[NUCLEO_F030R8] Typo corrections (astyle)

pull/697/head
bcostm 2014-11-13 16:40:37 +01:00
parent 08c85ef136
commit 17e61f58d6
14 changed files with 246 additions and 146 deletions

View File

@ -58,7 +58,8 @@ ADC_HandleTypeDef AdcHandle;
int adc_inited = 0; int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin) { void analogin_init(analogin_t *obj, PinName pin)
{
// Get the peripheral name from the pin and assign it to the object // Get the peripheral name from the pin and assign it to the object
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
MBED_ASSERT(obj->adc != (ADCName)NC); MBED_ASSERT(obj->adc != (ADCName)NC);
@ -98,7 +99,8 @@ void analogin_init(analogin_t *obj, PinName pin) {
} }
} }
static inline uint16_t adc_read(analogin_t *obj) { static inline uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig; ADC_ChannelConfTypeDef sConfig;
AdcHandle.Instance = (ADC_TypeDef *)(obj->adc); AdcHandle.Instance = (ADC_TypeDef *)(obj->adc);
@ -175,14 +177,16 @@ static inline uint16_t adc_read(analogin_t *obj) {
} }
} }
uint16_t analogin_read_u16(analogin_t *obj) { uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj); uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion // 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F); value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value; return value;
} }
float analogin_read(analogin_t *obj) { float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj); uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range return (float)value * (1.0f / (float)0xFFF); // 12 bits range
} }

View File

@ -34,7 +34,8 @@
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
uint32_t gpio_set(PinName pin) { uint32_t gpio_set(PinName pin)
{
MBED_ASSERT(pin != (PinName)NC); MBED_ASSERT(pin != (PinName)NC);
pin_function(pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
@ -42,7 +43,8 @@ uint32_t gpio_set(PinName pin) {
return (uint32_t)(1 << ((uint32_t)pin & 0xF)); // Return the pin mask return (uint32_t)(1 << ((uint32_t)pin & 0xF)); // Return the pin mask
} }
void gpio_init(gpio_t *obj, PinName pin) { void gpio_init(gpio_t *obj, PinName pin)
{
obj->pin = pin; obj->pin = pin;
if (pin == (PinName)NC) { if (pin == (PinName)NC) {
return; return;
@ -61,11 +63,13 @@ void gpio_init(gpio_t *obj, PinName pin) {
obj->reg_clr = &gpio->BRR; obj->reg_clr = &gpio->BRR;
} }
void gpio_mode(gpio_t *obj, PinMode mode) { void gpio_mode(gpio_t *obj, PinMode mode)
{
pin_mode(obj->pin, mode); pin_mode(obj->pin, mode);
} }
void gpio_dir(gpio_t *obj, PinDirection direction) { void gpio_dir(gpio_t *obj, PinDirection direction)
{
MBED_ASSERT(obj->pin != (PinName)NC); MBED_ASSERT(obj->pin != (PinName)NC);
if (direction == PIN_OUTPUT) { if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0)); pin_function(obj->pin, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0));

View File

@ -47,7 +47,8 @@ static uint32_t channel_pin[CHANNEL_NUM] = {0, 0, 0};
static gpio_irq_handler irq_handler; static gpio_irq_handler irq_handler;
static void handle_interrupt_in(uint32_t irq_index) { static void handle_interrupt_in(uint32_t irq_index)
{
// Retrieve the gpio and pin that generate the irq // Retrieve the gpio and pin that generate the irq
GPIO_TypeDef *gpio = (GPIO_TypeDef *)(channel_gpio[irq_index]); GPIO_TypeDef *gpio = (GPIO_TypeDef *)(channel_gpio[irq_index]);
uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]); uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]);
@ -68,21 +69,25 @@ static void handle_interrupt_in(uint32_t irq_index) {
} }
// EXTI lines 0 to 1 // EXTI lines 0 to 1
static void gpio_irq0(void) { static void gpio_irq0(void)
{
handle_interrupt_in(0); handle_interrupt_in(0);
} }
// EXTI lines 2 to 3 // EXTI lines 2 to 3
static void gpio_irq1(void) { static void gpio_irq1(void)
{
handle_interrupt_in(1); handle_interrupt_in(1);
} }
// EXTI lines 4 to 15 // EXTI lines 4 to 15
static void gpio_irq2(void) { static void gpio_irq2(void)
{
handle_interrupt_in(2); handle_interrupt_in(2);
} }
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id) { int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id)
{
IRQn_Type irq_n = (IRQn_Type)0; IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0; uint32_t vector = 0;
uint32_t irq_index; uint32_t irq_index;
@ -134,7 +139,8 @@ int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32
return 0; return 0;
} }
void gpio_irq_free(gpio_irq_t *obj) { void gpio_irq_free(gpio_irq_t *obj)
{
channel_ids[obj->irq_index] = 0; channel_ids[obj->irq_index] = 0;
channel_gpio[obj->irq_index] = 0; channel_gpio[obj->irq_index] = 0;
channel_pin[obj->irq_index] = 0; channel_pin[obj->irq_index] = 0;
@ -183,19 +189,21 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable)
obj->event = EDGE_RISE; obj->event = EDGE_RISE;
} else { // NONE or FALL } else { // NONE or FALL
mode = STM_MODE_IT_EVT_RESET; mode = STM_MODE_IT_EVT_RESET;
obj->event = EDGE_NONE; obj->event = EDGE_NONE;
} }
} }
} }
pin_function(obj->pin, STM_PIN_DATA(mode, pull, 0)); pin_function(obj->pin, STM_PIN_DATA(mode, pull, 0));
} }
void gpio_irq_enable(gpio_irq_t *obj) { void gpio_irq_enable(gpio_irq_t *obj)
{
NVIC_EnableIRQ(obj->irq_n); NVIC_EnableIRQ(obj->irq_n);
} }
void gpio_irq_disable(gpio_irq_t *obj) { void gpio_irq_disable(gpio_irq_t *obj)
{
NVIC_DisableIRQ(obj->irq_n); NVIC_DisableIRQ(obj->irq_n);
obj->event = EDGE_NONE; obj->event = EDGE_NONE;
} }

View File

@ -48,7 +48,8 @@ typedef struct {
__IO uint32_t *reg_clr; __IO uint32_t *reg_clr;
} gpio_t; } gpio_t;
static inline void gpio_write(gpio_t *obj, int value) { static inline void gpio_write(gpio_t *obj, int value)
{
MBED_ASSERT(obj->pin != (PinName)NC); MBED_ASSERT(obj->pin != (PinName)NC);
if (value) { if (value) {
*obj->reg_set = obj->mask; *obj->reg_set = obj->mask;
@ -57,7 +58,8 @@ static inline void gpio_write(gpio_t *obj, int value) {
} }
} }
static inline int gpio_read(gpio_t *obj) { static inline int gpio_read(gpio_t *obj)
{
MBED_ASSERT(obj->pin != (PinName)NC); MBED_ASSERT(obj->pin != (PinName)NC);
return ((*obj->reg_in & obj->mask) ? 1 : 0); return ((*obj->reg_in & obj->mask) ? 1 : 0);
} }

View File

@ -60,7 +60,8 @@ I2C_HandleTypeDef I2cHandle;
int i2c1_inited = 0; int i2c1_inited = 0;
int i2c2_inited = 0; int i2c2_inited = 0;
void i2c_init(i2c_t *obj, PinName sda, PinName scl) { void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
// Determine the I2C to use // Determine the I2C to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA); I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL); I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
@ -69,7 +70,7 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
MBED_ASSERT(obj->i2c != (I2CName)NC); MBED_ASSERT(obj->i2c != (I2CName)NC);
// Enable I2C1 clock and pinout if not done // Enable I2C1 clock and pinout if not done
if ((obj->i2c == I2C_1)&& !i2c1_inited) { if ((obj->i2c == I2C_1) && !i2c1_inited) {
i2c1_inited = 1; i2c1_inited = 1;
__HAL_RCC_I2C1_CONFIG(RCC_I2C1CLKSOURCE_SYSCLK); __HAL_RCC_I2C1_CONFIG(RCC_I2C1CLKSOURCE_SYSCLK);
__I2C1_CLK_ENABLE(); __I2C1_CLK_ENABLE();
@ -80,14 +81,14 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
pin_mode(scl, OpenDrain); pin_mode(scl, OpenDrain);
} }
// Enable I2C2 clock and pinout if not done // Enable I2C2 clock and pinout if not done
if ((obj->i2c == I2C_2)&& !i2c2_inited) { if ((obj->i2c == I2C_2) && !i2c2_inited) {
i2c2_inited = 1; i2c2_inited = 1;
__I2C2_CLK_ENABLE(); __I2C2_CLK_ENABLE();
// Configure I2C pins // Configure I2C pins
pinmap_pinout(sda, PinMap_I2C_SDA); pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL); pinmap_pinout(scl, PinMap_I2C_SCL);
pin_mode(sda, OpenDrain); pin_mode(sda, OpenDrain);
pin_mode(scl, OpenDrain); pin_mode(scl, OpenDrain);
} }
// Reset to clear pending flags if any // Reset to clear pending flags if any
@ -97,14 +98,15 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
i2c_frequency(obj, 100000); // 100 kHz per default i2c_frequency(obj, 100000); // 100 kHz per default
} }
void i2c_frequency(i2c_t *obj, int hz) { void i2c_frequency(i2c_t *obj, int hz)
{
MBED_ASSERT((hz == 100000) || (hz == 400000) || (hz == 1000000)); MBED_ASSERT((hz == 100000) || (hz == 400000) || (hz == 1000000));
I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c); I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
// wait before init // wait before init
timeout = LONG_TIMEOUT; timeout = LONG_TIMEOUT;
while((__HAL_I2C_GET_FLAG(&I2cHandle, I2C_FLAG_BUSY)) && (timeout-- != 0)); while ((__HAL_I2C_GET_FLAG(&I2cHandle, I2C_FLAG_BUSY)) && (timeout-- != 0));
// Common settings: I2C clock = 48 MHz, Analog filter = ON, Digital filter coefficient = 0 // Common settings: I2C clock = 48 MHz, Analog filter = ON, Digital filter coefficient = 0
switch (hz) { switch (hz) {
@ -132,7 +134,8 @@ void i2c_frequency(i2c_t *obj, int hz) {
HAL_I2C_Init(&I2cHandle); HAL_I2C_Init(&I2cHandle);
} }
inline int i2c_start(i2c_t *obj) { inline int i2c_start(i2c_t *obj)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
@ -155,7 +158,8 @@ inline int i2c_start(i2c_t *obj) {
return 0; return 0;
} }
inline int i2c_stop(i2c_t *obj) { inline int i2c_stop(i2c_t *obj)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
// Generate the STOP condition // Generate the STOP condition
@ -164,7 +168,8 @@ inline int i2c_stop(i2c_t *obj) {
return 0; return 0;
} }
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c); I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
@ -209,7 +214,8 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
return length; return length;
} }
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c); I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
@ -253,7 +259,8 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
return count; return count;
} }
int i2c_byte_read(i2c_t *obj, int last) { int i2c_byte_read(i2c_t *obj, int last)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
@ -268,7 +275,8 @@ int i2c_byte_read(i2c_t *obj, int last) {
return (int)i2c->RXDR; return (int)i2c->RXDR;
} }
int i2c_byte_write(i2c_t *obj, int data) { int i2c_byte_write(i2c_t *obj, int data)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout; int timeout;
@ -285,12 +293,13 @@ int i2c_byte_write(i2c_t *obj, int data) {
return 1; return 1;
} }
void i2c_reset(i2c_t *obj) { void i2c_reset(i2c_t *obj)
{
int timeout; int timeout;
// wait before reset // wait before reset
timeout = LONG_TIMEOUT; timeout = LONG_TIMEOUT;
while((__HAL_I2C_GET_FLAG(&I2cHandle, I2C_FLAG_BUSY)) && (timeout-- != 0)); while ((__HAL_I2C_GET_FLAG(&I2cHandle, I2C_FLAG_BUSY)) && (timeout-- != 0));
if (obj->i2c == I2C_1) { if (obj->i2c == I2C_1) {
__I2C1_FORCE_RESET(); __I2C1_FORCE_RESET();
@ -304,7 +313,8 @@ void i2c_reset(i2c_t *obj) {
#if DEVICE_I2CSLAVE #if DEVICE_I2CSLAVE
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) { void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
uint16_t tmpreg = 0; uint16_t tmpreg = 0;
@ -322,7 +332,8 @@ void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
i2c->OAR1 |= I2C_OAR1_OA1EN; i2c->OAR1 |= I2C_OAR1_OA1EN;
} }
void i2c_slave_mode(i2c_t *obj, int enable_slave) { void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c); I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
uint16_t tmpreg; uint16_t tmpreg;
@ -348,7 +359,8 @@ void i2c_slave_mode(i2c_t *obj, int enable_slave) {
#define WriteGeneral 2 // the master is writing to all slave #define WriteGeneral 2 // the master is writing to all slave
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver) #define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
int i2c_slave_receive(i2c_t *obj) { int i2c_slave_receive(i2c_t *obj)
{
I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c); I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c);
int retValue = NoData; int retValue = NoData;
@ -366,7 +378,8 @@ int i2c_slave_receive(i2c_t *obj) {
return (retValue); return (retValue);
} }
int i2c_slave_read(i2c_t *obj, char *data, int length) { int i2c_slave_read(i2c_t *obj, char *data, int length)
{
char size = 0; char size = 0;
while (size < length) data[size++] = (char)i2c_byte_read(obj, 0); while (size < length) data[size++] = (char)i2c_byte_read(obj, 0);
@ -374,7 +387,8 @@ int i2c_slave_read(i2c_t *obj, char *data, int length) {
return size; return size;
} }
int i2c_slave_write(i2c_t *obj, const char *data, int length) { int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
char size = 0; char size = 0;
I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c); I2cHandle.Instance = (I2C_TypeDef *)(obj->i2c);

View File

@ -28,7 +28,8 @@
#include "cmsis.h" #include "cmsis.h"
// This function is called after RAM initialization and before main. // This function is called after RAM initialization and before main.
void mbed_sdk_init() { void mbed_sdk_init()
{
// Update the SystemCoreClock variable. // Update the SystemCoreClock variable.
SystemCoreClockUpdate(); SystemCoreClockUpdate();
} }

View File

@ -50,7 +50,8 @@ static const uint32_t gpio_mode[13] = {
}; };
// Enable GPIO clock and return GPIO base address // Enable GPIO clock and return GPIO base address
uint32_t Set_GPIO_Clock(uint32_t port_idx) { uint32_t Set_GPIO_Clock(uint32_t port_idx)
{
uint32_t gpio_add = 0; uint32_t gpio_add = 0;
switch (port_idx) { switch (port_idx) {
case PortA: case PortA:
@ -83,7 +84,8 @@ uint32_t Set_GPIO_Clock(uint32_t port_idx) {
/** /**
* Configure pin (mode, speed, output type and pull-up/pull-down) * Configure pin (mode, speed, output type and pull-up/pull-down)
*/ */
void pin_function(PinName pin, int data) { void pin_function(PinName pin, int data)
{
MBED_ASSERT(pin != (PinName)NC); MBED_ASSERT(pin != (PinName)NC);
// Get the pin informations // Get the pin informations
@ -117,7 +119,8 @@ void pin_function(PinName pin, int data) {
/** /**
* Configure pin pull-up/pull-down * Configure pin pull-up/pull-down
*/ */
void pin_mode(PinName pin, PinMode mode) { void pin_mode(PinName pin, PinMode mode)
{
MBED_ASSERT(pin != (PinName)NC); MBED_ASSERT(pin != (PinName)NC);
uint32_t port_index = STM_PORT(pin); uint32_t port_index = STM_PORT(pin);

View File

@ -38,11 +38,13 @@ extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...) // high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...)
// low nibble = pin number // low nibble = pin number
PinName port_pin(PortName port, int pin_n) { PinName port_pin(PortName port, int pin_n)
{
return (PinName)(pin_n + (port << 4)); return (PinName)(pin_n + (port << 4));
} }
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) { void port_init(port_t *obj, PortName port, int mask, PinDirection dir)
{
uint32_t port_index = (uint32_t)port; uint32_t port_index = (uint32_t)port;
// Enable GPIO clock // Enable GPIO clock
@ -59,7 +61,8 @@ void port_init(port_t *obj, PortName port, int mask, PinDirection dir) {
port_dir(obj, dir); port_dir(obj, dir);
} }
void port_dir(port_t *obj, PinDirection dir) { void port_dir(port_t *obj, PinDirection dir)
{
uint32_t i; uint32_t i;
obj->direction = dir; obj->direction = dir;
for (i = 0; i < 16; i++) { // Process all pins for (i = 0; i < 16; i++) { // Process all pins
@ -73,7 +76,8 @@ void port_dir(port_t *obj, PinDirection dir) {
} }
} }
void port_mode(port_t *obj, PinMode mode) { void port_mode(port_t *obj, PinMode mode)
{
uint32_t i; uint32_t i;
for (i = 0; i < 16; i++) { // Process all pins for (i = 0; i < 16; i++) { // Process all pins
if (obj->mask & (1 << i)) { // If the pin is used if (obj->mask & (1 << i)) { // If the pin is used
@ -82,11 +86,13 @@ void port_mode(port_t *obj, PinMode mode) {
} }
} }
void port_write(port_t *obj, int value) { void port_write(port_t *obj, int value)
{
*obj->reg_out = (*obj->reg_out & ~obj->mask) | (value & obj->mask); *obj->reg_out = (*obj->reg_out & ~obj->mask) | (value & obj->mask);
} }
int port_read(port_t *obj) { int port_read(port_t *obj)
{
if (obj->direction == PIN_OUTPUT) { if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask); return (*obj->reg_out & obj->mask);
} else { // PIN_INPUT } else { // PIN_INPUT

View File

@ -67,7 +67,8 @@ static const PinMap PinMap_PWM[] = {
static TIM_HandleTypeDef TimHandle; static TIM_HandleTypeDef TimHandle;
void pwmout_init(pwmout_t* obj, PinName pin) { void pwmout_init(pwmout_t* obj, PinName pin)
{
// Get the peripheral name from the pin and assign it to the object // Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
@ -92,12 +93,14 @@ void pwmout_init(pwmout_t* obj, PinName pin) {
pwmout_period_us(obj, 20000); // 20 ms per default pwmout_period_us(obj, 20000); // 20 ms per default
} }
void pwmout_free(pwmout_t* obj) { void pwmout_free(pwmout_t* obj)
{
// Configure GPIO // Configure GPIO
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
} }
void pwmout_write(pwmout_t* obj, float value) { void pwmout_write(pwmout_t* obj, float value)
{
TIM_OC_InitTypeDef sConfig; TIM_OC_InitTypeDef sConfig;
int channel = 0; int channel = 0;
int complementary_channel = 0; int complementary_channel = 0;
@ -137,7 +140,7 @@ void pwmout_write(pwmout_t* obj, float value) {
// Channels 1N // Channels 1N
case PB_6: case PB_6:
case PB_7: case PB_7:
// case PB_15: // case PB_15:
channel = TIM_CHANNEL_1; channel = TIM_CHANNEL_1;
complementary_channel = 1; complementary_channel = 1;
break; break;
@ -171,7 +174,8 @@ void pwmout_write(pwmout_t* obj, float value) {
} }
} }
float pwmout_read(pwmout_t* obj) { float pwmout_read(pwmout_t* obj)
{
float value = 0; float value = 0;
if (obj->period > 0) { if (obj->period > 0) {
value = (float)(obj->pulse) / (float)(obj->period); value = (float)(obj->pulse) / (float)(obj->period);
@ -179,15 +183,18 @@ float pwmout_read(pwmout_t* obj) {
return ((value > (float)1.0) ? (float)(1.0) : (value)); return ((value > (float)1.0) ? (float)(1.0) : (value));
} }
void pwmout_period(pwmout_t* obj, float seconds) { void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f); pwmout_period_us(obj, seconds * 1000000.0f);
} }
void pwmout_period_ms(pwmout_t* obj, int ms) { void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000); pwmout_period_us(obj, ms * 1000);
} }
void pwmout_period_us(pwmout_t* obj, int us) { void pwmout_period_us(pwmout_t* obj, int us)
{
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
float dc = pwmout_read(obj); float dc = pwmout_read(obj);
@ -212,15 +219,18 @@ void pwmout_period_us(pwmout_t* obj, int us) {
__HAL_TIM_ENABLE(&TimHandle); __HAL_TIM_ENABLE(&TimHandle);
} }
void pwmout_pulsewidth(pwmout_t* obj, float seconds) { void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f); pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
} }
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000); pwmout_pulsewidth_us(obj, ms * 1000);
} }
void pwmout_pulsewidth_us(pwmout_t* obj, int us) { void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
float value = (float)us / (float)obj->period; float value = (float)us / (float)obj->period;
pwmout_write(obj, value); pwmout_write(obj, value);
} }

View File

@ -37,7 +37,8 @@ static int rtc_inited = 0;
static RTC_HandleTypeDef RtcHandle; static RTC_HandleTypeDef RtcHandle;
void rtc_init(void) { void rtc_init(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct;
uint32_t rtc_freq = 0; uint32_t rtc_freq = 0;
@ -94,7 +95,8 @@ void rtc_init(void) {
} }
} }
void rtc_free(void) { void rtc_free(void)
{
// Enable Power clock // Enable Power clock
__PWR_CLK_ENABLE(); __PWR_CLK_ENABLE();
@ -119,7 +121,8 @@ void rtc_free(void) {
rtc_inited = 0; rtc_inited = 0;
} }
int rtc_isenabled(void) { int rtc_isenabled(void)
{
return rtc_inited; return rtc_inited;
} }
@ -140,7 +143,8 @@ int rtc_isenabled(void) {
tm_yday days since January 1 0-365 tm_yday days since January 1 0-365
tm_isdst Daylight Saving Time flag tm_isdst Daylight Saving Time flag
*/ */
time_t rtc_read(void) { time_t rtc_read(void)
{
RTC_DateTypeDef dateStruct; RTC_DateTypeDef dateStruct;
RTC_TimeTypeDef timeStruct; RTC_TimeTypeDef timeStruct;
struct tm timeinfo; struct tm timeinfo;
@ -167,7 +171,8 @@ time_t rtc_read(void) {
return t; return t;
} }
void rtc_write(time_t t) { void rtc_write(time_t t)
{
RTC_DateTypeDef dateStruct; RTC_DateTypeDef dateStruct;
RTC_TimeTypeDef timeStruct; RTC_TimeTypeDef timeStruct;

View File

@ -62,7 +62,8 @@ UART_HandleTypeDef UartHandle;
int stdio_uart_inited = 0; int stdio_uart_inited = 0;
serial_t stdio_uart; serial_t stdio_uart;
static void init_uart(serial_t *obj) { static void init_uart(serial_t *obj)
{
UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Instance = (USART_TypeDef *)(obj->uart);
UartHandle.Init.BaudRate = obj->baudrate; UartHandle.Init.BaudRate = obj->baudrate;
@ -86,7 +87,8 @@ static void init_uart(serial_t *obj) {
HAL_UART_Init(&UartHandle); HAL_UART_Init(&UartHandle);
} }
void serial_init(serial_t *obj, PinName tx, PinName rx) { void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// Determine the UART to use (UART_1, UART_2, ...) // Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
@ -129,7 +131,8 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
} }
} }
void serial_free(serial_t *obj) { void serial_free(serial_t *obj)
{
// Reset UART and disable clock // Reset UART and disable clock
if (obj->uart == UART_1) { if (obj->uart == UART_1) {
__USART1_FORCE_RESET(); __USART1_FORCE_RESET();
@ -149,12 +152,14 @@ void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0; serial_irq_ids[obj->index] = 0;
} }
void serial_baud(serial_t *obj, int baudrate) { void serial_baud(serial_t *obj, int baudrate)
{
obj->baudrate = baudrate; obj->baudrate = baudrate;
init_uart(obj); init_uart(obj);
} }
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
if (data_bits == 9) { if (data_bits == 9) {
obj->databits = UART_WORDLENGTH_9B; obj->databits = UART_WORDLENGTH_9B;
} else { } else {
@ -188,7 +193,8 @@ void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_b
* INTERRUPTS HANDLING * INTERRUPTS HANDLING
******************************************************************************/ ******************************************************************************/
static void uart_irq(UARTName name, int id) { static void uart_irq(UARTName name, int id)
{
UartHandle.Instance = (USART_TypeDef *)name; UartHandle.Instance = (USART_TypeDef *)name;
if (serial_irq_ids[id] != 0) { if (serial_irq_ids[id] != 0) {
if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) { if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) {
@ -202,20 +208,24 @@ static void uart_irq(UARTName name, int id) {
} }
} }
static void uart1_irq(void) { static void uart1_irq(void)
{
uart_irq(UART_1, 0); uart_irq(UART_1, 0);
} }
static void uart2_irq(void) { static void uart2_irq(void)
{
uart_irq(UART_2, 1); uart_irq(UART_2, 1);
} }
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler; irq_handler = handler;
serial_irq_ids[obj->index] = id; serial_irq_ids[obj->index] = id;
} }
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0; IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0; uint32_t vector = 0;
@ -265,19 +275,22 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
* READ/WRITE * READ/WRITE
******************************************************************************/ ******************************************************************************/
int serial_getc(serial_t *obj) { int serial_getc(serial_t *obj)
{
USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
while (!serial_readable(obj)); while (!serial_readable(obj));
return (int)(uart->RDR & (uint16_t)0xFF); return (int)(uart->RDR & (uint16_t)0xFF);
} }
void serial_putc(serial_t *obj, int c) { void serial_putc(serial_t *obj, int c)
{
USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
while (!serial_writable(obj)); while (!serial_writable(obj));
uart->TDR = (uint32_t)(c & (uint16_t)0xFF); uart->TDR = (uint32_t)(c & (uint16_t)0xFF);
} }
int serial_readable(serial_t *obj) { int serial_readable(serial_t *obj)
{
int status; int status;
UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Instance = (USART_TypeDef *)(obj->uart);
// Check if data is received // Check if data is received
@ -285,7 +298,8 @@ int serial_readable(serial_t *obj) {
return status; return status;
} }
int serial_writable(serial_t *obj) { int serial_writable(serial_t *obj)
{
int status; int status;
UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Instance = (USART_TypeDef *)(obj->uart);
// Check if data is transmitted // Check if data is transmitted
@ -293,21 +307,25 @@ int serial_writable(serial_t *obj) {
return status; return status;
} }
void serial_clear(serial_t *obj) { void serial_clear(serial_t *obj)
{
UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Instance = (USART_TypeDef *)(obj->uart);
__HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC); __HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC);
__HAL_UART_SEND_REQ(&UartHandle, UART_RXDATA_FLUSH_REQUEST); __HAL_UART_SEND_REQ(&UartHandle, UART_RXDATA_FLUSH_REQUEST);
} }
void serial_pinout_tx(PinName tx) { void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(tx, PinMap_UART_TX);
} }
void serial_break_set(serial_t *obj) { void serial_break_set(serial_t *obj)
{
// [TODO] // [TODO]
} }
void serial_break_clear(serial_t *obj) { void serial_break_clear(serial_t *obj)
{
// [TODO] // [TODO]
} }

View File

@ -33,7 +33,8 @@
#include "cmsis.h" #include "cmsis.h"
void sleep(void) { void sleep(void)
{
// Stop HAL systick // Stop HAL systick
HAL_SuspendTick(); HAL_SuspendTick();
// Request to enter SLEEP mode // Request to enter SLEEP mode
@ -42,16 +43,17 @@ void sleep(void) {
HAL_ResumeTick(); HAL_ResumeTick();
} }
void deepsleep(void) { void deepsleep(void)
{
// Request to enter STOP mode with regulator in low power mode // Request to enter STOP mode with regulator in low power mode
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
HAL_InitTick(TICK_INT_PRIORITY); HAL_InitTick(TICK_INT_PRIORITY);
// After wake-up from STOP reconfigure the PLL // After wake-up from STOP reconfigure the PLL
SetSysClock(); SetSysClock();
HAL_InitTick(TICK_INT_PRIORITY); HAL_InitTick(TICK_INT_PRIORITY);
} }
#endif #endif

View File

@ -66,7 +66,8 @@ static const PinMap PinMap_SPI_SSEL[] = {
static SPI_HandleTypeDef SpiHandle; static SPI_HandleTypeDef SpiHandle;
static void init_spi(spi_t *obj) { static void init_spi(spi_t *obj)
{
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
__HAL_SPI_DISABLE(&SpiHandle); __HAL_SPI_DISABLE(&SpiHandle);
@ -88,7 +89,8 @@ static void init_spi(spi_t *obj) {
__HAL_SPI_ENABLE(&SpiHandle); __HAL_SPI_ENABLE(&SpiHandle);
} }
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// Determine the SPI to use // Determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
@ -137,7 +139,8 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
init_spi(obj); init_spi(obj);
} }
void spi_free(spi_t *obj) { void spi_free(spi_t *obj)
{
// Reset SPI and disable clock // Reset SPI and disable clock
if (obj->spi == SPI_1) { if (obj->spi == SPI_1) {
__SPI1_FORCE_RESET(); __SPI1_FORCE_RESET();
@ -158,7 +161,8 @@ void spi_free(spi_t *obj) {
pin_function(obj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
} }
void spi_format(spi_t *obj, int bits, int mode, int slave) { void spi_format(spi_t *obj, int bits, int mode, int slave)
{
// Save new values // Save new values
if (bits == 16) { if (bits == 16) {
obj->bits = SPI_DATASIZE_16BIT; obj->bits = SPI_DATASIZE_16BIT;
@ -196,7 +200,8 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
init_spi(obj); init_spi(obj);
} }
void spi_frequency(spi_t *obj, int hz) { void spi_frequency(spi_t *obj, int hz)
{
// Note: The frequencies are obtained with SPI clock = 48 MHz (APB clock) // Note: The frequencies are obtained with SPI clock = 48 MHz (APB clock)
if (hz < 375000) { if (hz < 375000) {
obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 188 kHz obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 188 kHz
@ -218,7 +223,8 @@ void spi_frequency(spi_t *obj, int hz) {
init_spi(obj); init_spi(obj);
} }
static inline int ssp_readable(spi_t *obj) { static inline int ssp_readable(spi_t *obj)
{
int status; int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
// Check if data is received // Check if data is received
@ -226,7 +232,8 @@ static inline int ssp_readable(spi_t *obj) {
return status; return status;
} }
static inline int ssp_writeable(spi_t *obj) { static inline int ssp_writeable(spi_t *obj)
{
int status; int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
// Check if data is transmitted // Check if data is transmitted
@ -234,7 +241,8 @@ static inline int ssp_writeable(spi_t *obj) {
return status; return status;
} }
static inline void ssp_write(spi_t *obj, int value) { static inline void ssp_write(spi_t *obj, int value)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj)); while (!ssp_writeable(obj));
@ -248,7 +256,8 @@ static inline void ssp_write(spi_t *obj, int value) {
} }
} }
static inline int ssp_read(spi_t *obj) { static inline int ssp_read(spi_t *obj)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj)); while (!ssp_readable(obj));
@ -262,35 +271,41 @@ static inline int ssp_read(spi_t *obj) {
} }
} }
static inline int ssp_busy(spi_t *obj) { static inline int ssp_busy(spi_t *obj)
{
int status; int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_BSY) != RESET) ? 1 : 0); status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
return status; return status;
} }
int spi_master_write(spi_t *obj, int value) { int spi_master_write(spi_t *obj, int value)
ssp_write(obj, value); {
return ssp_read(obj); ssp_write(obj, value);
return ssp_read(obj);
} }
int spi_slave_receive(spi_t *obj) { int spi_slave_receive(spi_t *obj)
return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0); {
return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
}; };
int spi_slave_read(spi_t *obj) { int spi_slave_read(spi_t *obj)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj)); while (!ssp_readable(obj));
return (int)spi->DR; return (int)spi->DR;
} }
void spi_slave_write(spi_t *obj, int value) { void spi_slave_write(spi_t *obj, int value)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj)); while (!ssp_writeable(obj));
spi->DR = (uint16_t)value; spi->DR = (uint16_t)value;
} }
int spi_busy(spi_t *obj) { int spi_busy(spi_t *obj)
{
return ssp_busy(obj); return ssp_busy(obj);
} }

View File

@ -43,7 +43,8 @@ static volatile uint32_t SlaveCounter = 0;
static volatile uint32_t oc_int_part = 0; static volatile uint32_t oc_int_part = 0;
static volatile uint16_t oc_rem_part = 0; static volatile uint16_t oc_rem_part = 0;
void set_compare(uint16_t count) { void set_compare(uint16_t count)
{
TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Instance = TIM_MST;
// Set new output compare value // Set new output compare value
@ -53,7 +54,8 @@ void set_compare(uint16_t count) {
} }
// Used to increment the slave counter // Used to increment the slave counter
static void tim_update_irq_handler(void) { static void tim_update_irq_handler(void)
{
TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Instance = TIM_MST;
// Clear Update interrupt flag // Clear Update interrupt flag
@ -64,30 +66,32 @@ static void tim_update_irq_handler(void) {
} }
// Used by interrupt system // Used by interrupt system
static void tim_oc_irq_handler(void) { static void tim_oc_irq_handler(void)
{
uint16_t cval = TIM_MST->CNT; uint16_t cval = TIM_MST->CNT;
TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Instance = TIM_MST;
// Clear CC1 interrupt flag // Clear CC1 interrupt flag
if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
__HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1); __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
} }
if (oc_rem_part > 0) { if (oc_rem_part > 0) {
set_compare(oc_rem_part); // Finish the remaining time left set_compare(oc_rem_part); // Finish the remaining time left
oc_rem_part = 0; oc_rem_part = 0;
} else {
if (oc_int_part > 0) {
set_compare(0xFFFF);
oc_rem_part = cval; // To finish the counter loop the next time
oc_int_part--;
} else { } else {
if (oc_int_part > 0) { us_ticker_irq_handler();
set_compare(0xFFFF);
oc_rem_part = cval; // To finish the counter loop the next time
oc_int_part--;
} else {
us_ticker_irq_handler();
}
} }
}
} }
void us_ticker_init(void) { void us_ticker_init(void)
{
if (us_ticker_inited) return; if (us_ticker_inited) return;
us_ticker_inited = 1; us_ticker_inited = 1;
@ -106,7 +110,7 @@ void us_ticker_init(void) {
// Configure interrupts // Configure interrupts
__HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_UPDATE); __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_UPDATE);
// Update interrupt used for 32-bit counter // Update interrupt used for 32-bit counter
NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)tim_update_irq_handler); NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)tim_update_irq_handler);
NVIC_EnableIRQ(TIM_MST_UP_IRQ); NVIC_EnableIRQ(TIM_MST_UP_IRQ);
@ -118,7 +122,8 @@ void us_ticker_init(void) {
HAL_TIM_Base_Start(&TimMasterHandle); HAL_TIM_Base_Start(&TimMasterHandle);
} }
uint32_t us_ticker_read() { uint32_t us_ticker_read()
{
uint32_t counter, counter2; uint32_t counter, counter2;
if (!us_ticker_inited) us_ticker_init(); if (!us_ticker_inited) us_ticker_init();
// A situation might appear when Master overflows right after Slave is read and before the // A situation might appear when Master overflows right after Slave is read and before the
@ -139,7 +144,8 @@ uint32_t us_ticker_read() {
return counter2; return counter2;
} }
void us_ticker_set_interrupt(timestamp_t timestamp) { void us_ticker_set_interrupt(timestamp_t timestamp)
{
int delta = (int)((uint32_t)timestamp - us_ticker_read()); int delta = (int)((uint32_t)timestamp - us_ticker_read());
uint16_t cval = TIM_MST->CNT; uint16_t cval = TIM_MST->CNT;
@ -158,14 +164,16 @@ void us_ticker_set_interrupt(timestamp_t timestamp) {
} }
} }
void us_ticker_disable_interrupt(void) { void us_ticker_disable_interrupt(void)
{
TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Instance = TIM_MST;
__HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1); __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
} }
void us_ticker_clear_interrupt(void) { void us_ticker_clear_interrupt(void)
{
TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Instance = TIM_MST;
if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
__HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1); __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
} }
} }