {
error("I2C pin mapping failed");
}
// enable power
i2c_power_enable(obj);
// set default frequency at 100k
i2c_frequency(obj, 100000);
i2c_conclr(obj, 1, 1, 1, 1);
i2c_interface_enable(obj);
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
}
inline int i2c_start(i2c_t *obj) {
int status = 0;
// 8.1 Before master mode can be entered, I2CON must be initialised to:
// - I2EN STA STO SI AA - -
// - 1 0 0 0 x - -
// if AA = 0, it can't enter slave mode
i2c_conclr(obj, 1, 1, 1, 1);
// The master mode may now be entered by setting the STA bit
// this will generate a start condition when the bus becomes free
i2c_conset(obj, 1, 0, 0, 1);
i2c_wait_SI(obj);
status = i2c_status(obj);
// Clear start bit now transmitted, and interrupt bit
i2c_conclr(obj, 1, 0, 0, 0);
return status;
}
inline void i2c_stop(i2c_t *obj) {
// write the stop bit
i2c_conset(obj, 0, 1, 0, 0);
i2c_clear_SI(obj);
// wait for STO bit to reset
while(I2C_CONSET(obj) & (1 << 4));
}
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
// write the data
I2C_DAT(obj) = value;
// clear SI to init a send
i2c_clear_SI(obj);
// wait and return status
i2c_wait_SI(obj);
return i2c_status(obj);
}
static inline int i2c_do_read(i2c_t *obj, int last) {
// we are in state 0x40 (SLA+R tx'd) or 0x50 (data rx'd and ack)
if (last) {
i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
} else {
i2c_conset(obj, 0, 0, 0, 1); // send a ACK
}
// accept byte
i2c_clear_SI(obj);
// wait for it to arrive
i2c_wait_SI(obj);
// return the data
return (I2C_DAT(obj) & 0xFF);
}
void i2c_frequency(i2c_t *obj, int hz) {
// No peripheral clock divider on the M0
uint32_t PCLK = SystemCoreClock;
uint32_t pulse = PCLK / (hz * 2);
// I2C Rate
I2C_SCLL(obj, pulse);
I2C_SCLH(obj, pulse);
}
// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
// 1) it can not obtain the bus
// 2) it gets error responses at part of the transmission
//
// We tackle them as follows:
// 1) we retry until we get the bus. we could have a "timeout" if we can not get it
// which basically turns it in to a 2)
// 2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return status;
}
status = i2c_do_write(obj, (address | 0x01), 1);
if (status != 0x40) {
i2c_stop(obj);
return status;
}
// Read in all except last byte
for (count = 0; count < (length - 1); count++) {
int value = i2c_do_read(obj, 0);
status = i2c_status(obj);
if (status != 0x50) {
i2c_stop(obj);
return status;
}
data[count] = (char) value;
}
// read in last byte
int value = i2c_do_read(obj, 1);
status = i2c_status(obj);
if (status != 0x58) {
i2c_stop(obj);
return status;
}
data[count] = (char) value;
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return 0;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return status;
}
status = i2c_do_write(obj, (address & 0xFE), 1);
if (status != 0x18) {
i2c_stop(obj);
return status;
}
for (i=0; i<length; i++) {
status = i2c_do_write(obj, data[i], 0);
if(status != 0x28) {
i2c_stop(obj);
return status;
}
}
i2c_clear_SI(obj);
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return 0;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
return (i2c_do_read(obj, last) & 0xFF);
}
int i2c_byte_write(i2c_t *obj, int data) {
int ack;
int status = i2c_do_write(obj, (data & 0xFF), 0);
switch(status) {
case 0x18: case 0x28: // Master transmit ACKs
ack = 1;
break;
case 0x40: // Master receive address transmitted ACK
ack = 1;
break;
case 0xB8: // Slave transmit ACK
ack = 1;
break;
default:
ack = 0;
break;
}
return ack;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave != 0) {
i2c_conclr(obj, 1, 1, 1, 0);
i2c_conset(obj, 0, 0, 0, 1);
} else {
i2c_conclr(obj, 1, 1, 1, 1);
}
}
int i2c_slave_receive(i2c_t *obj) {
int status;
int retval;
status = i2c_status(obj);
switch(status) {
case 0x60: retval = 3; break;
case 0x70: retval = 2; break;
case 0xA8: retval = 1; break;
default : retval = 0; break;
}
return(retval);
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count = 0;
int status;
do {
i2c_clear_SI(obj);
i2c_wait_SI(obj);
status = i2c_status(obj);
if((status == 0x80) || (status == 0x90)) {
data[count] = I2C_DAT(obj) & 0xFF;
}
count++;
} while (((status == 0x80) || (status == 0x90) ||
(status == 0x060) || (status == 0x70)) && (count < length));
if(status != 0xA0) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return (count - 1);
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count = 0;
int status;
if(length <= 0) {
return(0);
}
do {
status = i2c_do_write(obj, data[count], 0);
count++;
} while ((count < length) && (status == 0xB8));
if((status != 0xC0) && (status != 0xC8)) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return(count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
uint32_t addr;
if ((idx >= 0) && (idx <= 3)) {
addr = ((uint32_t)obj->i2c) + I2C_addr_offset[idx];
*((uint32_t *) addr) = address & 0xFF;
}
}

View File

@ -0,0 +1,66 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_OBJECTS_H
#define MBED_OBJECTS_H
#include "cmsis.h"
#include "PortNames.h"
#include "PeripheralNames.h"
#include "PinNames.h"
#ifdef __cplusplus
extern "C" {
#endif
struct gpio_irq_s {
uint32_t ch;
};
struct port_s {
__IO uint32_t *reg_dir;
__IO uint32_t *reg_mpin;
PortName port;
uint32_t mask;
};
struct pwmout_s {
PWMName pwm;
};
struct serial_s {
LPC_UART_TypeDef *uart;
int index;
};
struct analogin_s {
ADCName adc;
};
struct i2c_s {
LPC_I2C_TypeDef *i2c;
};
struct spi_s {
LPC_SSP_TypeDef *spi;
};
#include "gpio_object.h"
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,47 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pinmap.h"
#include "error.h"
void pin_function(PinName pin, int function) {
if (pin == (uint32_t)NC) return;
uint32_t offset = (uint32_t)pin & 0xff;
__IO uint32_t *reg = (__IO uint32_t*)(LPC_IOCON_BASE + offset);
// pin function bits: [2:0] -> 111 = (0x7)
*reg = (*reg & ~0x7) | (function & 0x7);
}
void pin_mode(PinName pin, PinMode mode) {
if (pin == (uint32_t)NC) { return; }
uint32_t offset = (uint32_t)pin & 0xff;
uint32_t drain = ((uint32_t) mode & (uint32_t) OpenDrain) >> 2;
__IO uint32_t *reg = (__IO uint32_t*)(LPC_IOCON_BASE + offset);
uint32_t tmp = *reg;
// pin mode bits: [4:3] -> 11000 = (0x3 << 3)
tmp &= ~(0x3 << 3);
tmp |= (mode & 0x3) << 3;
// drain
tmp &= ~(0x1 << 10);
tmp |= drain << 10;
*reg = tmp;
}

View File

@ -0,0 +1,75 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#warning TODO(@toyowata) This platform doesn't support PortIn, PortOut and PortInOut
#if 0
#include "port_api.h"
#include "pinmap.h"
#include "gpio_api.h"
PinName port_pin(PortName port, int pin_n) {
return (PinName)((port << PORT_SHIFT) | pin_n);
}
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) {
obj->port = port;
obj->mask = mask;
LPC_GPIO_TypeDef *port_reg = (LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + ((int)port * 0x20));
port_reg->MASK = ~mask;
obj->reg_out = &port_reg->PIN;
obj->reg_in = &port_reg->PIN;
obj->reg_dir = &port_reg->DIR;
uint32_t i;
// The function is set per pin: reuse gpio logic
for (i=0; i<32; i++) {
if (obj->mask & (1<<i)) {
gpio_set(port_pin(obj->port, i));
}
}
port_dir(obj, dir);
}
void port_mode(port_t *obj, PinMode mode) {
uint32_t i;
// The mode is set per pin: reuse pinmap logic
for (i=0; i<32; i++) {
if (obj->mask & (1<<i)) {
pin_mode(port_pin(obj->port, i), mode);
}
}
}
void port_dir(port_t *obj, PinDirection dir) {
switch (dir) {
case PIN_INPUT : *obj->reg_dir &= ~obj->mask; break;
case PIN_OUTPUT: *obj->reg_dir |= obj->mask; break;
}
}
void port_write(port_t *obj, int value) {
*obj->reg_mpin = value;
}
int port_read(port_t *obj) {
return (*obj->reg_mpin);
}
#endif

View File

@ -0,0 +1,183 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
#define TCR_CNT_EN 0x00000001
#define TCR_RESET 0x00000002
/* To have a PWM where we can change both the period and the duty cycle,
* we need an entire timer. With the following conventions:
* * MR3 is used for the PWM period
* * MR0, MR1, MR2 are used for the duty cycle
*/
static const PinMap PinMap_PWM[] = {
/* CT16B0 */
{P0_8 , PWM_1, 0x02}, /* MR0 */
{P0_9 , PWM_2, 0x02}, /* MR1 */
{P0_10, PWM_3, 0x03}, /* MR2 */
/* CT16B1 */
{P1_9 , PWM_4, 0x01}, /* MR0 */
{P1_10, PWM_5, 0x02}, /* MR1 */
/* CT32B0 */
{P1_6 , PWM_6, 0x02}, /* MR0 */
{P1_7 , PWM_7, 0x02}, /* MR1 */
{P0_1 , PWM_8, 0x02}, /* MR2 */
/* CT32B1 */
{P1_1 , PWM_9 ,0x03}, /* MR0 */
{P1_2 , PWM_10,0x03}, /* MR1 */
{P1_3 , PWM_11,0x03}, /* MR2 */
{NC , NC ,0x00}
};
typedef struct {
uint8_t timer;
uint8_t mr;
} timer_mr;
static timer_mr pwm_timer_map[4] = {
{0, 0},
{1, 0},
{2, 0},
{3, 0},
};
static LPC_TMR_TypeDef *Timers[4] = {
LPC_TMR16B0, LPC_TMR16B1,
LPC_TMR32B0, LPC_TMR32B1
};
static unsigned int pwm_clock_mhz;
void pwmout_init(pwmout_t* obj, PinName pin) {
// determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
if (pwm == (uint32_t)NC)
error("PwmOut pin mapping failed");
obj->pwm = pwm;
// Timer registers
timer_mr tid = pwm_timer_map[pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
// Disable timer
timer->TCR = 0;
// Power the correspondent timer
LPC_SYSCON->SYSAHBCLKCTRL |= 1 << (tid.timer + 7);
/* Enable PWM function */
timer->PWMC = (1 << 3)|(1 << 2)|(1 << 1)|(1 << 0);
/* Reset Functionality on MR3 controlling the PWM period */
timer->MCR = 1 << 10;
pwm_clock_mhz = SystemCoreClock / 1000000;
// default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write (obj, 0);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t* obj) {
// [TODO]
}
void pwmout_write(pwmout_t* obj, float value) {
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
uint32_t t_off = timer->MR3 - (uint32_t)((float)(timer->MR3) * value);
timer->TCR = TCR_RESET;
timer->MR[tid.mr] = t_off;
timer->TCR = TCR_CNT_EN;
}
float pwmout_read(pwmout_t* obj) {
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
float v = (float)(timer->MR3 - timer->MR[tid.mr]) / (float)(timer->MR3);
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds) {
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms) {
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
int i = 0;
uint32_t period_ticks = pwm_clock_mhz * us;
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
uint32_t old_period_ticks = timer->MR3;
timer->TCR = TCR_RESET;
timer->MR3 = period_ticks;
// Scale the pulse width to preserve the duty ratio
if (old_period_ticks > 0) {
for (i=0; i<3; i++) {
uint32_t t_off = period_ticks - (uint32_t)(((uint64_t)timer->MR[i] * (uint64_t)period_ticks) / (uint64_t)old_period_ticks);
timer->MR[i] = t_off;
}
}
timer->TCR = TCR_CNT_EN;
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
uint32_t t_on = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000);
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
timer->TCR = TCR_RESET;
if (t_on > timer->MR3) {
pwmout_period_us(obj, us);
}
uint32_t t_off = timer->MR3 - t_on;
timer->MR[tid.mr] = t_off;
timer->TCR = TCR_CNT_EN;
}

View File

@ -0,0 +1,276 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <string.h>
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
#define UART_NUM 1
static const PinMap PinMap_UART_TX[] = {
{P2_8 , UART_0, 0x02},
{P3_5 , UART_0, 0x02},
{P3_0 , UART_0, 0x03},
{P1_7 , UART_0, 0x01},
{NC , NC , 0x00}
};
static const PinMap PinMap_UART_RX[] = {
{P2_7 , UART_0, 0x02},
{P3_4 , UART_0, 0x02},
{P3_1 , UART_0, 0x03},
{P1_6 , UART_0, 0x01},
{NC , NC , 0x00}
};
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
void serial_init(serial_t *obj, PinName tx, PinName rx) {
int is_stdio_uart = 0;
// determine the UART to use
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
if ((int)uart == NC) {
error("Serial pinout mapping failed");
}
obj->uart = (LPC_UART_TypeDef *)uart;
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<12);
// enable fifos and default rx trigger level
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 0 << 1 // Rx Fifo Reset
| 0 << 2 // Tx Fifo Reset
| 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
// disable irqs
obj->uart->IER = 0 << 0 // Rx Data available irq enable
| 0 << 1 // Tx Fifo empty irq enable
| 0 << 2; // Rx Line Status irq enable
// set default baud rate and format
serial_baud (obj, 9600);
serial_format(obj, 8, ParityNone, 1);
// pinout the chosen uart
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// set rx/tx pins in PullUp mode
pin_mode(tx, PullUp);
pin_mode(rx, PullUp);
switch (uart) {
case UART_0: obj->index = 0; break;
}
is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
if (is_stdio_uart) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
// serial_baud
// set the baud rate, taking in to account the current SystemFrequency
void serial_baud(serial_t *obj, int baudrate) {
LPC_SYSCON->UARTCLKDIV = 0x1;
uint32_t PCLK = SystemCoreClock;
// First we check to see if the basic divide with no DivAddVal/MulVal
// ratio gives us an integer result. If it does, we set DivAddVal = 0,
// MulVal = 1. Otherwise, we search the valid ratio value range to find
// the closest match. This could be more elegant, using search methods
// and/or lookup tables, but the brute force method is not that much
// slower, and is more maintainable.
uint16_t DL = PCLK / (16 * baudrate);
uint8_t DivAddVal = 0;
uint8_t MulVal = 1;
int hit = 0;
uint16_t dlv;
uint8_t mv, dav;
if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder
float err_best = (float) baudrate;
uint16_t dlmax = DL;
for ( dlv = (dlmax/2); (dlv <= dlmax) && !hit; dlv++) {
for ( mv = 1; mv <= 15; mv++) {
for ( dav = 1; dav < mv; dav++) {
float ratio = 1.0f + ((float) dav / (float) mv);
float calcbaud = (float)PCLK / (16.0f * (float) dlv * ratio);
float err = fabs(((float) baudrate - calcbaud) / (float) baudrate);
if (err < err_best) {
DL = dlv;
DivAddVal = dav;
MulVal = mv;
err_best = err;
if (err < 0.001f) {
hit = 1;
}
}
}
}
}
}
// set LCR[DLAB] to enable writing to divider registers
obj->uart->LCR |= (1 << 7);
// set divider values
obj->uart->DLM = (DL >> 8) & 0xFF;
obj->uart->DLL = (DL >> 0) & 0xFF;
obj->uart->FDR = (uint32_t) DivAddVal << 0
| (uint32_t) MulVal << 4;
// clear LCR[DLAB]
obj->uart->LCR &= ~(1 << 7);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
// 0: 1 stop bits, 1: 2 stop bits
if (stop_bits != 1 && stop_bits != 2) {
error("Invalid stop bits specified");
}
stop_bits -= 1;
// 0: 5 data bits ... 3: 8 data bits
if (data_bits < 5 || data_bits > 8) {
error("Invalid number of bits (%d) in serial format, should be 5..8", data_bits);
}
data_bits -= 5;
int parity_enable, parity_select;
switch (parity) {
case ParityNone: parity_enable = 0; parity_select = 0; break;
case ParityOdd : parity_enable = 1; parity_select = 0; break;
case ParityEven: parity_enable = 1; parity_select = 1; break;
case ParityForced1: parity_enable = 1; parity_select = 2; break;
case ParityForced0: parity_enable = 1; parity_select = 3; break;
default:
error("Invalid serial parity setting");
return;
}
obj->uart->LCR = data_bits << 0
| stop_bits << 2
| parity_enable << 3
| parity_select << 4;
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t iir, uint32_t index) {
// [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling
SerialIrq irq_type;
switch (iir) {
case 1: irq_type = TxIrq; break;
case 2: irq_type = RxIrq; break;
default: return;
}
if (serial_irq_ids[index] != 0)
irq_handler(serial_irq_ids[index], irq_type);
}
void uart0_irq() {uart_irq((LPC_UART->IIR >> 1) & 0x7, 0);}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch ((int)obj->uart) {
case UART_0:
irq_n=UART_IRQn;
vector = (uint32_t)&uart0_irq;
break;
default:
return;
}
if (enable) {
obj->uart->IER |= 1 << irq;
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
obj->uart->IER &= ~(1 << irq);
all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
return obj->uart->RBR;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
obj->uart->THR = c;
#warning TODO(@toyowata): need to fix a full-duplex bug? https://mbed.org/forum/bugs-suggestions/topic/4473/
uint32_t lsr = obj->uart->LSR;
lsr = lsr;
uint32_t thr = obj->uart->THR;
thr = thr;
}
int serial_readable(serial_t *obj) {
return obj->uart->LSR & 0x01;
}
int serial_writable(serial_t *obj) {
return obj->uart->LSR & 0x20;
}
void serial_clear(serial_t *obj) {
obj->uart->FCR = 1 << 1 // rx FIFO reset
| 1 << 2 // tx FIFO reset
| 0 << 6; // interrupt depth
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}

View File

@ -0,0 +1,75 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sleep_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
void sleep(void) {
// ensure debug is disconnected
mbed_interface_disconnect();
// PCON[DPDEN] set to sleep
LPC_PMU->PCON = 0x0;
// SRC[SLEEPDEEP] set to 0 = sleep
SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;
// wait for interrupt
__WFI();
}
/*
* The mbed lpc1768 does not support the deepsleep mode
* as a debugger is connected to it (the mbed interface).
*
* As mentionned in an application note from NXP:
*
* http://www.po-star.com/public/uploads/20120319123122_141.pdf
*
* {{{
* The user should be aware of certain limitations during debugging.
* The most important is that, due to limitations of the Cortex-M3
* integration, the LPC17xx cannot wake up in the usual manner from
* Deep Sleep and Power-down modes. It is recommended not to use these
* modes during debug. Once an application is downloaded via JTAG/SWD
* interface, the USB to SWD/JTAG debug adapter (Keil ULINK2 for example)
* should be removed from the target board, and thereafter, power cycle
* the LPC17xx to allow wake-up from deep sleep and power-down modes
* }}}
*
* As the interface firmware does not reset the target when a
* mbed_interface_disconnect() semihosting call is made, the
* core cannot wake-up from deepsleep.
*
* We treat a deepsleep() as a normal sleep().
*/
void deepsleep(void) {
// ensure debug is disconnected
mbed_interface_disconnect();
// PCON[DPDEN] set to deepsleep
LPC_PMU->PCON = 0x2;
// SRC[SLEEPDEEP] set to 1 = deep sleep
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
// Power up everything after powerdown
LPC_SYSCON->PDAWAKECFG &= 0xFFFFF800;
// wait for interrupt
__WFI();
}

View File

@ -0,0 +1,214 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
static const PinMap PinMap_SPI_SCLK[] = {
{P0_6 , SPI_0, 0x02},
{P0_10, SPI_0, 0x02},
{P2_11, SPI_0, 0x01},
{P2_1 , SPI_1, 0x02},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{P0_9 , SPI_0, 0x01},
{P2_3 , SPI_1, 0x02},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{P0_8 , SPI_0, 0x01},
{P2_2 , SPI_1, 0x02},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{P0_2 , SPI_0, 0x01},
{P2_0 , SPI_1, 0x02},
{NC , NC , 0}
};
static inline int ssp_disable(spi_t *obj);
static inline int ssp_enable(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (LPC_SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl);
if ((int)obj->spi == NC) {
error("SPI pinout mapping failed");
}
// enable power and clocking
switch ((int)obj->spi) {
case SPI_0:
LPC_SYSCON->SYSAHBCLKCTRL |= 1 << 11;
LPC_SYSCON->SSP0CLKDIV = 0x01;
LPC_SYSCON->PRESETCTRL |= 1 << 0;
break;
case SPI_1:
LPC_SYSCON->SYSAHBCLKCTRL |= 1 << 18;
LPC_SYSCON->SSP1CLKDIV = 0x01;
LPC_SYSCON->PRESETCTRL |= 1 << 2;
break;
}
// set default format and frequency
if (ssel == NC) {
spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master
} else {
spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave
}
spi_frequency(obj, 1000000);
// enable the ssp channel
ssp_enable(obj);
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
ssp_disable(obj);
if (!(bits >= 4 && bits <= 16) || !(mode >= 0 && mode <= 3)) {
error("SPI format error");
}
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
// set it up
int DSS = bits - 1; // DSS (data select size)
int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity
int SPH = (phase) ? 1 : 0; // SPH - clock out phase
int FRF = 0; // FRF (frame format) = SPI
uint32_t tmp = obj->spi->CR0;
tmp &= ~(0xFFFF);
tmp |= DSS << 0
| FRF << 4
| SPO << 6
| SPH << 7;
obj->spi->CR0 = tmp;
tmp = obj->spi->CR1;
tmp &= ~(0xD);
tmp |= 0 << 0 // LBM - loop back mode - off
| ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave
| 0 << 3; // SOD - slave output disable - na
obj->spi->CR1 = tmp;
ssp_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
ssp_disable(obj);
uint32_t PCLK = SystemCoreClock;
int prescaler;
for (prescaler = 2; prescaler <= 254; prescaler += 2) {
int prescale_hz = PCLK / prescaler;
// calculate the divider
int divider = floor(((float)prescale_hz / (float)hz) + 0.5f);
// check we can support the divider
if (divider < 256) {
// prescaler
obj->spi->CPSR = prescaler;
// divider
obj->spi->CR0 &= ~(0xFFFF << 8);
obj->spi->CR0 |= (divider - 1) << 8;
ssp_enable(obj);
return;
}
}
error("Couldn't setup requested SPI frequency");
}
static inline int ssp_disable(spi_t *obj) {
return obj->spi->CR1 &= ~(1 << 1);
}
static inline int ssp_enable(spi_t *obj) {
return obj->spi->CR1 |= (1 << 1);
}
static inline int ssp_readable(spi_t *obj) {
return obj->spi->SR & (1 << 2);
}
static inline int ssp_writeable(spi_t *obj) {
return obj->spi->SR & (1 << 1);
}
static inline void ssp_write(spi_t *obj, int value) {
while (!ssp_writeable(obj));
obj->spi->DR = value;
}
static inline int ssp_read(spi_t *obj) {
while (!ssp_readable(obj));
return obj->spi->DR;
}
static inline int ssp_busy(spi_t *obj) {
return (obj->spi->SR & (1 << 4)) ? (1) : (0);
}
int spi_master_write(spi_t *obj, int value) {
ssp_write(obj, value);
return ssp_read(obj);
}
int spi_slave_receive(spi_t *obj) {
return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
};
int spi_slave_read(spi_t *obj) {
return obj->spi->DR;
}
void spi_slave_write(spi_t *obj, int value) {
while (ssp_writeable(obj) == 0) ;
obj->spi->DR = value;
}
int spi_busy(spi_t *obj) {
return ssp_busy(obj);
}

View File

@ -0,0 +1,62 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stddef.h>
#include "us_ticker_api.h"
#include "PeripheralNames.h"
#define US_TICKER_TIMER ((LPC_TMR_TypeDef *)LPC_CT32B1_BASE)
#define US_TICKER_TIMER_IRQn TIMER_32_1_IRQn
int us_ticker_inited = 0;
void us_ticker_init(void) {
if (us_ticker_inited) return;
us_ticker_inited = 1;
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<10); // Clock TIMER_1
uint32_t PCLK = SystemCoreClock;
US_TICKER_TIMER->TCR = 0x2; // reset
uint32_t prescale = PCLK / 1000000; // default to 1MHz (1 us ticks)
US_TICKER_TIMER->PR = prescale - 1;
US_TICKER_TIMER->TCR = 1; // enable = 1, reset = 0
NVIC_SetVector(US_TICKER_TIMER_IRQn, (uint32_t)us_ticker_irq_handler);
NVIC_EnableIRQ(US_TICKER_TIMER_IRQn);
}
uint32_t us_ticker_read() {
if (!us_ticker_inited)
us_ticker_init();
return US_TICKER_TIMER->TC;
}
void us_ticker_set_interrupt(unsigned int timestamp) {
// set match value
US_TICKER_TIMER->MR0 = timestamp;
// enable match interrupt
US_TICKER_TIMER->MCR |= 1;
}
void us_ticker_disable_interrupt(void) {
US_TICKER_TIMER->MCR &= ~1;
}
void us_ticker_clear_interrupt(void) {
US_TICKER_TIMER->IR = 1;
}

View File

@ -29,6 +29,10 @@ MUTs = {
"port":"COM44", "disk":'H:\\',
"peripherals": ["TMP102", "digital_loop", "port_loop", "analog_loop", "SD"]
},
"5" : {"mcu": "LPC1114",
"port":"COM45", "disk":"I:\\",
"peripherals": ["TMP102", "digital_loop", "port_loop", "analog_loop", "SD"]
}
}
# ARM
@ -56,7 +60,7 @@ ARM_CPPLIB = join(ARM_LIB, "cpplib")
MY_ARM_CLIB = join(ARM_PATH, "lib", "microlib")
# GCC ARM
GCC_ARM_PATH = "C:/arm-none-eabi-gcc-4_7/bin"
GCC_ARM_PATH = "C:\\Program Files (x86)\\GNU Tools ARM Embedded\\4.7 2013q2\\bin"
# GCC CodeSourcery
GCC_CS_PATH = "C:/Program Files (x86)/CodeSourcery/Sourcery_CodeBench_Lite_for_ARM_EABI/bin"

View File

@ -173,6 +173,15 @@ class LPC1347(Target):
self.supported_toolchains = ["ARM", "GCC_ARM"]
class LPC1114(Target):
def __init__(self):
Target.__init__(self)
self.core = "Cortex-M0"
self.extra_labels = ['NXP', 'LPC11XX']
self.supported_toolchains = ["ARM", "uARM", "GCC_CR", "GCC_ARM"]
# Get a single instance for each target
TARGETS = [
LPC2368(),
@ -185,7 +194,8 @@ TARGETS = [
LPC4330_M4(),
STM32F407(),
MBED_MCU(),
LPC1347()
LPC1347(),
LPC1114()
]
# Map each target name to its unique instance