From 087daeaceee5a9649788c4ce8f9e50f1d5027ae7 Mon Sep 17 00:00:00 2001 From: Chun-Chieh Li Date: Mon, 25 Apr 2022 16:47:21 +0800 Subject: [PATCH] M467: Support Crypto ECC H/W in full-module replacement 1. Replace ecp.c full-module, and other ec modules dependent on ecp.c (ecdh.c/ecdsa.c/ecjpake.c) will improve followingly. 2. Recover from Crypto ECC H/W failure: (1) Enable timed-out wait to escape from ECC H/W trap (2) On ECC H/W timeout, stop this ECC H/W operation (3) Fall back to S/W implementation on failure 3. Support Short Weierstrass curve 4. Support Montgomery curve Montgomery curve has the form: B y^2 = x^3 + A x^2 + x (1) In S/W impl, A is used as (A + 2) / 4. Figure out its original value for engine. https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L219-L220 (2) In S/W impl, B is unused. Actually, B is 1 for Curve25519/Curve448 and needs to configure to engine. https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L221-L222 (3) In S/W impl, y-coord is absent, but engine needs it. Deduce it from x-coord following: https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html https://www.rieselprime.de/ziki/Modular_square_root NOTE: Fix Curve448 has wrong order value https://github.com/Mbed-TLS/mbedtls/pull/5811 --- .../TARGET_NUVOTON/TARGET_M460/CMakeLists.txt | 4 + .../TARGET_M460/ecp/crypto_ecc_hw.c | 668 +++ .../TARGET_M460/ecp/crypto_ecc_hw.h | 197 + .../TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.c | 3605 +++++++++++++++++ .../TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.h | 187 + .../TARGET_M460/ecp/ecp_curves_alt.c | 1490 +++++++ .../TARGET_M460/ecp/ecp_helper.c | 166 + .../TARGET_M460/ecp/ecp_helper.h | 87 + .../TARGET_M460/ecp/ecp_internal_alt.c | 563 +-- .../TARGET_M460/mbedtls_device.h | 8 + 10 files changed, 6449 insertions(+), 526 deletions(-) create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.c create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.h create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.c create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.h create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_curves_alt.c create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.c create mode 100644 connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.h diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/CMakeLists.txt b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/CMakeLists.txt index ccce90bac9..ba705f50c0 100644 --- a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/CMakeLists.txt +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/CMakeLists.txt @@ -15,6 +15,10 @@ target_include_directories(mbed-mbedtls target_sources(mbed-mbedtls INTERFACE aes/aes_alt.c + ecp/crypto_ecc_hw.c + ecp/ecp_alt.c + ecp/ecp_curves_alt.c + ecp/ecp_helper.c ecp/ecp_internal_alt.c rsa/crypto_rsa_hw.c rsa/rsa_alt.c diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.c b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.c new file mode 100644 index 0000000000..42f75beaea --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.c @@ -0,0 +1,668 @@ +/* + * Copyright (c) 2022, Nuvoton Technology Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "mbedtls/common.h" + +#if defined(MBEDTLS_ECP_C) + +#include "mbedtls/ecp.h" +#include "mbedtls/error.h" + +#if defined(MBEDTLS_ECP_ALT) || defined(MBEDTLS_ECP_INTERNAL_ALT) + +#include "mbedtls/platform.h" +#include "mbedtls/platform_util.h" +#include "mbed_toolchain.h" +#include "mbed_assert.h" +#include "mbed_error.h" +#include "mbed_toolchain.h" +#include "nu_bitutil.h" +#include "nu_timer.h" +#include "crypto-misc.h" +#include "crypto_ecc_hw.h" +#include "ecp_helper.h" + +/* Enable ECC debug */ +//#define NU_CRYPTO_ECC_ENABLE_DEBUG + +/* Max key size supported */ +#define NU_ECC_MAXKEYBITS 571 +/* Max ECC big-number words */ +#define NU_ECC_BIGNUM_MAXWORD 18 +/* words in limb */ +#define wiL (sizeof (mbedtls_mpi_uint) / sizeof (uint32_t)) +/* Min MPI limbs for ECC big-number */ +#define NU_ECC_BIGNUM_MINLIMB (NU_ECC_BIGNUM_MAXWORD / wiL) + +/* + * Convert between words and number of limbs + * Divide first in order to avoid potential overflows + */ +#define WORDS_TO_LIMBS(i) ( (i) / wiL + ( (i) % wiL != 0 ) ) + +/* Notes for Crypto ECC H/W port + * + * The following point operations are not supported and will cause engine to trap: + * 1. P + P. Workaround by 2*P. + * 2. m*P with SCAP enabled, esp m = 2 or close to (order - 1). Cannot work around by + * fallback to S/W, because following operations are easily to fail with data error. + * Disable SCAP temporarily. + */ + +int crypto_ecc_capable(const mbedtls_ecp_group *grp) +{ + /* Curve types + * + * - Short Weierstrass + * - Montgomery + */ + mbedtls_ecp_curve_type curve_type = mbedtls_ecp_get_type(grp); + if (curve_type == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { + return 1; + } else if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + if (grp->id == MBEDTLS_ECP_DP_CURVE25519 || + grp->id == MBEDTLS_ECP_DP_CURVE448) { + return 1; + } else { + return 0; + } + } else { + return 0; + } +} + +int crypto_ecc_init(const mbedtls_ecp_group *grp) +{ + /* Behavior of mbedtls_internal_ecp_init()/mbedtls_internal_ecp_free() + * + * mbedtls_internal_ecp_init()/mbedtls_internal_ecp_free() are like pre-op/post-op calls + * and they guarantee: + * + * 1. Paired + * 2. No overlapping + * 3. Upper public function cannot return when ECP alter. is still activated. + */ + + /* Acquire ownership of ECC accelerator */ + crypto_ecc_acquire(); + + /* Initialize crypto module */ + crypto_init(); + + /* Release ownership of ECC accelerator */ + crypto_ecc_release(); + + return 0; +} + +void crypto_ecc_free(const mbedtls_ecp_group *grp) +{ + /* Acquire ownership of ECC accelerator */ + crypto_ecc_acquire(); + + /* Uninit crypto module */ + crypto_uninit(); + + /* Release ownership of ECC accelerator */ + crypto_ecc_release(); +} + +int crypto_ecc_run_eccop_add(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_ecp_point *P, + const mbedtls_ecp_point *Q, + bool blinding) +{ + /* SCAP is applicable only for PM. */ + blinding = false; + + return crypto_ecc_run_eccop(grp, R, NULL, P, NULL, Q, ECCOP_POINT_ADD, blinding); +} + +int crypto_ecc_run_eccop_double(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_ecp_point *P, + bool blinding) +{ + /* SCAP is applicable only for PM. */ + blinding = false; + + return crypto_ecc_run_eccop(grp, R, NULL, P, NULL, NULL, ECCOP_POINT_DOUBLE, blinding); +} + +int crypto_ecc_run_eccop_mul(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + bool blinding) +{ + /* NOTE: Engine can trap when SCAP is enabled. See above. */ + blinding = false; + return crypto_ecc_run_eccop(grp, R, m, P, NULL, NULL, ECCOP_POINT_MUL, blinding); +} + +int crypto_ecc_run_eccop(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + MBED_UNUSED const mbedtls_mpi *n, + const mbedtls_ecp_point *Q, + uint32_t eccop, + bool blinding) +{ + /* Check necessary arguments for all ECC operations */ + if (grp == NULL || R == NULL) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Check grp->P is positive */ + if (mbedtls_mpi_cmp_int(&grp->P, 0) <= 0) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Check supported maximum key bits */ + if (grp->pbits > NU_ECC_MAXKEYBITS) { + return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED; + } + + /* NOTE: Engine doesn't support P + Q when P and Q are the same. Workaround by 2*P */ + if (mbedtls_ecp_point_cmp(P, Q) == 0) { + return crypto_ecc_run_eccop(grp, R, NULL, P, NULL, NULL, ECCOP_POINT_DOUBLE, blinding); + } + + /* Acquire ownership of ECC accelerator */ + crypto_ecc_acquire(); + + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + bool ecc_done; + + mbedtls_mpi N_; + const mbedtls_mpi *Np; + + mbedtls_mpi_init(&N_); + + /* Use ECP_HELPER_MPI_NORM(Np, N1, N_, P) to get normalized MPI + * + * N_: Holds normalized MPI if the passed-in MPI N1 is not + * Np: Pointer to normalized MPI, which could be N1 or N_ + */ + + /* Check necessary arguments and handle special cases for specified ECC operation + * + * ECCOP_POINT_MUL R = m*P + * ECCOP_POINT_ADD R = P + Q + * ECCOP_POINT_DOUBLE R = 2*P + * + * ECC accelerator doesn't support R = 0, and we need to detect it. + */ + if (eccop == ECCOP_POINT_MUL) { + /* R = m*P */ + if (m == NULL || P == NULL) { + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + + /* R = 0*P = 0 or R = P = 0 */ + if (mbedtls_mpi_cmp_int(m, 0) == 0 || mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { + ret = mbedtls_ecp_set_zero(R); + goto cleanup; + } + + /* R = 1*P */ + if (mbedtls_mpi_cmp_int(m, 1) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); + /* Unnecessary because passed-in P and Q are required to be normalized */ + //MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); + goto cleanup; + } + + /* R = m*P = (multiple of order)*G = 0 */ + /* NOTE: If grp->N (order) is a prime, we could detect R = 0 for all m*P cases + * by just checking if m is a multiple of grp->N. Otherwise, sigh. */ + /* TODO: Find an approach to detecting R = 0 for all m*P cases */ + ECP_HELPER_MPI_NORM(&Np, *m, N_, grp->N); + if (mbedtls_mpi_cmp_int(Np, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); + goto cleanup; + } + } else if (eccop == ECCOP_POINT_ADD) { + /* R = P + Q */ + if (P == NULL || Q == NULL) { + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + + /* R = 0 + Q = Q */ + if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, Q)); + /* Unnecessary because passed-in P and Q are required to be normalized */ + //MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); + goto cleanup; + } + + /* R = P + 0 = P */ + if (mbedtls_mpi_cmp_int(&Q->Z, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); + /* Unnecessary because passed-in P and Q are required to be normalized */ + //MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); + goto cleanup; + } + + /* R = P + Q = P + (-P) = 0 */ + MBEDTLS_MPI_CHK(crypto_ecc_run_modop(&N_, &P->Y, &Q->Y, &grp->P, grp->pbits, MODOP_ADD)); + if (mbedtls_mpi_cmp_int(&N_, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); + goto cleanup; + } + } else if (eccop == ECCOP_POINT_DOUBLE) { + /* R = 2*P */ + if (P == NULL) { + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + + /* R = 2*0 = 0 */ + if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); + goto cleanup; + } + + /* R = 2*P = P + P = P + (-P) = 0 */ + MBEDTLS_MPI_CHK(crypto_ecc_run_modop(&N_, &P->Y, &P->Y, &grp->P, grp->pbits, MODOP_ADD)); + if (mbedtls_mpi_cmp_int(&N_, 0) == 0) { + MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); + goto cleanup; + } + } else { + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + + /* ECC curve type */ + mbedtls_ecp_curve_type curve_type = mbedtls_ecp_get_type(grp); + uint32_t curve_sel = 0; + switch (curve_type) { + case MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS: + curve_sel = 0; // Short Weierstrass + break; + + case MBEDTLS_ECP_TYPE_MONTGOMERY: + curve_sel = CRPT_ECC_CTL_CSEL_Msk; // Montgomery + break; + + default: + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + + /* Enable ECC interrupt */ + ECC_ENABLE_INT(CRPT); + + /* For safe, recover from previous failure if ever */ + MBEDTLS_MPI_CHK(crypto_ecc_abort(5*1000*1000)); + + /* Configure ECC curve coefficient A */ + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* + * In S/W impl, A is used as (A + 2) / 4. Figure out its original value for engine. + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L219-L220 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&N_, &grp->A, 4)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&N_, &N_, 2)); + Np = &N_; + } else { + /* Special case for A = -3 */ + if (grp->A.p == NULL) { + MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&N_, -3)); + ECP_HELPER_MPI_NORM(&Np, N_, N_, grp->P); + } else { + ECP_HELPER_MPI_NORM(&Np, grp->A, N_, grp->P); + } + } + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_A, NU_ECC_BIGNUM_MAXWORD)); + + /* Configure ECC curve coefficient B */ + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* + * In S/W impl, B is unused. Actually, B is 1 for Curve25519/Curve448. + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L221-L222 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&N_, 1)); + Np = &N_; + } else { + ECP_HELPER_MPI_NORM(&Np, grp->B, N_, grp->P); + } + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_B, NU_ECC_BIGNUM_MAXWORD)); + + /* Configure ECC prime modulus */ + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(&grp->P, (uint32_t *) CRPT->ECC_N, NU_ECC_BIGNUM_MAXWORD)); + + /* Configure ECC scalar for point multiplication + * + * Normalize m to within [1, order - 1] which ECCOP_POINT_MUL supports + * Special cases R = 0 should have been detected out above. + */ + if (eccop == ECCOP_POINT_MUL) { + ECP_HELPER_MPI_NORM(&Np, *m, N_, grp->N); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_K, NU_ECC_BIGNUM_MAXWORD)); + /* To enable SCAP, must write order of G into X2 */ + if (blinding) { + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(&grp->N, (uint32_t *) CRPT->ECC_X2, NU_ECC_BIGNUM_MAXWORD)); + } + } + + /* Configure ECC point (X1, Y1) */ + ECP_HELPER_MPI_NORM(&Np, P->X, N_, grp->P); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* Deduce Y from X for Montgomery curve + * + * For Montgomery curve, y-coord is absent. Deduce it from x-coord. + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/source/ecp_curves.c#L702-L706 + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/source/ecp_curves.c#L741-L745 + * + * Per real test, y-coord is necessary for engine. + */ + MBEDTLS_MPI_CHK(ecp_helper_deduce_y(grp, &N_, &P->X)); + Np = &N_; + } else { + ECP_HELPER_MPI_NORM(&Np, P->Y, N_, grp->P); + } + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); + + /* Configure ECC points (X2, Y2) */ + if (eccop == ECCOP_POINT_ADD) { + ECP_HELPER_MPI_NORM(&Np, Q->X, N_, grp->P); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X2, NU_ECC_BIGNUM_MAXWORD)); + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* Deduce Y from X (see above) */ + MBEDTLS_MPI_CHK(ecp_helper_deduce_y(grp, &N_, &Q->X)); + Np = &N_; + } else { + ECP_HELPER_MPI_NORM(&Np, Q->Y, N_, grp->P); + } + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y2, NU_ECC_BIGNUM_MAXWORD)); + } + + /* Configure for point operation */ + uint32_t ecc_ctl = 0 | + CRPT_ECC_CTL_START_Msk | // Start + CRPT_ECC_CTL_FSEL_Msk | // Prime field (GF(p)) + eccop | // Point operation + curve_sel | // Curve selection + (grp->pbits << CRPT_ECC_CTL_CURVEM_Pos) | // Key length of elliptic curve + (blinding ? CRPT_ECC_CTL_SCAP_Msk : 0) | // SCAP + 0; + + crypto_ecc_prestart(); +#if defined(NU_CRYPTO_ECC_ENABLE_DEBUG) && !defined(MBEDTLS_ECP_INTERNAL_ALT) + mbedtls_printf("[CRPT][ECC] Crypto ECC ...\n"); +#endif + CRPT->ECC_CTL = ecc_ctl; + ecc_done = crypto_ecc_wait2(1000*1000); // 1s timeout +#if defined(NU_CRYPTO_ECC_ENABLE_DEBUG) && !defined(MBEDTLS_ECP_INTERNAL_ALT) + mbedtls_printf("[CRPT][ECC] Crypto ECC ... %s\n", ecc_done ? "Done" : "Error"); +#endif + + /* For safe, recover from current failure */ + if (!ecc_done) { + crypto_ecc_abort(5*1000*1000); + } + + /* Disable ECC interrupt */ + ECC_DISABLE_INT(CRPT); + + MBEDTLS_MPI_CHK(ecc_done ? 0 : MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED); + + /* (X1, Y1) hold the normalized result. */ + MBEDTLS_MPI_CHK(crypto_ecc_mpi_read_eccreg(&R->X, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_read_eccreg(&R->Y, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); + MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 1)); + +cleanup: + + mbedtls_mpi_free(&N_); + + /* Release ownership of ECC accelerator */ + crypto_ecc_release(); + + return ret; +} + +int crypto_ecc_run_modop(mbedtls_mpi *r, + const mbedtls_mpi *o1, + const mbedtls_mpi *o2, + const mbedtls_mpi *p, + uint32_t pbits, + uint32_t modop) +{ + if (r == NULL || + o1 == NULL || + o2 == NULL || + p == NULL) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Check o1/o2 are not negative */ + if (mbedtls_mpi_cmp_int(o1, 0) < 0 || + mbedtls_mpi_cmp_int(o2, 0) < 0) { + return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; + } + + /* Check p is positive */ + if (mbedtls_mpi_cmp_int(p, 0) <= 0) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Check supported maximum key bits */ + if (pbits > NU_ECC_MAXKEYBITS) { + return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED; + } + + /* Check MODOP operations are legal */ + if (modop != MODOP_DIV && + modop != MODOP_MUL && + modop != MODOP_ADD && + modop != MODOP_SUB) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Check divisor is not zero in MODOP_DIV operation */ + if (modop == MODOP_DIV && mbedtls_mpi_cmp_int(o2, 0) == 0) { + return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + } + + /* Acquire ownership of ECC accelerator */ + crypto_ecc_acquire(); + + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + bool ecc_done; + + mbedtls_mpi N_; + const mbedtls_mpi *Np; + + mbedtls_mpi_init(&N_); + + /* Enable ECC interrupt */ + ECC_ENABLE_INT(CRPT); + + /* For safe, recover from previous failure if ever */ + MBEDTLS_MPI_CHK(crypto_ecc_abort(5*1000*1000)); + + /* Use ECP_HELPER_MPI_NORM(Np, N1, N_, P) to get normalized MPI + * + * N_: Holds normalized MPI if the passed-in MPI N1 is not + * Np: Pointer to normalized MPI, which could be N1 or N_ + */ + + if (modop == MODOP_MUL || + modop == MODOP_ADD || + modop == MODOP_SUB) { + ECP_HELPER_MPI_NORM(&Np, *o1, N_, *p); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); + ECP_HELPER_MPI_NORM(&Np, *o2, N_, *p); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); + } else if (modop == MODOP_DIV) { + ECP_HELPER_MPI_NORM(&Np, *o2, N_, *p); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); + ECP_HELPER_MPI_NORM(&Np, *o1, N_, *p); + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); + } else { + MBEDTLS_MPI_CHK(MBEDTLS_ERR_ECP_BAD_INPUT_DATA); + } + + MBEDTLS_MPI_CHK(crypto_ecc_mpi_write_eccreg(p, (uint32_t *) CRPT->ECC_N, NU_ECC_BIGNUM_MAXWORD)); + + /* Configure for modulus operation */ + uint32_t ecc_ctl = 0 | + CRPT_ECC_CTL_START_Msk | // Start + CRPT_ECC_CTL_FSEL_Msk | // Prime field (GF(p)) + ECCOP_MODULE | // No point operation + modop | // Modulus operation + (pbits << CRPT_ECC_CTL_CURVEM_Pos) | // Key length of elliptic curve + 0; + + crypto_ecc_prestart(); +#if defined(NU_CRYPTO_ECC_ENABLE_DEBUG) && !defined(MBEDTLS_ECP_INTERNAL_ALT) + mbedtls_printf("[CRPT][ECC] Crypto Modulus ...\n"); +#endif + CRPT->ECC_CTL = ecc_ctl; + ecc_done = crypto_ecc_wait2(1000*1000); // 1s timeout +#if defined(NU_CRYPTO_ECC_ENABLE_DEBUG) && !defined(MBEDTLS_ECP_INTERNAL_ALT) + mbedtls_printf("[CRPT][ECC] Crypto Modulus ... %s\n", ecc_done ? "Done" : "Fallback"); +#endif + + /* For safe, recover from current failure */ + if (!ecc_done) { + crypto_ecc_abort(5*1000*1000); + } + + /* Disable ECC interrupt */ + ECC_DISABLE_INT(CRPT); + + MBEDTLS_MPI_CHK(ecc_done ? 0 : MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED); + + /* X1 holds the result. */ + MBEDTLS_MPI_CHK(crypto_ecc_mpi_read_eccreg(r, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); + +cleanup: + + mbedtls_mpi_free(&N_); + + /* Release ownership of ECC accelerator */ + crypto_ecc_release(); + + return ret; +} + +int crypto_ecc_mpi_read_eccreg(mbedtls_mpi *x, const volatile uint32_t *eccreg, size_t eccreg_num) +{ + if (x == NULL) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + } + + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i, n; + + for (n = eccreg_num; n > 0; n --) { + if (eccreg[n - 1] != 0) { + break; + } + } + + MBEDTLS_MPI_CHK(mbedtls_mpi_lset(x, 0)); + MBEDTLS_MPI_CHK(mbedtls_mpi_grow(x, WORDS_TO_LIMBS(n))); + + for (i = 0; i < n; i ++) { + x->p[i / wiL] |= ((mbedtls_mpi_uint) eccreg[i]) << ((i % wiL) << 5); + } + +cleanup: + + return ret; +} + +int crypto_ecc_mpi_write_eccreg( const mbedtls_mpi *x, volatile uint32_t *eccreg, size_t eccreg_num ) +{ + if (x == NULL) { + return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + } + + if (mbedtls_mpi_cmp_int(x, 0) < 0) { + return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; + } + + size_t i, n; + + /* How many words needed? */ + n = (mbedtls_mpi_size(x) + sizeof (uint32_t) - 1) / sizeof (uint32_t); + + if (eccreg_num < n) { + return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; + } + + /* Fill non-zero part */ + for (i = 0; i < n; i ++) { + eccreg[i] = (uint32_t) (x->p[i / wiL] >> ((i % wiL) << 5)); + } + + /* Zeroize remaining part + * + * crypto_zeroize32() has excluded optimization doubt, so we can safely set H/W registers to 0 via it. + */ + crypto_zeroize32((uint32_t *) eccreg + n, eccreg_num - n); + + return 0; +} + +int crypto_ecc_abort(uint32_t timeout_us) +{ + /* Acquire ownership of ECC H/W */ + crypto_ecc_acquire(); + + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + CRPT->ECC_CTL = CRPT_ECC_CTL_STOP_Msk; + struct nu_countdown_ctx_s cd_ctx; + nu_countdown_init(&cd_ctx, timeout_us); + while (CRPT->ECC_STS & CRPT_ECC_STS_BUSY_Msk) { + if (nu_countdown_expired(&cd_ctx)) { + break; + } + } + nu_countdown_free(&cd_ctx); + if (CRPT->ECC_STS & CRPT_ECC_STS_BUSY_Msk) { +#if defined(NU_CRYPTO_ECC_ENABLE_DEBUG) && !defined(MBEDTLS_ECP_INTERNAL_ALT) + mbedtls_printf("[CRPT][ECC] Crypto ECC ... Busy\n"); +#endif + ret = MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; + goto cleanup; + } + + ret = 0; + +cleanup: + + /* Release ownership of ECC accelerator */ + crypto_ecc_release(); + + return ret; +} + +#endif /* MBEDTLS_ECP_ALT || MBEDTLS_ECP_INTERNAL_ALT */ +#endif /* MBEDTLS_ECP_C */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.h b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.h new file mode 100644 index 0000000000..3bcb43c9d7 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/crypto_ecc_hw.h @@ -0,0 +1,197 @@ +/* + * Copyright (c) 2022, Nuvoton Technology Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef CRYPTO_ECC_HW_H +#define CRYPTO_ECC_HW_H + +#if !defined(MBEDTLS_CONFIG_FILE) +#include "mbedtls/config.h" +#else +#include MBEDTLS_CONFIG_FILE +#endif + +#if defined(MBEDTLS_ECP_ALT) || defined(MBEDTLS_ECP_INTERNAL_ALT) + +#include "mbedtls/ecp.h" +#include + +/* Crypto ECC H/W point operations */ +#define ECCOP_POINT_MUL (0x0UL << CRPT_ECC_CTL_ECCOP_Pos) +#define ECCOP_MODULE (0x1UL << CRPT_ECC_CTL_ECCOP_Pos) +#define ECCOP_POINT_ADD (0x2UL << CRPT_ECC_CTL_ECCOP_Pos) +#define ECCOP_POINT_DOUBLE (0x3UL << CRPT_ECC_CTL_ECCOP_Pos) + +/* Crypto ECC H/W modulus operations */ +#define MODOP_DIV (0x0UL << CRPT_ECC_CTL_MODOP_Pos) +#define MODOP_MUL (0x1UL << CRPT_ECC_CTL_MODOP_Pos) +#define MODOP_ADD (0x2UL << CRPT_ECC_CTL_MODOP_Pos) +#define MODOP_SUB (0x3UL << CRPT_ECC_CTL_MODOP_Pos) + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * \brief This function checks whether a given group can be used + * for Crypto ECC H/W. + * + * \param grp ECP group + * + * \return \c 1 if the group can be used, \c 0 otherwise + */ +int crypto_ecc_capable(const mbedtls_ecp_group *grp); + +/** + * \brief Initialize/Free Crypto ECC H/W + * + * \return \c 0 on success. + * \return A non-zero error code on failure. + * + * \note crypto_ecp_init()/crypto_ecp_free() are like pre-op/post-op calls + * and they guarantee: + * + * 1. Paired + * 2. No overlapping + * 3. Upper public function cannot return when ECP alter. is still activated. + */ +int crypto_ecc_init(const mbedtls_ecp_group *grp); +void crypto_ecc_free(const mbedtls_ecp_group *grp); +/** + * \brief Configure ECCOP operation, start it, and wait for its completion + * + * \param grp ECP group + * \param R Destination point + * \param m Integer by which to multiply P + * \param P Point to multiply by m + * \param n Integer by which to multiply Q + * \param Q Point to be multiplied by n + * \param eccop ECCOP code. Could be ECCOP_POINT_MUL/ADD/DOUBLE + * \param blinding Blinding (SCAP) or not. + * Dependent on passed-in eccop, only partial parameters among m/P/n/Q are needed and checked. + * ECCOP_POINT_MUL R = m*P + * ECCOP_POINT_ADD R = P + Q + * ECCOP_POINT_DOUBLE R = 2*P + * + * \return 0 if successful + * + * \note P/Q must be normalized (= affine). R would be normalized. + * + * \note m/n could be negative. + * + * \note ECC accelerator doesn't support R = 0, and we need to detect it additionally. + * For R = P + Q or R = 2*P, we can detect all R = 0 cases. + * For R = m*P, we can detect all R = 0 cases only if grp->N (order) is a prime. + * + * \note According to ECCOP operation, n is unnecessary. But to be consistent with R = m*P + n*Q, + * n is kept with unused modifier. + * + * \note Blinding (SCAP) is applicable only for point multiplication. But for future extension, + * blinding is kept with all point operations. + * + */ +int crypto_ecc_run_eccop_add(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_ecp_point *P, + const mbedtls_ecp_point *Q, + bool blinding); +int crypto_ecc_run_eccop_double(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_ecp_point *P, + bool blinding); +int crypto_ecc_run_eccop_mul(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + bool blinding); +int crypto_ecc_run_eccop(const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + const mbedtls_mpi *n, + const mbedtls_ecp_point *Q, + uint32_t eccop, + bool blinding); + +/** + * \brief Configure MODOP operation and wait for its completion + * + * \param r Destination MPI + * \param o1 Input MPI for first operand of MODOP + * \param o2 Input MPI for second operand of MODOP + * \param p Prime modulus + * \param pbits Bit number of p + * \param modop ECCOP code. Could be MODOP_ADD/SUB/MUL/DIV + * MODOP_ADD r = o1 + o2 mod p + * MODOP_SUB r = o1 - o2 mod p + * MODOP_MUL r = o1 * o2 mod p + * MODOP_DIV r = o1 / o2 mod p + * + * \return 0 if successful + * + * \note o1/o2 must be normalized (within [0, p - 1]). r would be normalized. + */ +int crypto_ecc_run_modop(mbedtls_mpi *r, + const mbedtls_mpi *o1, + const mbedtls_mpi *o2, + const mbedtls_mpi *p, + uint32_t pbits, + uint32_t modop); + +/** + * \brief Import X from ECC registers, little endian + * + * \param X Destination MPI + * \param eccreg Start of input ECC register + * \param eccreg_num Number of input ECC register + * + * \return 0 if successful + * + * \note Destination MPI is always non-negative. + */ +int crypto_ecc_mpi_read_eccreg( mbedtls_mpi *X, const volatile uint32_t *eccreg, size_t eccreg_num ); + +/** + * \brief Export X into ECC registers, little endian + * + * \param X Source MPI + * \param eccreg Start of ECC output registers + * \param eccreg_num Number of ECC output registers + * + * \return 0 if successful + * + * \note Source MPI cannot be negative. + * \note Fills the remaining MSB ECC registers with zeros if X doesn't cover all. + */ +int crypto_ecc_mpi_write_eccreg( const mbedtls_mpi *X, volatile uint32_t *eccreg, size_t eccreg_num ); + +/** + * \brief Abort Crypto ECC H/W + * + * \param timeout_us Timeout in microseconds. + * + * \return \c 0 on success. + * \return A non-zero error code on failure. + */ +int crypto_ecc_abort(uint32_t timeout_us); + +#ifdef __cplusplus +} +#endif + +#endif /* MBEDTLS_ECP_ALT || MBEDTLS_ECP_INTERNAL_ALT */ +#endif /* CRYPTO_ECC_HW_H */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.c b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.c new file mode 100644 index 0000000000..ffd6ebe357 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.c @@ -0,0 +1,3605 @@ +/* + * Elliptic curves over GF(p): generic functions + * + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * References: + * + * SEC1 http://www.secg.org/index.php?action=secg,docs_secg + * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone + * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf + * RFC 4492 for the related TLS structures and constants + * RFC 7748 for the Curve448 and Curve25519 curve definitions + * + * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf + * + * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis + * for elliptic curve cryptosystems. In : Cryptographic Hardware and + * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. + * + * + * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to + * render ECC resistant against Side Channel Attacks. IACR Cryptology + * ePrint Archive, 2004, vol. 2004, p. 342. + * + */ + +#include "common.h" + +/** + * \brief Function level alternative implementation. + * + * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to + * replace certain functions in this module. The alternative implementations are + * typically hardware accelerators and need to activate the hardware before the + * computation starts and deactivate it after it finishes. The + * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve + * this purpose. + * + * To preserve the correct functionality the following conditions must hold: + * + * - The alternative implementation must be activated by + * mbedtls_internal_ecp_init() before any of the replaceable functions is + * called. + * - mbedtls_internal_ecp_free() must \b only be called when the alternative + * implementation is activated. + * - mbedtls_internal_ecp_init() must \b not be called when the alternative + * implementation is activated. + * - Public functions must not return while the alternative implementation is + * activated. + * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and + * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) ) + * \endcode ensures that the alternative implementation supports the current + * group. + */ +#if defined(MBEDTLS_ECP_INTERNAL_ALT) +#endif + +#if defined(MBEDTLS_ECP_C) + +#include "mbedtls/ecp.h" +#include "mbedtls/threading.h" +#include "mbedtls/platform_util.h" +#include "mbedtls/error.h" + +#include + +#if defined(NU_CRYPTO_ECC_ENABLE) +#include "crypto_ecc_hw.h" +#endif + +#if defined(MBEDTLS_ECP_ALT) + +/* Parameter validation macros based on platform_util.h */ +#define ECP_VALIDATE_RET( cond ) \ + MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA ) +#define ECP_VALIDATE( cond ) \ + MBEDTLS_INTERNAL_VALIDATE( cond ) + +#if defined(MBEDTLS_PLATFORM_C) +#include "mbedtls/platform.h" +#else +#include +#include +#define mbedtls_printf printf +#define mbedtls_calloc calloc +#define mbedtls_free free +#endif + +#include "mbedtls/ecp_internal.h" + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) +#if defined(MBEDTLS_HMAC_DRBG_C) +#include "mbedtls/hmac_drbg.h" +#elif defined(MBEDTLS_CTR_DRBG_C) +#include "mbedtls/ctr_drbg.h" +#else +#error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid." +#endif +#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */ + +#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \ + !defined(inline) && !defined(__cplusplus) +#define inline __inline +#endif + +#if defined(MBEDTLS_SELF_TEST) +/* + * Counts of point addition and doubling, and field multiplications. + * Used to test resistance of point multiplication to simple timing attacks. + */ +static unsigned long add_count, dbl_count, mul_count; +#endif + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) +/* + * Currently ecp_mul() takes a RNG function as an argument, used for + * side-channel protection, but it can be NULL. The initial reasoning was + * that people will pass non-NULL RNG when they care about side-channels, but + * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with + * no opportunity for the user to do anything about it. + * + * The obvious strategies for addressing that include: + * - change those APIs so that they take RNG arguments; + * - require a global RNG to be available to all crypto modules. + * + * Unfortunately those would break compatibility. So what we do instead is + * have our own internal DRBG instance, seeded from the secret scalar. + * + * The following is a light-weight abstraction layer for doing that with + * HMAC_DRBG (first choice) or CTR_DRBG. + */ + +#if defined(MBEDTLS_HMAC_DRBG_C) + +/* DRBG context type */ +typedef mbedtls_hmac_drbg_context ecp_drbg_context; + +/* DRBG context init */ +static inline void ecp_drbg_init( ecp_drbg_context *ctx ) +{ + mbedtls_hmac_drbg_init( ctx ); +} + +/* DRBG context free */ +static inline void ecp_drbg_free( ecp_drbg_context *ctx ) +{ + mbedtls_hmac_drbg_free( ctx ); +} + +/* DRBG function */ +static inline int ecp_drbg_random( void *p_rng, + unsigned char *output, size_t output_len ) +{ + return( mbedtls_hmac_drbg_random( p_rng, output, output_len ) ); +} + +/* DRBG context seeding */ +static int ecp_drbg_seed( ecp_drbg_context *ctx, + const mbedtls_mpi *secret, size_t secret_len ) +{ + int ret; + unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES]; + /* The list starts with strong hashes */ + const mbedtls_md_type_t md_type = mbedtls_md_list()[0]; + const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_type ); + + if( secret_len > MBEDTLS_ECP_MAX_BYTES ) + { + ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; + goto cleanup; + } + + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret, + secret_bytes, secret_len ) ); + + ret = mbedtls_hmac_drbg_seed_buf( ctx, md_info, secret_bytes, secret_len ); + +cleanup: + mbedtls_platform_zeroize( secret_bytes, secret_len ); + + return( ret ); +} + +#elif defined(MBEDTLS_CTR_DRBG_C) + +/* DRBG context type */ +typedef mbedtls_ctr_drbg_context ecp_drbg_context; + +/* DRBG context init */ +static inline void ecp_drbg_init( ecp_drbg_context *ctx ) +{ + mbedtls_ctr_drbg_init( ctx ); +} + +/* DRBG context free */ +static inline void ecp_drbg_free( ecp_drbg_context *ctx ) +{ + mbedtls_ctr_drbg_free( ctx ); +} + +/* DRBG function */ +static inline int ecp_drbg_random( void *p_rng, + unsigned char *output, size_t output_len ) +{ + return( mbedtls_ctr_drbg_random( p_rng, output, output_len ) ); +} + +/* + * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does, + * we need to pass an entropy function when seeding. So we use a dummy + * function for that, and pass the actual entropy as customisation string. + * (During seeding of CTR_DRBG the entropy input and customisation string are + * concatenated before being used to update the secret state.) + */ +static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len) +{ + (void) ctx; + memset( out, 0, len ); + return( 0 ); +} + +/* DRBG context seeding */ +static int ecp_drbg_seed( ecp_drbg_context *ctx, + const mbedtls_mpi *secret, size_t secret_len ) +{ + int ret; + unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES]; + + if( secret_len > MBEDTLS_ECP_MAX_BYTES ) + { + ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; + goto cleanup; + } + + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( secret, + secret_bytes, secret_len ) ); + + ret = mbedtls_ctr_drbg_seed( ctx, ecp_ctr_drbg_null_entropy, NULL, + secret_bytes, secret_len ); + +cleanup: + mbedtls_platform_zeroize( secret_bytes, secret_len ); + + return( ret ); +} + +#else +#error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid." +#endif /* DRBG modules */ +#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */ + +#if defined(MBEDTLS_ECP_RESTARTABLE) +/* + * Maximum number of "basic operations" to be done in a row. + * + * Default value 0 means that ECC operations will not yield. + * Note that regardless of the value of ecp_max_ops, always at + * least one step is performed before yielding. + * + * Setting ecp_max_ops=1 can be suitable for testing purposes + * as it will interrupt computation at all possible points. + */ +static unsigned ecp_max_ops = 0; + +/* + * Set ecp_max_ops + */ +void mbedtls_ecp_set_max_ops( unsigned max_ops ) +{ + ecp_max_ops = max_ops; +} + +/* + * Check if restart is enabled + */ +int mbedtls_ecp_restart_is_enabled( void ) +{ + return( ecp_max_ops != 0 ); +} + +/* + * Restart sub-context for ecp_mul_comb() + */ +struct mbedtls_ecp_restart_mul +{ + mbedtls_ecp_point R; /* current intermediate result */ + size_t i; /* current index in various loops, 0 outside */ + mbedtls_ecp_point *T; /* table for precomputed points */ + unsigned char T_size; /* number of points in table T */ + enum { /* what were we doing last time we returned? */ + ecp_rsm_init = 0, /* nothing so far, dummy initial state */ + ecp_rsm_pre_dbl, /* precompute 2^n multiples */ + ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */ + ecp_rsm_pre_add, /* precompute remaining points by adding */ + ecp_rsm_pre_norm_add, /* normalize all precomputed points */ + ecp_rsm_comb_core, /* ecp_mul_comb_core() */ + ecp_rsm_final_norm, /* do the final normalization */ + } state; +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_context drbg_ctx; + unsigned char drbg_seeded; +#endif +}; + +/* + * Init restart_mul sub-context + */ +static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx ) +{ + mbedtls_ecp_point_init( &ctx->R ); + ctx->i = 0; + ctx->T = NULL; + ctx->T_size = 0; + ctx->state = ecp_rsm_init; +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_init( &ctx->drbg_ctx ); + ctx->drbg_seeded = 0; +#endif +} + +/* + * Free the components of a restart_mul sub-context + */ +static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx ) +{ + unsigned char i; + + if( ctx == NULL ) + return; + + mbedtls_ecp_point_free( &ctx->R ); + + if( ctx->T != NULL ) + { + for( i = 0; i < ctx->T_size; i++ ) + mbedtls_ecp_point_free( ctx->T + i ); + mbedtls_free( ctx->T ); + } + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_free( &ctx->drbg_ctx ); +#endif + + ecp_restart_rsm_init( ctx ); +} + +/* + * Restart context for ecp_muladd() + */ +struct mbedtls_ecp_restart_muladd +{ + mbedtls_ecp_point mP; /* mP value */ + mbedtls_ecp_point R; /* R intermediate result */ + enum { /* what should we do next? */ + ecp_rsma_mul1 = 0, /* first multiplication */ + ecp_rsma_mul2, /* second multiplication */ + ecp_rsma_add, /* addition */ + ecp_rsma_norm, /* normalization */ + } state; +}; + +/* + * Init restart_muladd sub-context + */ +static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx ) +{ + mbedtls_ecp_point_init( &ctx->mP ); + mbedtls_ecp_point_init( &ctx->R ); + ctx->state = ecp_rsma_mul1; +} + +/* + * Free the components of a restart_muladd sub-context + */ +static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx ) +{ + if( ctx == NULL ) + return; + + mbedtls_ecp_point_free( &ctx->mP ); + mbedtls_ecp_point_free( &ctx->R ); + + ecp_restart_ma_init( ctx ); +} + +/* + * Initialize a restart context + */ +void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx ) +{ + ECP_VALIDATE( ctx != NULL ); + ctx->ops_done = 0; + ctx->depth = 0; + ctx->rsm = NULL; + ctx->ma = NULL; +} + +/* + * Free the components of a restart context + */ +void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx ) +{ + if( ctx == NULL ) + return; + + ecp_restart_rsm_free( ctx->rsm ); + mbedtls_free( ctx->rsm ); + + ecp_restart_ma_free( ctx->ma ); + mbedtls_free( ctx->ma ); + + mbedtls_ecp_restart_init( ctx ); +} + +/* + * Check if we can do the next step + */ +int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp, + mbedtls_ecp_restart_ctx *rs_ctx, + unsigned ops ) +{ + ECP_VALIDATE_RET( grp != NULL ); + + if( rs_ctx != NULL && ecp_max_ops != 0 ) + { + /* scale depending on curve size: the chosen reference is 256-bit, + * and multiplication is quadratic. Round to the closest integer. */ + if( grp->pbits >= 512 ) + ops *= 4; + else if( grp->pbits >= 384 ) + ops *= 2; + + /* Avoid infinite loops: always allow first step. + * Because of that, however, it's not generally true + * that ops_done <= ecp_max_ops, so the check + * ops_done > ecp_max_ops below is mandatory. */ + if( ( rs_ctx->ops_done != 0 ) && + ( rs_ctx->ops_done > ecp_max_ops || + ops > ecp_max_ops - rs_ctx->ops_done ) ) + { + return( MBEDTLS_ERR_ECP_IN_PROGRESS ); + } + + /* update running count */ + rs_ctx->ops_done += ops; + } + + return( 0 ); +} + +/* Call this when entering a function that needs its own sub-context */ +#define ECP_RS_ENTER( SUB ) do { \ + /* reset ops count for this call if top-level */ \ + if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \ + rs_ctx->ops_done = 0; \ + \ + /* set up our own sub-context if needed */ \ + if( mbedtls_ecp_restart_is_enabled() && \ + rs_ctx != NULL && rs_ctx->SUB == NULL ) \ + { \ + rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \ + if( rs_ctx->SUB == NULL ) \ + return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \ + \ + ecp_restart_## SUB ##_init( rs_ctx->SUB ); \ + } \ +} while( 0 ) + +/* Call this when leaving a function that needs its own sub-context */ +#define ECP_RS_LEAVE( SUB ) do { \ + /* clear our sub-context when not in progress (done or error) */ \ + if( rs_ctx != NULL && rs_ctx->SUB != NULL && \ + ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \ + { \ + ecp_restart_## SUB ##_free( rs_ctx->SUB ); \ + mbedtls_free( rs_ctx->SUB ); \ + rs_ctx->SUB = NULL; \ + } \ + \ + if( rs_ctx != NULL ) \ + rs_ctx->depth--; \ +} while( 0 ) + +#else /* MBEDTLS_ECP_RESTARTABLE */ + +#define ECP_RS_ENTER( sub ) (void) rs_ctx; +#define ECP_RS_LEAVE( sub ) (void) rs_ctx; + +#endif /* MBEDTLS_ECP_RESTARTABLE */ + +/* + * List of supported curves: + * - internal ID + * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7) + * - size in bits + * - readable name + * + * Curves are listed in order: largest curves first, and for a given size, + * fastest curves first. This provides the default order for the SSL module. + * + * Reminder: update profiles in x509_crt.c when adding a new curves! + */ +static const mbedtls_ecp_curve_info ecp_supported_curves[] = +{ +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) + { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) + { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) + { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) + { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) + { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) + { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" }, +#endif +#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) + { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) + { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) + { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) + { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" }, +#endif +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) + { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" }, +#endif +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) + { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" }, +#endif +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) + { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" }, +#endif + { MBEDTLS_ECP_DP_NONE, 0, 0, NULL }, +}; + +#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \ + sizeof( ecp_supported_curves[0] ) + +static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES]; + +/* + * List of supported curves and associated info + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void ) +{ + return( ecp_supported_curves ); +} + +/* + * List of supported curves, group ID only + */ +const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void ) +{ + static int init_done = 0; + + if( ! init_done ) + { + size_t i = 0; + const mbedtls_ecp_curve_info *curve_info; + + for( curve_info = mbedtls_ecp_curve_list(); + curve_info->grp_id != MBEDTLS_ECP_DP_NONE; + curve_info++ ) + { + ecp_supported_grp_id[i++] = curve_info->grp_id; + } + ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE; + + init_done = 1; + } + + return( ecp_supported_grp_id ); +} + +/* + * Get the curve info for the internal identifier + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id ) +{ + const mbedtls_ecp_curve_info *curve_info; + + for( curve_info = mbedtls_ecp_curve_list(); + curve_info->grp_id != MBEDTLS_ECP_DP_NONE; + curve_info++ ) + { + if( curve_info->grp_id == grp_id ) + return( curve_info ); + } + + return( NULL ); +} + +/* + * Get the curve info from the TLS identifier + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id ) +{ + const mbedtls_ecp_curve_info *curve_info; + + for( curve_info = mbedtls_ecp_curve_list(); + curve_info->grp_id != MBEDTLS_ECP_DP_NONE; + curve_info++ ) + { + if( curve_info->tls_id == tls_id ) + return( curve_info ); + } + + return( NULL ); +} + +/* + * Get the curve info from the name + */ +const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name ) +{ + const mbedtls_ecp_curve_info *curve_info; + + if( name == NULL ) + return( NULL ); + + for( curve_info = mbedtls_ecp_curve_list(); + curve_info->grp_id != MBEDTLS_ECP_DP_NONE; + curve_info++ ) + { + if( strcmp( curve_info->name, name ) == 0 ) + return( curve_info ); + } + + return( NULL ); +} + +/* + * Get the type of a curve + */ +mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp ) +{ + if( grp->G.X.p == NULL ) + return( MBEDTLS_ECP_TYPE_NONE ); + + if( grp->G.Y.p == NULL ) + return( MBEDTLS_ECP_TYPE_MONTGOMERY ); + else + return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ); +} + +/* + * Initialize (the components of) a point + */ +void mbedtls_ecp_point_init( mbedtls_ecp_point *pt ) +{ + ECP_VALIDATE( pt != NULL ); + + mbedtls_mpi_init( &pt->X ); + mbedtls_mpi_init( &pt->Y ); + mbedtls_mpi_init( &pt->Z ); +} + +/* + * Initialize (the components of) a group + */ +void mbedtls_ecp_group_init( mbedtls_ecp_group *grp ) +{ + ECP_VALIDATE( grp != NULL ); + + grp->id = MBEDTLS_ECP_DP_NONE; + mbedtls_mpi_init( &grp->P ); + mbedtls_mpi_init( &grp->A ); + mbedtls_mpi_init( &grp->B ); + mbedtls_ecp_point_init( &grp->G ); + mbedtls_mpi_init( &grp->N ); + grp->pbits = 0; + grp->nbits = 0; + grp->h = 0; + grp->modp = NULL; + grp->t_pre = NULL; + grp->t_post = NULL; + grp->t_data = NULL; + grp->T = NULL; + grp->T_size = 0; + +#if defined(NU_CRYPTO_ECC_ENABLE) + grp->hw_init = 0; +#endif +} + +/* + * Initialize (the components of) a key pair + */ +void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key ) +{ + ECP_VALIDATE( key != NULL ); + + mbedtls_ecp_group_init( &key->grp ); + mbedtls_mpi_init( &key->d ); + mbedtls_ecp_point_init( &key->Q ); +} + +/* + * Unallocate (the components of) a point + */ +void mbedtls_ecp_point_free( mbedtls_ecp_point *pt ) +{ + if( pt == NULL ) + return; + + mbedtls_mpi_free( &( pt->X ) ); + mbedtls_mpi_free( &( pt->Y ) ); + mbedtls_mpi_free( &( pt->Z ) ); +} + +/* + * Unallocate (the components of) a group + */ +void mbedtls_ecp_group_free( mbedtls_ecp_group *grp ) +{ + size_t i; + + if( grp == NULL ) + return; + +#if defined(NU_CRYPTO_ECC_ENABLE) + if (grp->hw_init) { + crypto_ecc_free(grp); + grp->hw_init = 0; + } +#endif + + if( grp->h != 1 ) + { + mbedtls_mpi_free( &grp->P ); + mbedtls_mpi_free( &grp->A ); + mbedtls_mpi_free( &grp->B ); + mbedtls_ecp_point_free( &grp->G ); + mbedtls_mpi_free( &grp->N ); + } + + if( grp->T != NULL ) + { + for( i = 0; i < grp->T_size; i++ ) + mbedtls_ecp_point_free( &grp->T[i] ); + mbedtls_free( grp->T ); + } + + mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) ); +} + +/* + * Unallocate (the components of) a key pair + */ +void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key ) +{ + if( key == NULL ) + return; + + mbedtls_ecp_group_free( &key->grp ); + mbedtls_mpi_free( &key->d ); + mbedtls_ecp_point_free( &key->Q ); +} + +/* + * Copy the contents of a point + */ +int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) ); + +cleanup: + return( ret ); +} + +/* + * Copy the contents of a group object + */ +int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src ) +{ + ECP_VALIDATE_RET( dst != NULL ); + ECP_VALIDATE_RET( src != NULL ); + + return( mbedtls_ecp_group_load( dst, src->id ) ); +} + +/* + * Set point to zero + */ +int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( pt != NULL ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) ); + +cleanup: + return( ret ); +} + +/* + * Tell if a point is zero + */ +int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt ) +{ + ECP_VALIDATE_RET( pt != NULL ); + + return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 ); +} + +/* + * Compare two points lazily + */ +int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P, + const mbedtls_ecp_point *Q ) +{ + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + + if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 && + mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 && + mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 ) + { + return( 0 ); + } + + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Import a non-zero point from ASCII strings + */ +int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix, + const char *x, const char *y ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( x != NULL ); + ECP_VALIDATE_RET( y != NULL ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) ); + +cleanup: + return( ret ); +} + +/* + * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748) + */ +int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, + const mbedtls_ecp_point *P, + int format, size_t *olen, + unsigned char *buf, size_t buflen ) +{ + int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + size_t plen; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( olen != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED || + format == MBEDTLS_ECP_PF_COMPRESSED ); + + plen = mbedtls_mpi_size( &grp->P ); + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + (void) format; /* Montgomery curves always use the same point format */ + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + *olen = plen; + if( buflen < *olen ) + return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->X, buf, plen ) ); + } +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + /* + * Common case: P == 0 + */ + if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 ) + { + if( buflen < 1 ) + return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + + buf[0] = 0x00; + *olen = 1; + + return( 0 ); + } + + if( format == MBEDTLS_ECP_PF_UNCOMPRESSED ) + { + *olen = 2 * plen + 1; + + if( buflen < *olen ) + return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + + buf[0] = 0x04; + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) ); + } + else if( format == MBEDTLS_ECP_PF_COMPRESSED ) + { + *olen = plen + 1; + + if( buflen < *olen ) + return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + + buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 ); + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) ); + } + } +#endif + +cleanup: + return( ret ); +} + +/* + * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748) + */ +int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *pt, + const unsigned char *buf, size_t ilen ) +{ + int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + size_t plen; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( pt != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + + if( ilen < 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + plen = mbedtls_mpi_size( &grp->P ); + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + if( plen != ilen ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->X, buf, plen ) ); + mbedtls_mpi_free( &pt->Y ); + + if( grp->id == MBEDTLS_ECP_DP_CURVE25519 ) + /* Set most significant bit to 0 as prescribed in RFC7748 ยง5 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->X, plen * 8 - 1, 0 ) ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) ); + } +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + if( buf[0] == 0x00 ) + { + if( ilen == 1 ) + return( mbedtls_ecp_set_zero( pt ) ); + else + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + } + + if( buf[0] != 0x04 ) + return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + + if( ilen != 2 * plen + 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, + buf + 1 + plen, plen ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) ); + } +#endif + +cleanup: + return( ret ); +} + +/* + * Import a point from a TLS ECPoint record (RFC 4492) + * struct { + * opaque point <1..2^8-1>; + * } ECPoint; + */ +int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *pt, + const unsigned char **buf, size_t buf_len ) +{ + unsigned char data_len; + const unsigned char *buf_start; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( pt != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( *buf != NULL ); + + /* + * We must have at least two bytes (1 for length, at least one for data) + */ + if( buf_len < 2 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + data_len = *(*buf)++; + if( data_len < 1 || data_len > buf_len - 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + /* + * Save buffer start for read_binary and update buf + */ + buf_start = *buf; + *buf += data_len; + + return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) ); +} + +/* + * Export a point as a TLS ECPoint record (RFC 4492) + * struct { + * opaque point <1..2^8-1>; + * } ECPoint; + */ +int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt, + int format, size_t *olen, + unsigned char *buf, size_t blen ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( pt != NULL ); + ECP_VALIDATE_RET( olen != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED || + format == MBEDTLS_ECP_PF_COMPRESSED ); + + /* + * buffer length must be at least one, for our length byte + */ + if( blen < 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format, + olen, buf + 1, blen - 1) ) != 0 ) + return( ret ); + + /* + * write length to the first byte and update total length + */ + buf[0] = (unsigned char) *olen; + ++*olen; + + return( 0 ); +} + +/* + * Set a group from an ECParameters record (RFC 4492) + */ +int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, + const unsigned char **buf, size_t len ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_ecp_group_id grp_id; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( *buf != NULL ); + + if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 ) + return( ret ); + + return( mbedtls_ecp_group_load( grp, grp_id ) ); +} + +/* + * Read a group id from an ECParameters record (RFC 4492) and convert it to + * mbedtls_ecp_group_id. + */ +int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp, + const unsigned char **buf, size_t len ) +{ + uint16_t tls_id; + const mbedtls_ecp_curve_info *curve_info; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( *buf != NULL ); + + /* + * We expect at least three bytes (see below) + */ + if( len < 3 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + /* + * First byte is curve_type; only named_curve is handled + */ + if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + /* + * Next two bytes are the namedcurve value + */ + tls_id = *(*buf)++; + tls_id <<= 8; + tls_id |= *(*buf)++; + + if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL ) + return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + + *grp = curve_info->grp_id; + + return( 0 ); +} + +/* + * Write the ECParameters record corresponding to a group (RFC 4492) + */ +int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen, + unsigned char *buf, size_t blen ) +{ + const mbedtls_ecp_curve_info *curve_info; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + ECP_VALIDATE_RET( olen != NULL ); + + if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + /* + * We are going to write 3 bytes (see below) + */ + *olen = 3; + if( blen < *olen ) + return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); + + /* + * First byte is curve_type, always named_curve + */ + *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE; + + /* + * Next two bytes are the namedcurve value + */ + buf[0] = curve_info->tls_id >> 8; + buf[1] = curve_info->tls_id & 0xFF; + + return( 0 ); +} + +/* + * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi. + * See the documentation of struct mbedtls_ecp_group. + * + * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf. + */ +static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + if( grp->modp == NULL ) + return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) ); + + /* N->s < 0 is a much faster test, which fails only if N is 0 */ + if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) || + mbedtls_mpi_bitlen( N ) > 2 * grp->pbits ) + { + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + } + + MBEDTLS_MPI_CHK( grp->modp( N ) ); + + /* N->s < 0 is a much faster test, which fails only if N is 0 */ + while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) ); + + while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 ) + /* we known P, N and the result are positive */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) ); + +cleanup: + return( ret ); +} + +/* + * Fast mod-p functions expect their argument to be in the 0..p^2 range. + * + * In order to guarantee that, we need to ensure that operands of + * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will + * bring the result back to this range. + * + * The following macros are shortcuts for doing that. + */ + +/* + * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi + */ +#if defined(MBEDTLS_SELF_TEST) +#define INC_MUL_COUNT mul_count++; +#else +#define INC_MUL_COUNT +#endif + +#define MOD_MUL( N ) \ + do \ + { \ + MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \ + INC_MUL_COUNT \ + } while( 0 ) + +static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp, + mbedtls_mpi *X, + const mbedtls_mpi *A, + const mbedtls_mpi *B ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) ); + MOD_MUL( *X ); +cleanup: + return( ret ); +} + +/* + * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi + * N->s < 0 is a very fast test, which fails only if N is 0 + */ +#define MOD_SUB( N ) \ + while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) ) + +static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp, + mbedtls_mpi *X, + const mbedtls_mpi *A, + const mbedtls_mpi *B ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) ); + MOD_SUB( *X ); +cleanup: + return( ret ); +} + +/* + * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int. + * We known P, N and the result are positive, so sub_abs is correct, and + * a bit faster. + */ +#define MOD_ADD( N ) \ + while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) ) + +static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp, + mbedtls_mpi *X, + const mbedtls_mpi *A, + const mbedtls_mpi *B ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) ); + MOD_ADD( *X ); +cleanup: + return( ret ); +} + +static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp, + mbedtls_mpi *X, + size_t count ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) ); + MOD_ADD( *X ); +cleanup: + return( ret ); +} + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) +/* + * For curves in short Weierstrass form, we do all the internal operations in + * Jacobian coordinates. + * + * For multiplication, we'll use a comb method with coutermeasueres against + * SPA, hence timing attacks. + */ + +/* + * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) + * Cost: 1N := 1I + 3M + 1S + */ +static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi Zi, ZZi; + + if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 ) + return( 0 ); + +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_normalize_jac( grp, pt ) ); +#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */ + + mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi ); + + /* + * X = X / Z^2 mod p + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi, &Zi, &Zi ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X, &pt->X, &ZZi ) ); + + /* + * Y = Y / Z^3 mod p + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &ZZi ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &Zi ) ); + + /* + * Z = 1 + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) ); + +cleanup: + + mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi ); + + return( ret ); +} + +/* + * Normalize jacobian coordinates of an array of (pointers to) points, + * using Montgomery's trick to perform only one inversion mod P. + * (See for example Cohen's "A Course in Computational Algebraic Number + * Theory", Algorithm 10.3.4.) + * + * Warning: fails (returning an error) if one of the points is zero! + * This should never happen, see choice of w in ecp_mul_comb(). + * + * Cost: 1N(t) := 1I + (6t - 3)M + 1S + */ +static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *T[], size_t T_size ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + mbedtls_mpi *c, u, Zi, ZZi; + + if( T_size < 2 ) + return( ecp_normalize_jac( grp, *T ) ); + +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) ); +#endif + + if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL ) + return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); + + for( i = 0; i < T_size; i++ ) + mbedtls_mpi_init( &c[i] ); + + mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi ); + + /* + * c[i] = Z_0 * ... * Z_i + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) ); + for( i = 1; i < T_size; i++ ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &c[i], &c[i-1], &T[i]->Z ) ); + } + + /* + * u = 1 / (Z_0 * ... * Z_n) mod P + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) ); + + for( i = T_size - 1; ; i-- ) + { + /* + * Zi = 1 / Z_i mod p + * u = 1 / (Z_0 * ... * Z_i) mod P + */ + if( i == 0 ) { + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) ); + } + else + { + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Zi, &u, &c[i-1] ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &u, &u, &T[i]->Z ) ); + } + + /* + * proceed as in normalize() + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi, &Zi, &Zi ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->X, &T[i]->X, &ZZi ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &ZZi ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &Zi ) ); + + /* + * Post-precessing: reclaim some memory by shrinking coordinates + * - not storing Z (always 1) + * - shrinking other coordinates, but still keeping the same number of + * limbs as P, as otherwise it will too likely be regrown too fast. + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) ); + mbedtls_mpi_free( &T[i]->Z ); + + if( i == 0 ) + break; + } + +cleanup: + + mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi ); + for( i = 0; i < T_size; i++ ) + mbedtls_mpi_free( &c[i] ); + mbedtls_free( c ); + + return( ret ); +} + +/* + * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. + * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid + */ +static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *Q, + unsigned char inv ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + unsigned char nonzero; + mbedtls_mpi mQY; + + mbedtls_mpi_init( &mQY ); + + /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) ); + nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0; + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) ); + +cleanup: + mbedtls_mpi_free( &mQY ); + + return( ret ); +} + +/* + * Point doubling R = 2 P, Jacobian coordinates + * + * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 . + * + * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR + * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring. + * + * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. + * + * Cost: 1D := 3M + 4S (A == 0) + * 4M + 4S (A == -3) + * 3M + 6S + 1a otherwise + */ +static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_ecp_point *P ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi M, S, T, U; + +#if defined(MBEDTLS_SELF_TEST) + dbl_count++; +#endif + +#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_double_jac( grp, R, P ) ); +#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */ + + mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U ); + + /* Special case for A = -3 */ + if( grp->A.p == NULL ) + { + /* M = 3(X + Z^2)(X - Z^2) */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->Z, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &T, &P->X, &S ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &U, &P->X, &S ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &U ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M ); + } + else + { + /* M = 3.X^2 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->X, &P->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M ); + + /* Optimize away for "koblitz" curves with A = 0 */ + if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 ) + { + /* M += A.Z^4 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->Z, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &S, &S ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &T, &grp->A ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &M, &M, &S ) ); + } + } + + /* S = 4.X.Y^2 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &P->Y, &P->Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &P->X, &T ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &S, 1 ) ); + + /* U = 8.Y^4 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &T, &T ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) ); + + /* T = M^2 - 2.S */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T, &M, &M ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T, &T, &S ) ); + + /* S = M(S - T) - U */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &T ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S, &S, &M ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S, &S, &U ) ); + + /* U = 2.Y.Z */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U, &P->Y, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U, 1 ) ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) ); + +cleanup: + mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U ); + + return( ret ); +} + +/* + * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) + * + * The coordinates of Q must be normalized (= affine), + * but those of P don't need to. R is not normalized. + * + * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. + * None of these cases can happen as intermediate step in ecp_mul_comb(): + * - at each step, P, Q and R are multiples of the base point, the factor + * being less than its order, so none of them is zero; + * - Q is an odd multiple of the base point, P an even multiple, + * due to the choice of precomputed points in the modified comb method. + * So branches for these cases do not leak secret information. + * + * We accept Q->Z being unset (saving memory in tables) as meaning 1. + * + * Cost: 1A := 8M + 3S + */ +static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi T1, T2, T3, T4, X, Y, Z; + +#if defined(MBEDTLS_SELF_TEST) + add_count++; +#endif + +#if defined(MBEDTLS_ECP_ADD_MIXED_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) ); +#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */ + + /* + * Trivial cases: P == 0 or Q == 0 (case 1) + */ + if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 ) + return( mbedtls_ecp_copy( R, Q ) ); + + if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 ) + return( mbedtls_ecp_copy( R, P ) ); + + /* + * Make sure Q coordinates are normalized + */ + if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 ); + mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &P->Z, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T1, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1, &T1, &Q->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2, &T2, &Q->Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T1, &T1, &P->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T2, &T2, &P->Y ) ); + + /* Special cases (2) and (3) */ + if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 ) + { + if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 ) + { + ret = ecp_double_jac( grp, R, P ); + goto cleanup; + } + else + { + ret = mbedtls_ecp_set_zero( R ); + goto cleanup; + } + } + + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Z, &P->Z, &T1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T1, &T1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T3, &T1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &P->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &T3 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T1, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &X, &T2, &T2 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X, &X, &T4 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T3, &T3, &X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3, &T3, &T2 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4, &T4, &P->Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &Y, &T3, &T4 ) ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) ); + +cleanup: + + mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 ); + mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); + + return( ret ); +} + +/* + * Randomize jacobian coordinates: + * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l + * This is sort of the reverse operation of ecp_normalize_jac(). + * + * This countermeasure was first suggested in [2]. + */ +static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi l, ll; + size_t p_size; + int count = 0; + +#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) ); +#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */ + + p_size = ( grp->pbits + 7 ) / 8; + mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll ); + + /* Generate l such that 1 < l < p */ + do + { + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) ); + + while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) ); + + if( count++ > 10 ) + { + ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; + goto cleanup; + } + } + while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 ); + + /* Z = l * Z */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Z, &pt->Z, &l ) ); + + /* X = l^2 * X */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll, &l, &l ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X, &pt->X, &ll ) ); + + /* Y = l^3 * Y */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll, &ll, &l ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y, &pt->Y, &ll ) ); + +cleanup: + mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll ); + + return( ret ); +} + +/* + * Check and define parameters used by the comb method (see below for details) + */ +#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7 +#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds" +#endif + +/* d = ceil( n / w ) */ +#define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2 + +/* number of precomputed points */ +#define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) ) + +/* + * Compute the representation of m that will be used with our comb method. + * + * The basic comb method is described in GECC 3.44 for example. We use a + * modified version that provides resistance to SPA by avoiding zero + * digits in the representation as in [3]. We modify the method further by + * requiring that all K_i be odd, which has the small cost that our + * representation uses one more K_i, due to carries, but saves on the size of + * the precomputed table. + * + * Summary of the comb method and its modifications: + * + * - The goal is to compute m*P for some w*d-bit integer m. + * + * - The basic comb method splits m into the w-bit integers + * x[0] .. x[d-1] where x[i] consists of the bits in m whose + * index has residue i modulo d, and computes m * P as + * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where + * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P. + * + * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by + * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] .., + * thereby successively converting it into a form where all summands + * are nonzero, at the cost of negative summands. This is the basic idea of [3]. + * + * - More generally, even if x[i+1] != 0, we can first transform the sum as + * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] .., + * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]]. + * Performing and iterating this procedure for those x[i] that are even + * (keeping track of carry), we can transform the original sum into one of the form + * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]] + * with all x'[i] odd. It is therefore only necessary to know S at odd indices, + * which is why we are only computing half of it in the first place in + * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb. + * + * - For the sake of compactness, only the seven low-order bits of x[i] + * are used to represent its absolute value (K_i in the paper), and the msb + * of x[i] encodes the sign (s_i in the paper): it is set if and only if + * if s_i == -1; + * + * Calling conventions: + * - x is an array of size d + 1 + * - w is the size, ie number of teeth, of the comb, and must be between + * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE) + * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d + * (the result will be incorrect if these assumptions are not satisfied) + */ +static void ecp_comb_recode_core( unsigned char x[], size_t d, + unsigned char w, const mbedtls_mpi *m ) +{ + size_t i, j; + unsigned char c, cc, adjust; + + memset( x, 0, d+1 ); + + /* First get the classical comb values (except for x_d = 0) */ + for( i = 0; i < d; i++ ) + for( j = 0; j < w; j++ ) + x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j; + + /* Now make sure x_1 .. x_d are odd */ + c = 0; + for( i = 1; i <= d; i++ ) + { + /* Add carry and update it */ + cc = x[i] & c; + x[i] = x[i] ^ c; + c = cc; + + /* Adjust if needed, avoiding branches */ + adjust = 1 - ( x[i] & 0x01 ); + c |= x[i] & ( x[i-1] * adjust ); + x[i] = x[i] ^ ( x[i-1] * adjust ); + x[i-1] |= adjust << 7; + } +} + +/* + * Precompute points for the adapted comb method + * + * Assumption: T must be able to hold 2^{w - 1} elements. + * + * Operation: If i = i_{w-1} ... i_1 is the binary representation of i, + * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P. + * + * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) + * + * Note: Even comb values (those where P would be omitted from the + * sum defining T[i] above) are not needed in our adaption + * the comb method. See ecp_comb_recode_core(). + * + * This function currently works in four steps: + * (1) [dbl] Computation of intermediate T[i] for 2-power values of i + * (2) [norm_dbl] Normalization of coordinates of these T[i] + * (3) [add] Computation of all T[i] + * (4) [norm_add] Normalization of all T[i] + * + * Step 1 can be interrupted but not the others; together with the final + * coordinate normalization they are the largest steps done at once, depending + * on the window size. Here are operation counts for P-256: + * + * step (2) (3) (4) + * w = 5 142 165 208 + * w = 4 136 77 160 + * w = 3 130 33 136 + * w = 2 124 11 124 + * + * So if ECC operations are blocking for too long even with a low max_ops + * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order + * to minimize maximum blocking time. + */ +static int ecp_precompute_comb( const mbedtls_ecp_group *grp, + mbedtls_ecp_point T[], const mbedtls_ecp_point *P, + unsigned char w, size_t d, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + unsigned char i; + size_t j = 0; + const unsigned char T_size = 1U << ( w - 1 ); + mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1]; + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + { + if( rs_ctx->rsm->state == ecp_rsm_pre_dbl ) + goto dbl; + if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl ) + goto norm_dbl; + if( rs_ctx->rsm->state == ecp_rsm_pre_add ) + goto add; + if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add ) + goto norm_add; + } +#else + (void) rs_ctx; +#endif + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + { + rs_ctx->rsm->state = ecp_rsm_pre_dbl; + + /* initial state for the loop */ + rs_ctx->rsm->i = 0; + } + +dbl: +#endif + /* + * Set T[0] = P and + * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) + */ + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 ) + j = rs_ctx->rsm->i; + else +#endif + j = 0; + + for( ; j < d * ( w - 1 ); j++ ) + { + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL ); + + i = 1U << ( j / d ); + cur = T + i; + + if( j % d == 0 ) + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) ); + + MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) ); + } + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl; + +norm_dbl: +#endif + /* + * Normalize current elements in T. As T has holes, + * use an auxiliary array of pointers to elements in T. + */ + j = 0; + for( i = 1; i < T_size; i <<= 1 ) + TT[j++] = T + i; + + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 ); + + MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + rs_ctx->rsm->state = ecp_rsm_pre_add; + +add: +#endif + /* + * Compute the remaining ones using the minimal number of additions + * Be careful to update T[2^l] only after using it! + */ + MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD ); + + for( i = 1; i < T_size; i <<= 1 ) + { + j = i; + while( j-- ) + MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) ); + } + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + rs_ctx->rsm->state = ecp_rsm_pre_norm_add; + +norm_add: +#endif + /* + * Normalize final elements in T. Even though there are no holes now, we + * still need the auxiliary array for homogeneity with the previous + * call. Also, skip T[0] which is already normalised, being a copy of P. + */ + for( j = 0; j + 1 < T_size; j++ ) + TT[j] = T + j + 1; + + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 ); + + MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) ); + +cleanup: +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL && + ret == MBEDTLS_ERR_ECP_IN_PROGRESS ) + { + if( rs_ctx->rsm->state == ecp_rsm_pre_dbl ) + rs_ctx->rsm->i = j; + } +#endif + + return( ret ); +} + +/* + * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] + * + * See ecp_comb_recode_core() for background + */ +static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_ecp_point T[], unsigned char T_size, + unsigned char i ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + unsigned char ii, j; + + /* Ignore the "sign" bit and scale down */ + ii = ( i & 0x7Fu ) >> 1; + + /* Read the whole table to thwart cache-based timing attacks */ + for( j = 0; j < T_size; j++ ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) ); + } + + /* Safely invert result if i is "negative" */ + MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) ); + +cleanup: + return( ret ); +} + +/* + * Core multiplication algorithm for the (modified) comb method. + * This part is actually common with the basic comb method (GECC 3.44) + * + * Cost: d A + d D + 1 R + */ +static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_ecp_point T[], unsigned char T_size, + const unsigned char x[], size_t d, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_ecp_point Txi; + size_t i; + + mbedtls_ecp_point_init( &Txi ); + +#if !defined(MBEDTLS_ECP_RESTARTABLE) + (void) rs_ctx; +#endif + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL && + rs_ctx->rsm->state != ecp_rsm_comb_core ) + { + rs_ctx->rsm->i = 0; + rs_ctx->rsm->state = ecp_rsm_comb_core; + } + + /* new 'if' instead of nested for the sake of the 'else' branch */ + if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 ) + { + /* restore current index (R already pointing to rs_ctx->rsm->R) */ + i = rs_ctx->rsm->i; + } + else +#endif + { + /* Start with a non-zero point and randomize its coordinates */ + i = d; + MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) ); +#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng != 0 ) +#endif + MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) ); + } + + while( i != 0 ) + { + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD ); + --i; + + MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) ); + MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) ); + MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) ); + } + +cleanup: + + mbedtls_ecp_point_free( &Txi ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL && + ret == MBEDTLS_ERR_ECP_IN_PROGRESS ) + { + rs_ctx->rsm->i = i; + /* no need to save R, already pointing to rs_ctx->rsm->R */ + } +#endif + + return( ret ); +} + +/* + * Recode the scalar to get constant-time comb multiplication + * + * As the actual scalar recoding needs an odd scalar as a starting point, + * this wrapper ensures that by replacing m by N - m if necessary, and + * informs the caller that the result of multiplication will be negated. + * + * This works because we only support large prime order for Short Weierstrass + * curves, so N is always odd hence either m or N - m is. + * + * See ecp_comb_recode_core() for background. + */ +static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp, + const mbedtls_mpi *m, + unsigned char k[COMB_MAX_D + 1], + size_t d, + unsigned char w, + unsigned char *parity_trick ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi M, mm; + + mbedtls_mpi_init( &M ); + mbedtls_mpi_init( &mm ); + + /* N is always odd (see above), just make extra sure */ + if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + + /* do we need the parity trick? */ + *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 ); + + /* execute parity fix in constant time */ + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) ); + + /* actual scalar recoding */ + ecp_comb_recode_core( k, d, w, &M ); + +cleanup: + mbedtls_mpi_free( &mm ); + mbedtls_mpi_free( &M ); + + return( ret ); +} + +/* + * Perform comb multiplication (for short Weierstrass curves) + * once the auxiliary table has been pre-computed. + * + * Scalar recoding may use a parity trick that makes us compute -m * P, + * if that is the case we'll need to recover m * P at the end. + */ +static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *T, + unsigned char T_size, + unsigned char w, + size_t d, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + unsigned char parity_trick; + unsigned char k[COMB_MAX_D + 1]; + mbedtls_ecp_point *RR = R; + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + { + RR = &rs_ctx->rsm->R; + + if( rs_ctx->rsm->state == ecp_rsm_final_norm ) + goto final_norm; + } +#endif + + MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w, + &parity_trick ) ); + MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d, + f_rng, p_rng, rs_ctx ) ); + MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + rs_ctx->rsm->state = ecp_rsm_final_norm; + +final_norm: + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV ); +#endif + /* + * Knowledge of the jacobian coordinates may leak the last few bits of the + * scalar [1], and since our MPI implementation isn't constant-flow, + * inversion (used for coordinate normalization) may leak the full value + * of its input via side-channels [2]. + * + * [1] https://eprint.iacr.org/2003/191 + * [2] https://eprint.iacr.org/2020/055 + * + * Avoid the leak by randomizing coordinates before we normalize them. + */ +#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng != 0 ) +#endif + MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) ); + + MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) ); +#endif + +cleanup: + return( ret ); +} + +/* + * Pick window size based on curve size and whether we optimize for base point + */ +static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp, + unsigned char p_eq_g ) +{ + unsigned char w; + + /* + * Minimize the number of multiplications, that is minimize + * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w ) + * (see costs of the various parts, with 1S = 1M) + */ + w = grp->nbits >= 384 ? 5 : 4; + + /* + * If P == G, pre-compute a bit more, since this may be re-used later. + * Just adding one avoids upping the cost of the first mul too much, + * and the memory cost too. + */ + if( p_eq_g ) + w++; + + /* + * Make sure w is within bounds. + * (The last test is useful only for very small curves in the test suite.) + */ +#if( MBEDTLS_ECP_WINDOW_SIZE < 6 ) + if( w > MBEDTLS_ECP_WINDOW_SIZE ) + w = MBEDTLS_ECP_WINDOW_SIZE; +#endif + if( w >= grp->nbits ) + w = 2; + + return( w ); +} + +/* + * Multiplication using the comb method - for curves in short Weierstrass form + * + * This function is mainly responsible for administrative work: + * - managing the restart context if enabled + * - managing the table of precomputed points (passed between the below two + * functions): allocation, computation, ownership tranfer, freeing. + * + * It delegates the actual arithmetic work to: + * ecp_precompute_comb() and ecp_mul_comb_with_precomp() + * + * See comments on ecp_comb_recode_core() regarding the computation strategy. + */ +static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + unsigned char w, p_eq_g, i; + size_t d; + unsigned char T_size = 0, T_ok = 0; + mbedtls_ecp_point *T = NULL; +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_context drbg_ctx; + + ecp_drbg_init( &drbg_ctx ); +#endif + + ECP_RS_ENTER( rsm ); + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng == NULL ) + { + /* Adjust pointers */ + f_rng = &ecp_drbg_random; +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + p_rng = &rs_ctx->rsm->drbg_ctx; + else +#endif + p_rng = &drbg_ctx; + + /* Initialize internal DRBG if necessary */ +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx == NULL || rs_ctx->rsm == NULL || + rs_ctx->rsm->drbg_seeded == 0 ) +#endif + { + const size_t m_len = ( grp->nbits + 7 ) / 8; + MBEDTLS_MPI_CHK( ecp_drbg_seed( p_rng, m, m_len ) ); + } +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL ) + rs_ctx->rsm->drbg_seeded = 1; +#endif + } +#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */ + + /* Is P the base point ? */ +#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1 + p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 && + mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 ); +#else + p_eq_g = 0; +#endif + + /* Pick window size and deduce related sizes */ + w = ecp_pick_window_size( grp, p_eq_g ); + T_size = 1U << ( w - 1 ); + d = ( grp->nbits + w - 1 ) / w; + + /* Pre-computed table: do we have it already for the base point? */ + if( p_eq_g && grp->T != NULL ) + { + /* second pointer to the same table, will be deleted on exit */ + T = grp->T; + T_ok = 1; + } + else +#if defined(MBEDTLS_ECP_RESTARTABLE) + /* Pre-computed table: do we have one in progress? complete? */ + if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL ) + { + /* transfer ownership of T from rsm to local function */ + T = rs_ctx->rsm->T; + rs_ctx->rsm->T = NULL; + rs_ctx->rsm->T_size = 0; + + /* This effectively jumps to the call to mul_comb_after_precomp() */ + T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core; + } + else +#endif + /* Allocate table if we didn't have any */ + { + T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) ); + if( T == NULL ) + { + ret = MBEDTLS_ERR_ECP_ALLOC_FAILED; + goto cleanup; + } + + for( i = 0; i < T_size; i++ ) + mbedtls_ecp_point_init( &T[i] ); + + T_ok = 0; + } + + /* Compute table (or finish computing it) if not done already */ + if( !T_ok ) + { + MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) ); + + if( p_eq_g ) + { + /* almost transfer ownership of T to the group, but keep a copy of + * the pointer to use for calling the next function more easily */ + grp->T = T; + grp->T_size = T_size; + } + } + + /* Actual comb multiplication using precomputed points */ + MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m, + T, T_size, w, d, + f_rng, p_rng, rs_ctx ) ); + +cleanup: + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_free( &drbg_ctx ); +#endif + + /* does T belong to the group? */ + if( T == grp->T ) + T = NULL; + + /* does T belong to the restart context? */ +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL ) + { + /* transfer ownership of T from local function to rsm */ + rs_ctx->rsm->T_size = T_size; + rs_ctx->rsm->T = T; + T = NULL; + } +#endif + + /* did T belong to us? then let's destroy it! */ + if( T != NULL ) + { + for( i = 0; i < T_size; i++ ) + mbedtls_ecp_point_free( &T[i] ); + mbedtls_free( T ); + } + + /* don't free R while in progress in case R == P */ +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) +#endif + /* prevent caller from using invalid value */ + if( ret != 0 ) + mbedtls_ecp_point_free( R ); + + ECP_RS_LEAVE( rsm ); + + return( ret ); +} + +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) +/* + * For Montgomery curves, we do all the internal arithmetic in projective + * coordinates. Import/export of points uses only the x coordinates, which is + * internaly represented as X / Z. + * + * For scalar multiplication, we'll use a Montgomery ladder. + */ + +/* + * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 + * Cost: 1M + 1I + */ +static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + +#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_normalize_mxz( grp, P ) ); +#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */ + + MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) ); + +cleanup: + return( ret ); +} + +/* + * Randomize projective x/z coordinates: + * (X, Z) -> (l X, l Z) for random l + * This is sort of the reverse operation of ecp_normalize_mxz(). + * + * This countermeasure was first suggested in [2]. + * Cost: 2M + */ +static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi l; + size_t p_size; + int count = 0; + +#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ) ); +#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */ + + p_size = ( grp->pbits + 7 ) / 8; + mbedtls_mpi_init( &l ); + + /* Generate l such that 1 < l < p */ + do + { + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) ); + + while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) ); + + if( count++ > 10 ) + { + ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; + goto cleanup; + } + } + while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &l ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->Z, &P->Z, &l ) ); + +cleanup: + mbedtls_mpi_free( &l ); + + return( ret ); +} + +/* + * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), + * for Montgomery curves in x/z coordinates. + * + * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 + * with + * d = X1 + * P = (X2, Z2) + * Q = (X3, Z3) + * R = (X4, Z4) + * S = (X5, Z5) + * and eliminating temporary variables tO, ..., t4. + * + * Cost: 5M + 4S + */ +static int ecp_double_add_mxz( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, mbedtls_ecp_point *S, + const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, + const mbedtls_mpi *d ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB; + +#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) + if( mbedtls_internal_ecp_grp_capable( grp ) ) + return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) ); +#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */ + + mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B ); + mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C ); + mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &A, &P->X, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &AA, &A, &A ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &B, &P->X, &P->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &BB, &B, &B ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &E, &AA, &BB ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &C, &Q->X, &Q->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &D, &Q->X, &Q->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &DA, &D, &A ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &CB, &C, &B ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &S->X, &DA, &CB ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->X, &S->X, &S->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S->Z, &DA, &CB ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, &S->Z, &S->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, d, &S->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->X, &AA, &BB ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &grp->A, &E ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &R->Z, &BB, &R->Z ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &E, &R->Z ) ); + +cleanup: + mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B ); + mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C ); + mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB ); + + return( ret ); +} + +/* + * Multiplication with Montgomery ladder in x/z coordinates, + * for curves in Montgomery form + */ +static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + unsigned char b; + mbedtls_ecp_point RP; + mbedtls_mpi PX; +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_context drbg_ctx; + + ecp_drbg_init( &drbg_ctx ); +#endif + mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX ); + +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng == NULL ) + { + const size_t m_len = ( grp->nbits + 7 ) / 8; + MBEDTLS_MPI_CHK( ecp_drbg_seed( &drbg_ctx, m, m_len ) ); + f_rng = &ecp_drbg_random; + p_rng = &drbg_ctx; + } +#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */ + + /* Save PX and read from P before writing to R, in case P == R */ + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) ); + + /* Set R to zero in modified x/z coordinates */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) ); + mbedtls_mpi_free( &R->Y ); + + /* RP.X might be sligtly larger than P, so reduce it */ + MOD_ADD( RP.X ); + + /* Randomize coordinates of the starting point */ +#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng != NULL ) +#endif + MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) ); + + /* Loop invariant: R = result so far, RP = R + P */ + i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */ + while( i-- > 0 ) + { + b = mbedtls_mpi_get_bit( m, i ); + /* + * if (b) R = 2R + P else R = 2R, + * which is: + * if (b) double_add( RP, R, RP, R ) + * else double_add( R, RP, R, RP ) + * but using safe conditional swaps to avoid leaks + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); + MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) ); + } + + /* + * Knowledge of the projective coordinates may leak the last few bits of the + * scalar [1], and since our MPI implementation isn't constant-flow, + * inversion (used for coordinate normalization) may leak the full value + * of its input via side-channels [2]. + * + * [1] https://eprint.iacr.org/2003/191 + * [2] https://eprint.iacr.org/2020/055 + * + * Avoid the leak by randomizing coordinates before we normalize them. + */ +#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + if( f_rng != NULL ) +#endif + MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) ); + + MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) ); + +cleanup: +#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) + ecp_drbg_free( &drbg_ctx ); +#endif + + mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX ); + + return( ret ); +} + +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ + +/* + * Restartable multiplication R = m * P + */ +int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; +#if defined(NU_CRYPTO_ECC_ENABLE) + bool hw_go = false; + bool hw_capable = false; + bool sw_fallback = false; +#endif +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + char is_grp_capable = 0; +#endif + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( R != NULL ); + ECP_VALIDATE_RET( m != NULL ); + ECP_VALIDATE_RET( P != NULL ); + +#if defined(NU_CRYPTO_ECC_ENABLE) + hw_capable = crypto_ecc_capable(grp); + if (!grp->hw_init) { + grp->hw_init = (crypto_ecc_init(grp) == 0) ? 1 : 0; + } + hw_go = hw_capable && grp->hw_init; + if (hw_go) { + ret = crypto_ecc_run_eccop_mul(grp, R, m, P, f_rng != NULL); + if (ret == 0) { + goto cleanup; + } + + /* Fall back to S/W on H/W failure */ + sw_fallback = true; + } +#endif + +#if defined(MBEDTLS_ECP_RESTARTABLE) + /* reset ops count for this call if top-level */ + if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) + rs_ctx->ops_done = 0; +#else + (void) rs_ctx; +#endif + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) ) + MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) ); +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ + +#if defined(MBEDTLS_ECP_RESTARTABLE) + /* skip argument check when restarting */ + if( rs_ctx == NULL || rs_ctx->rsm == NULL ) +#endif + { + /* check_privkey is free */ + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK ); + + /* Common sanity checks */ + MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) ); + } + + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) ); +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) ); +#endif + +cleanup: + +#if defined(NU_CRYPTO_ECC_ENABLE) + if (hw_go) { + /* Premature return on H/W success, or continue to do other S/W clean-up + * because it is involved as fallback. */ + if (!sw_fallback) { + return ret; + } + } +#endif + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + if( is_grp_capable ) + mbedtls_internal_ecp_free( grp ); +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL ) + rs_ctx->depth--; +#endif + + return( ret ); +} + +/* + * Multiplication R = m * P + */ +int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( R != NULL ); + ECP_VALIDATE_RET( m != NULL ); + ECP_VALIDATE_RET( P != NULL ); + return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) ); +} + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) +/* + * Check that an affine point is valid as a public key, + * short weierstrass curves (SEC1 3.2.3.1) + */ +static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi YY, RHS; + + /* pt coordinates must be normalized for our checks */ + if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 || + mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 || + mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 || + mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 ) + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + + mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS ); + + /* + * YY = Y^2 + * RHS = X (X^2 + A) + B = X^3 + A X + B + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &YY, &pt->Y, &pt->Y ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &pt->X, &pt->X ) ); + + /* Special case for A = -3 */ + if( grp->A.p == NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS ); + } + else + { + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->A ) ); + } + + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &RHS, &pt->X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->B ) ); + + if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 ) + ret = MBEDTLS_ERR_ECP_INVALID_KEY; + +cleanup: + + mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS ); + + return( ret ); +} +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) +/* + * R = m * P with shortcuts for m == 1 and m == -1 + * NOT constant-time - ONLY for short Weierstrass! + */ +static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + if( mbedtls_mpi_cmp_int( m, 1 ) == 0 ) + { + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) ); + } + else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 ) + { + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) ); + if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) ); + } + else + { + MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P, + NULL, NULL, rs_ctx ) ); + } + +cleanup: + return( ret ); +} + +/* + * Restartable linear combination + * NOT constant-time + */ +int mbedtls_ecp_muladd_restartable( + mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + const mbedtls_mpi *n, const mbedtls_ecp_point *Q, + mbedtls_ecp_restart_ctx *rs_ctx ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; +#if defined(NU_CRYPTO_ECC_ENABLE) + bool hw_go = false; + bool hw_capable = false; + bool sw_fallback = false; + mbedtls_ecp_point R1, R2; +#endif + mbedtls_ecp_point mP; + mbedtls_ecp_point *pmP = &mP; + mbedtls_ecp_point *pR = R; +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + char is_grp_capable = 0; +#endif + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( R != NULL ); + ECP_VALIDATE_RET( m != NULL ); + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( n != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + + if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + +#if defined(NU_CRYPTO_ECC_ENABLE) + hw_capable = crypto_ecc_capable(grp); + if (!grp->hw_init) { + grp->hw_init = (crypto_ecc_init(grp) == 0) ? 1 : 0; + } + hw_go = hw_capable && grp->hw_init; + if (hw_go) { + mbedtls_ecp_point_init(&R1); + mbedtls_ecp_point_init(&R2); + do { + /* R1 = m*P */ + ret = crypto_ecc_run_eccop_mul(grp, &R1, m, P, false); + if (ret != 0) { + break; + } + + /* R2 = n*Q */ + ret = crypto_ecc_run_eccop_mul(grp, &R2, n, Q, false); + if (ret != 0) { + break; + } + + /* R = m*P + n*Q = R1 + R2 */ + ret = crypto_ecc_run_eccop_add(grp, R, &R1, &R2, false); + if (ret != 0) { + break; + } + + goto cleanup; + } while (0); + + /* Fall back to S/W on H/W failure */ + sw_fallback = true; + } +#endif + + mbedtls_ecp_point_init( &mP ); + + ECP_RS_ENTER( ma ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->ma != NULL ) + { + /* redirect intermediate results to restart context */ + pmP = &rs_ctx->ma->mP; + pR = &rs_ctx->ma->R; + + /* jump to next operation */ + if( rs_ctx->ma->state == ecp_rsma_mul2 ) + goto mul2; + if( rs_ctx->ma->state == ecp_rsma_add ) + goto add; + if( rs_ctx->ma->state == ecp_rsma_norm ) + goto norm; + } +#endif /* MBEDTLS_ECP_RESTARTABLE */ + + MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) ); +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->ma != NULL ) + rs_ctx->ma->state = ecp_rsma_mul2; + +mul2: +#endif + MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) ); + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) ) + MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) ); +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->ma != NULL ) + rs_ctx->ma->state = ecp_rsma_add; + +add: +#endif + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD ); + MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) ); +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->ma != NULL ) + rs_ctx->ma->state = ecp_rsma_norm; + +norm: +#endif + MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV ); + MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) ); + +#if defined(MBEDTLS_ECP_RESTARTABLE) + if( rs_ctx != NULL && rs_ctx->ma != NULL ) + MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) ); +#endif + +cleanup: +#if defined(NU_CRYPTO_ECC_ENABLE) + if (hw_go) { + mbedtls_ecp_point_free(&R1); + mbedtls_ecp_point_free(&R2); + /* Premature return on H/W success, or continue to do other S/W clean-up + * because it is involved as fallback. */ + if (!sw_fallback) { + return ret; + } + } +#endif +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + if( is_grp_capable ) + mbedtls_internal_ecp_free( grp ); +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ + + mbedtls_ecp_point_free( &mP ); + + ECP_RS_LEAVE( ma ); + + return( ret ); +} + +/* + * Linear combination + * NOT constant-time + */ +int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + const mbedtls_mpi *n, const mbedtls_ecp_point *Q ) +{ + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( R != NULL ); + ECP_VALIDATE_RET( m != NULL ); + ECP_VALIDATE_RET( P != NULL ); + ECP_VALIDATE_RET( n != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) ); +} +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) +/* + * Check validity of a public key for Montgomery curves with x-only schemes + */ +static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ) +{ + /* [Curve25519 p. 5] Just check X is the correct number of bytes */ + /* Allow any public value, if it's too big then we'll just reduce it mod p + * (RFC 7748 sec. 5 para. 3). */ + if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 ) + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + + return( 0 ); +} +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ + +/* + * Check that a point is valid as a public key + */ +int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, + const mbedtls_ecp_point *pt ) +{ + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( pt != NULL ); + + /* Must use affine coordinates */ + if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 ) + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + return( ecp_check_pubkey_mx( grp, pt ) ); +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + return( ecp_check_pubkey_sw( grp, pt ) ); +#endif + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Check that an mbedtls_mpi is valid as a private key + */ +int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, + const mbedtls_mpi *d ) +{ + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( d != NULL ); + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + /* see RFC 7748 sec. 5 para. 5 */ + if( mbedtls_mpi_get_bit( d, 0 ) != 0 || + mbedtls_mpi_get_bit( d, 1 ) != 0 || + mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */ + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + + /* see [Curve25519] page 5 */ + if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 ) + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + + return( 0 ); + } +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + /* see SEC1 3.2 */ + if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || + mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) + return( MBEDTLS_ERR_ECP_INVALID_KEY ); + else + return( 0 ); + } +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); +} + +/* + * Generate a private key + */ +int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp, + mbedtls_mpi *d, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ) +{ + int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + size_t n_size; + + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( d != NULL ); + ECP_VALIDATE_RET( f_rng != NULL ); + + n_size = ( grp->nbits + 7 ) / 8; + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + /* [M225] page 5 */ + size_t b; + + do { + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) ); + } while( mbedtls_mpi_bitlen( d ) == 0); + + /* Make sure the most significant bit is nbits */ + b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */ + if( b > grp->nbits ) + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) ); + else + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) ); + + /* Make sure the last two bits are unset for Curve448, three bits for + Curve25519 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) ); + if( grp->nbits == 254 ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) ); + } + } +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + /* SEC1 3.2.1: Generate d such that 1 <= n < N */ + int count = 0; + unsigned cmp = 0; + + /* + * Match the procedure given in RFC 6979 (deterministic ECDSA): + * - use the same byte ordering; + * - keep the leftmost nbits bits of the generated octet string; + * - try until result is in the desired range. + * This also avoids any biais, which is especially important for ECDSA. + */ + do + { + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) ); + + /* + * Each try has at worst a probability 1/2 of failing (the msb has + * a probability 1/2 of being 0, and then the result will be < N), + * so after 30 tries failure probability is a most 2**(-30). + * + * For most curves, 1 try is enough with overwhelming probability, + * since N starts with a lot of 1s in binary, but some curves + * such as secp224k1 are actually very close to the worst case. + */ + if( ++count > 30 ) + { + ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; + goto cleanup; + } + + ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp ); + if( ret != 0 ) + { + goto cleanup; + } + } + while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 ); + } +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + +cleanup: + return( ret ); +} + +/* + * Generate a keypair with configurable base point + */ +int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp, + const mbedtls_ecp_point *G, + mbedtls_mpi *d, mbedtls_ecp_point *Q, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( d != NULL ); + ECP_VALIDATE_RET( G != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + ECP_VALIDATE_RET( f_rng != NULL ); + + MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) ); + +cleanup: + return( ret ); +} + +/* + * Generate key pair, wrapper for conventional base point + */ +int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp, + mbedtls_mpi *d, mbedtls_ecp_point *Q, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ) +{ + ECP_VALIDATE_RET( grp != NULL ); + ECP_VALIDATE_RET( d != NULL ); + ECP_VALIDATE_RET( Q != NULL ); + ECP_VALIDATE_RET( f_rng != NULL ); + + return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) ); +} + +/* + * Generate a keypair, prettier wrapper + */ +int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + ECP_VALIDATE_RET( key != NULL ); + ECP_VALIDATE_RET( f_rng != NULL ); + + if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 ) + return( ret ); + + return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) ); +} + +#define ECP_CURVE25519_KEY_SIZE 32 +/* + * Read a private key. + */ +int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, + const unsigned char *buf, size_t buflen ) +{ + int ret = 0; + + ECP_VALIDATE_RET( key != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + + if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 ) + return( ret ); + + ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + /* + * If it is Curve25519 curve then mask the key as mandated by RFC7748 + */ + if( grp_id == MBEDTLS_ECP_DP_CURVE25519 ) + { + if( buflen != ECP_CURVE25519_KEY_SIZE ) + return MBEDTLS_ERR_ECP_INVALID_KEY; + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) ); + + /* Set the three least significant bits to 0 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 2, 0 ) ); + + /* Set the most significant bit to 0 */ + MBEDTLS_MPI_CHK( + mbedtls_mpi_set_bit( &key->d, + ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 ) + ); + + /* Set the second most significant bit to 1 */ + MBEDTLS_MPI_CHK( + mbedtls_mpi_set_bit( &key->d, + ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 ) + ); + } + else + ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + } + +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->d, buf, buflen ) ); + + MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->grp, &key->d ) ); + } + +#endif +cleanup: + + if( ret != 0 ) + mbedtls_mpi_free( &key->d ); + + return( ret ); +} + +/* + * Write a private key. + */ +int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key, + unsigned char *buf, size_t buflen ) +{ + int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + + ECP_VALIDATE_RET( key != NULL ); + ECP_VALIDATE_RET( buf != NULL ); + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY ) + { + if( key->grp.id == MBEDTLS_ECP_DP_CURVE25519 ) + { + if( buflen < ECP_CURVE25519_KEY_SIZE ) + return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; + + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->d, buf, buflen ) ); + } + else + ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + } + +#endif +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->d, buf, buflen ) ); + } + +#endif +cleanup: + + return( ret ); +} + + +/* + * Check a public-private key pair + */ +int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_ecp_point Q; + mbedtls_ecp_group grp; + ECP_VALIDATE_RET( pub != NULL ); + ECP_VALIDATE_RET( prv != NULL ); + + if( pub->grp.id == MBEDTLS_ECP_DP_NONE || + pub->grp.id != prv->grp.id || + mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) || + mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) || + mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) ) + { + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + } + + mbedtls_ecp_point_init( &Q ); + mbedtls_ecp_group_init( &grp ); + + /* mbedtls_ecp_mul() needs a non-const group... */ + mbedtls_ecp_group_copy( &grp, &prv->grp ); + + /* Also checks d is valid */ + MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) ); + + if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) || + mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) || + mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) ) + { + ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; + goto cleanup; + } + +cleanup: + mbedtls_ecp_point_free( &Q ); + mbedtls_ecp_group_free( &grp ); + + return( ret ); +} + +#if defined(MBEDTLS_SELF_TEST) + +/* Adjust the exponent to be a valid private point for the specified curve. + * This is sometimes necessary because we use a single set of exponents + * for all curves but the validity of values depends on the curve. */ +static int self_test_adjust_exponent( const mbedtls_ecp_group *grp, + mbedtls_mpi *m ) +{ + int ret = 0; + switch( grp->id ) + { + /* If Curve25519 is available, then that's what we use for the + * Montgomery test, so we don't need the adjustment code. */ +#if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) + case MBEDTLS_ECP_DP_CURVE448: + /* Move highest bit from 254 to N-1. Setting bit N-1 is + * necessary to enforce the highest-bit-set constraint. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, 254, 0 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, grp->nbits, 1 ) ); + /* Copy second-highest bit from 253 to N-2. This is not + * necessary but improves the test variety a bit. */ + MBEDTLS_MPI_CHK( + mbedtls_mpi_set_bit( m, grp->nbits - 1, + mbedtls_mpi_get_bit( m, 253 ) ) ); + break; +#endif +#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */ + default: + /* Non-Montgomery curves and Curve25519 need no adjustment. */ + (void) grp; + (void) m; + goto cleanup; + } +cleanup: + return( ret ); +} + +/* Calculate R = m.P for each m in exponents. Check that the number of + * basic operations doesn't depend on the value of m. */ +static int self_test_point( int verbose, + mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, + mbedtls_mpi *m, + const mbedtls_ecp_point *P, + const char *const *exponents, + size_t n_exponents ) +{ + int ret = 0; + size_t i = 0; + unsigned long add_c_prev, dbl_c_prev, mul_c_prev; + add_count = 0; + dbl_count = 0; + mul_count = 0; + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[0] ) ); + MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) ); + + for( i = 1; i < n_exponents; i++ ) + { + add_c_prev = add_count; + dbl_c_prev = dbl_count; + mul_c_prev = mul_count; + add_count = 0; + dbl_count = 0; + mul_count = 0; + + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[i] ) ); + MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) ); + + if( add_count != add_c_prev || + dbl_count != dbl_c_prev || + mul_count != mul_c_prev ) + { + ret = 1; + break; + } + } + +cleanup: + if( verbose != 0 ) + { + if( ret != 0 ) + mbedtls_printf( "failed (%u)\n", (unsigned int) i ); + else + mbedtls_printf( "passed\n" ); + } + return( ret ); +} + +/* + * Checkup routine + */ +int mbedtls_ecp_self_test( int verbose ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_ecp_group grp; + mbedtls_ecp_point R, P; + mbedtls_mpi m; + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + /* Exponents especially adapted for secp192k1, which has the lowest + * order n of all supported curves (secp192r1 is in a slightly larger + * field but the order of its base point is slightly smaller). */ + const char *sw_exponents[] = + { + "000000000000000000000000000000000000000000000001", /* one */ + "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */ + "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ + "400000000000000000000000000000000000000000000000", /* one and zeros */ + "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */ + "555555555555555555555555555555555555555555555555", /* 101010... */ + }; +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + const char *m_exponents[] = + { + /* Valid private values for Curve25519. In a build with Curve448 + * but not Curve25519, they will be adjusted in + * self_test_adjust_exponent(). */ + "4000000000000000000000000000000000000000000000000000000000000000", + "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30", + "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8", + "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460", + "5555555555555555555555555555555555555555555555555555555555555550", + "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8", + }; +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ + + mbedtls_ecp_group_init( &grp ); + mbedtls_ecp_point_init( &R ); + mbedtls_ecp_point_init( &P ); + mbedtls_mpi_init( &m ); + +#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + /* Use secp192r1 if available, or any available curve */ +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) + MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) ); +#else + MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) ); +#endif + + if( verbose != 0 ) + mbedtls_printf( " ECP SW test #1 (constant op_count, base point G): " ); + /* Do a dummy multiplication first to trigger precomputation */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) ); + MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) ); + ret = self_test_point( verbose, + &grp, &R, &m, &grp.G, + sw_exponents, + sizeof( sw_exponents ) / sizeof( sw_exponents[0] )); + if( ret != 0 ) + goto cleanup; + + if( verbose != 0 ) + mbedtls_printf( " ECP SW test #2 (constant op_count, other point): " ); + /* We computed P = 2G last time, use it */ + ret = self_test_point( verbose, + &grp, &R, &m, &P, + sw_exponents, + sizeof( sw_exponents ) / sizeof( sw_exponents[0] )); + if( ret != 0 ) + goto cleanup; + + mbedtls_ecp_group_free( &grp ); + mbedtls_ecp_point_free( &R ); +#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ + +#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) + if( verbose != 0 ) + mbedtls_printf( " ECP Montgomery test (constant op_count): " ); +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) + MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE25519 ) ); +#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) + MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE448 ) ); +#else +#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test" +#endif + ret = self_test_point( verbose, + &grp, &R, &m, &grp.G, + m_exponents, + sizeof( m_exponents ) / sizeof( m_exponents[0] )); + if( ret != 0 ) + goto cleanup; +#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ + +cleanup: + + if( ret < 0 && verbose != 0 ) + mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret ); + + mbedtls_ecp_group_free( &grp ); + mbedtls_ecp_point_free( &R ); + mbedtls_ecp_point_free( &P ); + mbedtls_mpi_free( &m ); + + if( verbose != 0 ) + mbedtls_printf( "\n" ); + + return( ret ); +} + +#endif /* MBEDTLS_SELF_TEST */ + +#endif /* MBEDTLS_ECP_ALT */ + +#endif /* MBEDTLS_ECP_C */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.h b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.h new file mode 100644 index 0000000000..8c7c8d1274 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_alt.h @@ -0,0 +1,187 @@ +/** + * \file ecp_alt.h + * + * \brief This file provides an API for Elliptic Curves over GF(P) (ECP). + * + * The use of ECP in cryptography and TLS is defined in + * Standards for Efficient Cryptography Group (SECG): SEC1 + * Elliptic Curve Cryptography and + * RFC-4492: Elliptic Curve Cryptography (ECC) Cipher Suites + * for Transport Layer Security (TLS). + * + * RFC-2409: The Internet Key Exchange (IKE) defines ECP + * group types. + * + */ + +/* + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MBEDTLS_ECP_ALT_H +#define MBEDTLS_ECP_ALT_H + +#if !defined(MBEDTLS_CONFIG_FILE) +#include "mbedtls/config.h" +#else +#include MBEDTLS_CONFIG_FILE +#endif + +#include "mbedtls/bignum.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(MBEDTLS_ECP_ALT) + +/* Enable Nuvoton's Crypto ECC H/W */ +#define NU_CRYPTO_ECC_ENABLE + +/* + * default mbed TLS elliptic curve arithmetic implementation + * + * (in case MBEDTLS_ECP_ALT is defined then the developer has to provide an + * alternative implementation for the whole module and it will replace this + * one.) + */ + +/** + * \brief The ECP group structure. + * + * We consider two types of curve equations: + *
  • Short Weierstrass: y^2 = x^3 + A x + B mod P + * (SEC1 + RFC-4492)
  • + *
  • Montgomery: y^2 = x^3 + A x^2 + x mod P (Curve25519, + * Curve448)
+ * In both cases, the generator (\p G) for a prime-order subgroup is fixed. + * + * For Short Weierstrass, this subgroup is the whole curve, and its + * cardinality is denoted by \p N. Our code requires that \p N is an + * odd prime as mbedtls_ecp_mul() requires an odd number, and + * mbedtls_ecdsa_sign() requires that it is prime for blinding purposes. + * + * For Montgomery curves, we do not store \p A, but (A + 2) / 4, + * which is the quantity used in the formulas. Additionally, \p nbits is + * not the size of \p N but the required size for private keys. + * + * If \p modp is NULL, reduction modulo \p P is done using a generic algorithm. + * Otherwise, \p modp must point to a function that takes an \p mbedtls_mpi in the + * range of 0..2^(2*pbits)-1, and transforms it in-place to an integer + * which is congruent mod \p P to the given MPI, and is close enough to \p pbits + * in size, so that it may be efficiently brought in the 0..P-1 range by a few + * additions or subtractions. Therefore, it is only an approximative modular + * reduction. It must return 0 on success and non-zero on failure. + * + * \note Alternative implementations must keep the group IDs distinct. If + * two group structures have the same ID, then they must be + * identical. + * + */ +typedef struct mbedtls_ecp_group +{ + mbedtls_ecp_group_id id; /*!< An internal group identifier. */ + mbedtls_mpi P; /*!< The prime modulus of the base field. */ + mbedtls_mpi A; /*!< For Short Weierstrass: \p A in the equation. For + Montgomery curves: (A + 2) / 4. */ + mbedtls_mpi B; /*!< For Short Weierstrass: \p B in the equation. + For Montgomery curves: unused. */ + mbedtls_ecp_point G; /*!< The generator of the subgroup used. */ + mbedtls_mpi N; /*!< The order of \p G. */ + size_t pbits; /*!< The number of bits in \p P.*/ + size_t nbits; /*!< For Short Weierstrass: The number of bits in \p P. + For Montgomery curves: the number of bits in the + private keys. */ + unsigned int h; /*!< \internal 1 if the constants are static. */ + int (*modp)(mbedtls_mpi *); /*!< The function for fast pseudo-reduction + mod \p P (see above).*/ + int (*t_pre)(mbedtls_ecp_point *, void *); /*!< Unused. */ + int (*t_post)(mbedtls_ecp_point *, void *); /*!< Unused. */ + void *t_data; /*!< Unused. */ + mbedtls_ecp_point *T; /*!< Pre-computed points for ecp_mul_comb(). */ + size_t T_size; /*!< The number of pre-computed points. */ + +#if defined(NU_CRYPTO_ECC_ENABLE) + int hw_init; /*!< Initialized Crypto ECC H/W or not. */ +#endif +} +mbedtls_ecp_group; + +/** + * \name SECTION: Module settings + * + * The configuration options you can set for this module are in this section. + * Either change them in config.h, or define them using the compiler command line. + * \{ + */ + +#if !defined(MBEDTLS_ECP_MAX_BITS) +/** + * The maximum size of the groups, that is, of \c N and \c P. + */ +#define MBEDTLS_ECP_MAX_BITS 521 /**< The maximum size of groups, in bits. */ +#endif + +#define MBEDTLS_ECP_MAX_BYTES ( ( MBEDTLS_ECP_MAX_BITS + 7 ) / 8 ) +#define MBEDTLS_ECP_MAX_PT_LEN ( 2 * MBEDTLS_ECP_MAX_BYTES + 1 ) + +#if !defined(MBEDTLS_ECP_WINDOW_SIZE) +/* + * Maximum "window" size used for point multiplication. + * Default: 6. + * Minimum value: 2. Maximum value: 7. + * + * Result is an array of at most ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) ) + * points used for point multiplication. This value is directly tied to EC + * peak memory usage, so decreasing it by one should roughly cut memory usage + * by two (if large curves are in use). + * + * Reduction in size may reduce speed, but larger curves are impacted first. + * Sample performances (in ECDHE handshakes/s, with FIXED_POINT_OPTIM = 1): + * w-size: 6 5 4 3 2 + * 521 145 141 135 120 97 + * 384 214 209 198 177 146 + * 256 320 320 303 262 226 + * 224 475 475 453 398 342 + * 192 640 640 633 587 476 + */ +#define MBEDTLS_ECP_WINDOW_SIZE 6 /**< The maximum window size used. */ +#endif /* MBEDTLS_ECP_WINDOW_SIZE */ + +#if !defined(MBEDTLS_ECP_FIXED_POINT_OPTIM) +/* + * Trade memory for speed on fixed-point multiplication. + * + * This speeds up repeated multiplication of the generator (that is, the + * multiplication in ECDSA signatures, and half of the multiplications in + * ECDSA verification and ECDHE) by a factor roughly 3 to 4. + * + * The cost is increasing EC peak memory usage by a factor roughly 2. + * + * Change this value to 0 to reduce peak memory usage. + */ +#define MBEDTLS_ECP_FIXED_POINT_OPTIM 1 /**< Enable fixed-point speed-up. */ +#endif /* MBEDTLS_ECP_FIXED_POINT_OPTIM */ + +/* \} name SECTION: Module settings */ + +#endif /* MBEDTLS_ECP_ALT */ + +#ifdef __cplusplus +} +#endif + +#endif /* ecp.h */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_curves_alt.c b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_curves_alt.c new file mode 100644 index 0000000000..69b6ddbba6 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_curves_alt.c @@ -0,0 +1,1490 @@ +/* + * Elliptic curves over GF(p): curve-specific data and functions + * + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "common.h" + +#if defined(MBEDTLS_ECP_C) + +#include "mbedtls/ecp.h" +#include "mbedtls/platform_util.h" +#include "mbedtls/error.h" + +#include + +#if defined(MBEDTLS_ECP_ALT) + +/* Parameter validation macros based on platform_util.h */ +#define ECP_VALIDATE_RET( cond ) \ + MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA ) +#define ECP_VALIDATE( cond ) \ + MBEDTLS_INTERNAL_VALIDATE( cond ) + +#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \ + !defined(inline) && !defined(__cplusplus) +#define inline __inline +#endif + +/* + * Conversion macros for embedded constants: + * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2 + */ +#if defined(MBEDTLS_HAVE_INT32) + +#define BYTES_TO_T_UINT_4( a, b, c, d ) \ + ( (mbedtls_mpi_uint) (a) << 0 ) | \ + ( (mbedtls_mpi_uint) (b) << 8 ) | \ + ( (mbedtls_mpi_uint) (c) << 16 ) | \ + ( (mbedtls_mpi_uint) (d) << 24 ) + +#define BYTES_TO_T_UINT_2( a, b ) \ + BYTES_TO_T_UINT_4( a, b, 0, 0 ) + +#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \ + BYTES_TO_T_UINT_4( a, b, c, d ), \ + BYTES_TO_T_UINT_4( e, f, g, h ) + +#else /* 64-bits */ + +#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \ + ( (mbedtls_mpi_uint) (a) << 0 ) | \ + ( (mbedtls_mpi_uint) (b) << 8 ) | \ + ( (mbedtls_mpi_uint) (c) << 16 ) | \ + ( (mbedtls_mpi_uint) (d) << 24 ) | \ + ( (mbedtls_mpi_uint) (e) << 32 ) | \ + ( (mbedtls_mpi_uint) (f) << 40 ) | \ + ( (mbedtls_mpi_uint) (g) << 48 ) | \ + ( (mbedtls_mpi_uint) (h) << 56 ) + +#define BYTES_TO_T_UINT_4( a, b, c, d ) \ + BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 ) + +#define BYTES_TO_T_UINT_2( a, b ) \ + BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 ) + +#endif /* bits in mbedtls_mpi_uint */ + +/* + * Note: the constants are in little-endian order + * to be directly usable in MPIs + */ + +/* + * Domain parameters for secp192r1 + */ +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) +static const mbedtls_mpi_uint secp192r1_p[] = { + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp192r1_b[] = { + BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ), + BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ), + BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ), +}; +static const mbedtls_mpi_uint secp192r1_gx[] = { + BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ), + BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ), + BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ), +}; +static const mbedtls_mpi_uint secp192r1_gy[] = { + BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ), + BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ), + BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ), +}; +static const mbedtls_mpi_uint secp192r1_n[] = { + BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ), + BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ + +/* + * Domain parameters for secp224r1 + */ +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) +static const mbedtls_mpi_uint secp224r1_p[] = { + BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), +}; +static const mbedtls_mpi_uint secp224r1_b[] = { + BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ), + BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ), + BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ), + BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ), +}; +static const mbedtls_mpi_uint secp224r1_gx[] = { + BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ), + BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ), + BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ), + BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ), +}; +static const mbedtls_mpi_uint secp224r1_gy[] = { + BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ), + BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ), + BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ), + BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ), +}; +static const mbedtls_mpi_uint secp224r1_n[] = { + BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ), + BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ + +/* + * Domain parameters for secp256r1 + */ +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) +static const mbedtls_mpi_uint secp256r1_p[] = { + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), + BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp256r1_b[] = { + BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ), + BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ), + BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ), + BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ), +}; +static const mbedtls_mpi_uint secp256r1_gx[] = { + BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ), + BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ), + BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ), + BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ), +}; +static const mbedtls_mpi_uint secp256r1_gy[] = { + BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ), + BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ), + BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ), + BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ), +}; +static const mbedtls_mpi_uint secp256r1_n[] = { + BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ), + BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ + +/* + * Domain parameters for secp384r1 + */ +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) +static const mbedtls_mpi_uint secp384r1_p[] = { + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp384r1_b[] = { + BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ), + BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ), + BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ), + BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ), + BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ), + BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ), +}; +static const mbedtls_mpi_uint secp384r1_gx[] = { + BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ), + BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ), + BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ), + BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ), + BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ), + BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ), +}; +static const mbedtls_mpi_uint secp384r1_gy[] = { + BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ), + BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ), + BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ), + BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ), + BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ), + BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ), +}; +static const mbedtls_mpi_uint secp384r1_n[] = { + BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ), + BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ), + BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ + +/* + * Domain parameters for secp521r1 + */ +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) +static const mbedtls_mpi_uint secp521r1_p[] = { + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_2( 0xFF, 0x01 ), +}; +static const mbedtls_mpi_uint secp521r1_b[] = { + BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ), + BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ), + BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ), + BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ), + BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ), + BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ), + BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ), + BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ), + BYTES_TO_T_UINT_2( 0x51, 0x00 ), +}; +static const mbedtls_mpi_uint secp521r1_gx[] = { + BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ), + BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ), + BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ), + BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ), + BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ), + BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ), + BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ), + BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ), + BYTES_TO_T_UINT_2( 0xC6, 0x00 ), +}; +static const mbedtls_mpi_uint secp521r1_gy[] = { + BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ), + BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ), + BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ), + BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ), + BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ), + BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ), + BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ), + BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ), + BYTES_TO_T_UINT_2( 0x18, 0x01 ), +}; +static const mbedtls_mpi_uint secp521r1_n[] = { + BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ), + BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ), + BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ), + BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ), + BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_2( 0xFF, 0x01 ), +}; +#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) +static const mbedtls_mpi_uint secp192k1_p[] = { + BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp192k1_a[] = { + BYTES_TO_T_UINT_2( 0x00, 0x00 ), +}; +static const mbedtls_mpi_uint secp192k1_b[] = { + BYTES_TO_T_UINT_2( 0x03, 0x00 ), +}; +static const mbedtls_mpi_uint secp192k1_gx[] = { + BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ), + BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ), + BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ), +}; +static const mbedtls_mpi_uint secp192k1_gy[] = { + BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ), + BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ), + BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ), +}; +static const mbedtls_mpi_uint secp192k1_n[] = { + BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ), + BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) +static const mbedtls_mpi_uint secp224k1_p[] = { + BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp224k1_a[] = { + BYTES_TO_T_UINT_2( 0x00, 0x00 ), +}; +static const mbedtls_mpi_uint secp224k1_b[] = { + BYTES_TO_T_UINT_2( 0x05, 0x00 ), +}; +static const mbedtls_mpi_uint secp224k1_gx[] = { + BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ), + BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ), + BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ), + BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ), +}; +static const mbedtls_mpi_uint secp224k1_gy[] = { + BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ), + BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ), + BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ), + BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ), +}; +static const mbedtls_mpi_uint secp224k1_n[] = { + BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ), + BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), + BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ), +}; +#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +static const mbedtls_mpi_uint secp256k1_p[] = { + BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +static const mbedtls_mpi_uint secp256k1_a[] = { + BYTES_TO_T_UINT_2( 0x00, 0x00 ), +}; +static const mbedtls_mpi_uint secp256k1_b[] = { + BYTES_TO_T_UINT_2( 0x07, 0x00 ), +}; +static const mbedtls_mpi_uint secp256k1_gx[] = { + BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ), + BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ), + BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ), + BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ), +}; +static const mbedtls_mpi_uint secp256k1_gy[] = { + BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ), + BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ), + BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ), + BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ), +}; +static const mbedtls_mpi_uint secp256k1_n[] = { + BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ), + BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ), + BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), + BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), +}; +#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ + +/* + * Domain parameters for brainpoolP256r1 (RFC 5639 3.4) + */ +#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) +static const mbedtls_mpi_uint brainpoolP256r1_p[] = { + BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ), + BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ), + BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ), + BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ), +}; +static const mbedtls_mpi_uint brainpoolP256r1_a[] = { + BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ), + BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ), + BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ), + BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ), +}; +static const mbedtls_mpi_uint brainpoolP256r1_b[] = { + BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ), + BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ), + BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ), + BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ), +}; +static const mbedtls_mpi_uint brainpoolP256r1_gx[] = { + BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ), + BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ), + BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ), + BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ), +}; +static const mbedtls_mpi_uint brainpoolP256r1_gy[] = { + BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ), + BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ), + BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ), + BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ), +}; +static const mbedtls_mpi_uint brainpoolP256r1_n[] = { + BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ), + BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ), + BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ), + BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ), +}; +#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ + +/* + * Domain parameters for brainpoolP384r1 (RFC 5639 3.6) + */ +#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) +static const mbedtls_mpi_uint brainpoolP384r1_p[] = { + BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ), + BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ), + BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ), + BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ), + BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ), + BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ), +}; +static const mbedtls_mpi_uint brainpoolP384r1_a[] = { + BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ), + BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ), + BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ), + BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ), + BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ), + BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ), +}; +static const mbedtls_mpi_uint brainpoolP384r1_b[] = { + BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ), + BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ), + BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ), + BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ), + BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ), + BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ), +}; +static const mbedtls_mpi_uint brainpoolP384r1_gx[] = { + BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ), + BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ), + BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ), + BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ), + BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ), + BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ), +}; +static const mbedtls_mpi_uint brainpoolP384r1_gy[] = { + BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ), + BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ), + BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ), + BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ), + BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ), + BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ), +}; +static const mbedtls_mpi_uint brainpoolP384r1_n[] = { + BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ), + BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ), + BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ), + BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ), + BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ), + BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ), +}; +#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ + +/* + * Domain parameters for brainpoolP512r1 (RFC 5639 3.7) + */ +#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) +static const mbedtls_mpi_uint brainpoolP512r1_p[] = { + BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ), + BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ), + BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ), + BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ), + BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ), + BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ), + BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ), + BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ), +}; +static const mbedtls_mpi_uint brainpoolP512r1_a[] = { + BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ), + BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ), + BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ), + BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ), + BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ), + BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ), + BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ), + BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ), +}; +static const mbedtls_mpi_uint brainpoolP512r1_b[] = { + BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ), + BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ), + BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ), + BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ), + BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ), + BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ), + BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ), + BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ), +}; +static const mbedtls_mpi_uint brainpoolP512r1_gx[] = { + BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ), + BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ), + BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ), + BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ), + BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ), + BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ), + BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ), + BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ), +}; +static const mbedtls_mpi_uint brainpoolP512r1_gy[] = { + BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ), + BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ), + BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ), + BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ), + BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ), + BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ), + BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ), + BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ), +}; +static const mbedtls_mpi_uint brainpoolP512r1_n[] = { + BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ), + BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ), + BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ), + BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ), + BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ), + BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ), + BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ), + BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ), +}; +#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +/* For these curves, we build the group parameters dynamically. */ +#define ECP_LOAD_GROUP +#endif + +#if defined(ECP_LOAD_GROUP) +/* + * Create an MPI from embedded constants + * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint) + */ +static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len ) +{ + X->s = 1; + X->n = len / sizeof( mbedtls_mpi_uint ); + X->p = (mbedtls_mpi_uint *) p; +} + +/* + * Set an MPI to static value 1 + */ +static inline void ecp_mpi_set1( mbedtls_mpi *X ) +{ + static mbedtls_mpi_uint one[] = { 1 }; + X->s = 1; + X->n = 1; + X->p = one; +} + +/* + * Make group available from embedded constants + */ +static int ecp_group_load( mbedtls_ecp_group *grp, + const mbedtls_mpi_uint *p, size_t plen, + const mbedtls_mpi_uint *a, size_t alen, + const mbedtls_mpi_uint *b, size_t blen, + const mbedtls_mpi_uint *gx, size_t gxlen, + const mbedtls_mpi_uint *gy, size_t gylen, + const mbedtls_mpi_uint *n, size_t nlen) +{ + ecp_mpi_load( &grp->P, p, plen ); + if( a != NULL ) + ecp_mpi_load( &grp->A, a, alen ); + ecp_mpi_load( &grp->B, b, blen ); + ecp_mpi_load( &grp->N, n, nlen ); + + ecp_mpi_load( &grp->G.X, gx, gxlen ); + ecp_mpi_load( &grp->G.Y, gy, gylen ); + ecp_mpi_set1( &grp->G.Z ); + + grp->pbits = mbedtls_mpi_bitlen( &grp->P ); + grp->nbits = mbedtls_mpi_bitlen( &grp->N ); + + grp->h = 1; + + return( 0 ); +} +#endif /* ECP_LOAD_GROUP */ + +#if defined(MBEDTLS_ECP_NIST_OPTIM) +/* Forward declarations */ +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) +static int ecp_mod_p192( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) +static int ecp_mod_p224( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) +static int ecp_mod_p256( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) +static int ecp_mod_p384( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) +static int ecp_mod_p521( mbedtls_mpi * ); +#endif + +#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P; +#else +#define NIST_MODP( P ) +#endif /* MBEDTLS_ECP_NIST_OPTIM */ + +/* Additional forward declarations */ +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) +static int ecp_mod_p255( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) +static int ecp_mod_p448( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) +static int ecp_mod_p192k1( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) +static int ecp_mod_p224k1( mbedtls_mpi * ); +#endif +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +static int ecp_mod_p256k1( mbedtls_mpi * ); +#endif + +#if defined(ECP_LOAD_GROUP) +#define LOAD_GROUP_A( G ) ecp_group_load( grp, \ + G ## _p, sizeof( G ## _p ), \ + G ## _a, sizeof( G ## _a ), \ + G ## _b, sizeof( G ## _b ), \ + G ## _gx, sizeof( G ## _gx ), \ + G ## _gy, sizeof( G ## _gy ), \ + G ## _n, sizeof( G ## _n ) ) + +#define LOAD_GROUP( G ) ecp_group_load( grp, \ + G ## _p, sizeof( G ## _p ), \ + NULL, 0, \ + G ## _b, sizeof( G ## _b ), \ + G ## _gx, sizeof( G ## _gx ), \ + G ## _gy, sizeof( G ## _gy ), \ + G ## _n, sizeof( G ## _n ) ) +#endif /* ECP_LOAD_GROUP */ + +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) +/* + * Specialized function for creating the Curve25519 group + */ +static int ecp_use_curve25519( mbedtls_ecp_group *grp ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + /* Actually ( A + 2 ) / 4 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) ); + + /* P = 2^255 - 19 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) ); + grp->pbits = mbedtls_mpi_bitlen( &grp->P ); + + /* N = 2^252 + 27742317777372353535851937790883648493 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16, + "14DEF9DEA2F79CD65812631A5CF5D3ED" ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) ); + + /* Y intentionally not set, since we use x/z coordinates. + * This is used as a marker to identify Montgomery curves! */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) ); + mbedtls_mpi_free( &grp->G.Y ); + + /* Actually, the required msb for private keys */ + grp->nbits = 254; + +cleanup: + if( ret != 0 ) + mbedtls_ecp_group_free( grp ); + + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) +/* + * Specialized function for creating the Curve448 group + */ +static int ecp_use_curve448( mbedtls_ecp_group *grp ) +{ + mbedtls_mpi Ns; + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + mbedtls_mpi_init( &Ns ); + + /* Actually ( A + 2 ) / 4 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) ); + + /* P = 2^448 - 2^224 - 1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) ); + grp->pbits = mbedtls_mpi_bitlen( &grp->P ); + + /* Y intentionally not set, since we use x/z coordinates. + * This is used as a marker to identify Montgomery curves! */ + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) ); + mbedtls_mpi_free( &grp->G.Y ); + + /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16, + "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) ); + + /* Actually, the required msb for private keys */ + grp->nbits = 447; + +cleanup: + mbedtls_mpi_free( &Ns ); + if( ret != 0 ) + mbedtls_ecp_group_free( grp ); + + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ + +/* + * Set a group using well-known domain parameters + */ +int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id ) +{ + ECP_VALIDATE_RET( grp != NULL ); + mbedtls_ecp_group_free( grp ); + + /* Fix Curve448 has wrong order value + * + * https://github.com/Mbed-TLS/mbedtls/pull/5811 + */ + mbedtls_ecp_group_init( grp ); + + grp->id = id; + + switch( id ) + { +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) + case MBEDTLS_ECP_DP_SECP192R1: + NIST_MODP( p192 ); + return( LOAD_GROUP( secp192r1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) + case MBEDTLS_ECP_DP_SECP224R1: + NIST_MODP( p224 ); + return( LOAD_GROUP( secp224r1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) + case MBEDTLS_ECP_DP_SECP256R1: + NIST_MODP( p256 ); + return( LOAD_GROUP( secp256r1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) + case MBEDTLS_ECP_DP_SECP384R1: + NIST_MODP( p384 ); + return( LOAD_GROUP( secp384r1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) + case MBEDTLS_ECP_DP_SECP521R1: + NIST_MODP( p521 ); + return( LOAD_GROUP( secp521r1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) + case MBEDTLS_ECP_DP_SECP192K1: + grp->modp = ecp_mod_p192k1; + return( LOAD_GROUP_A( secp192k1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) + case MBEDTLS_ECP_DP_SECP224K1: + grp->modp = ecp_mod_p224k1; + return( LOAD_GROUP_A( secp224k1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) + case MBEDTLS_ECP_DP_SECP256K1: + grp->modp = ecp_mod_p256k1; + return( LOAD_GROUP_A( secp256k1 ) ); +#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) + case MBEDTLS_ECP_DP_BP256R1: + return( LOAD_GROUP_A( brainpoolP256r1 ) ); +#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) + case MBEDTLS_ECP_DP_BP384R1: + return( LOAD_GROUP_A( brainpoolP384r1 ) ); +#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) + case MBEDTLS_ECP_DP_BP512R1: + return( LOAD_GROUP_A( brainpoolP512r1 ) ); +#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) + case MBEDTLS_ECP_DP_CURVE25519: + grp->modp = ecp_mod_p255; + return( ecp_use_curve25519( grp ) ); +#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) + case MBEDTLS_ECP_DP_CURVE448: + grp->modp = ecp_mod_p448; + return( ecp_use_curve448( grp ) ); +#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ + + default: + grp->id = MBEDTLS_ECP_DP_NONE; + return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); + } +} + +#if defined(MBEDTLS_ECP_NIST_OPTIM) +/* + * Fast reduction modulo the primes used by the NIST curves. + * + * These functions are critical for speed, but not needed for correct + * operations. So, we make the choice to heavily rely on the internals of our + * bignum library, which creates a tight coupling between these functions and + * our MPI implementation. However, the coupling between the ECP module and + * MPI remains loose, since these functions can be deactivated at will. + */ + +#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) +/* + * Compared to the way things are presented in FIPS 186-3 D.2, + * we proceed in columns, from right (least significant chunk) to left, + * adding chunks to N in place, and keeping a carry for the next chunk. + * This avoids moving things around in memory, and uselessly adding zeros, + * compared to the more straightforward, line-oriented approach. + * + * For this prime we need to handle data in chunks of 64 bits. + * Since this is always a multiple of our basic mbedtls_mpi_uint, we can + * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it. + */ + +/* Add 64-bit chunks (dst += src) and update carry */ +static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry ) +{ + unsigned char i; + mbedtls_mpi_uint c = 0; + for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ ) + { + *dst += c; c = ( *dst < c ); + *dst += *src; c += ( *dst < *src ); + } + *carry += c; +} + +/* Add carry to a 64-bit chunk and update carry */ +static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry ) +{ + unsigned char i; + for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ ) + { + *dst += *carry; + *carry = ( *dst < *carry ); + } +} + +#define WIDTH 8 / sizeof( mbedtls_mpi_uint ) +#define A( i ) N->p + (i) * WIDTH +#define ADD( i ) add64( p, A( i ), &c ) +#define NEXT p += WIDTH; carry64( p, &c ) +#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0 + +/* + * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) + */ +static int ecp_mod_p192( mbedtls_mpi *N ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + mbedtls_mpi_uint c = 0; + mbedtls_mpi_uint *p, *end; + + /* Make sure we have enough blocks so that A(5) is legal */ + MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) ); + + p = N->p; + end = p + N->n; + + ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5 + ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5 + ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5 + +cleanup: + return( ret ); +} + +#undef WIDTH +#undef A +#undef ADD +#undef NEXT +#undef LAST +#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) +/* + * The reader is advised to first understand ecp_mod_p192() since the same + * general structure is used here, but with additional complications: + * (1) chunks of 32 bits, and (2) subtractions. + */ + +/* + * For these primes, we need to handle data in chunks of 32 bits. + * This makes it more complicated if we use 64 bits limbs in MPI, + * which prevents us from using a uniform access method as for p192. + * + * So, we define a mini abstraction layer to access 32 bit chunks, + * load them in 'cur' for work, and store them back from 'cur' when done. + * + * While at it, also define the size of N in terms of 32-bit chunks. + */ +#define LOAD32 cur = A( i ); + +#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */ + +#define MAX32 N->n +#define A( j ) N->p[j] +#define STORE32 N->p[i] = cur; + +#else /* 64-bit */ + +#define MAX32 N->n * 2 +#define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \ + (uint32_t)( N->p[(j)/2] ) +#define STORE32 \ + if( i % 2 ) { \ + N->p[i/2] &= 0x00000000FFFFFFFF; \ + N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \ + } else { \ + N->p[i/2] &= 0xFFFFFFFF00000000; \ + N->p[i/2] |= (mbedtls_mpi_uint) cur; \ + } + +#endif /* sizeof( mbedtls_mpi_uint ) */ + +/* + * Helpers for addition and subtraction of chunks, with signed carry. + */ +static inline void add32( uint32_t *dst, uint32_t src, signed char *carry ) +{ + *dst += src; + *carry += ( *dst < src ); +} + +static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry ) +{ + *carry -= ( *dst < src ); + *dst -= src; +} + +#define ADD( j ) add32( &cur, A( j ), &c ); +#define SUB( j ) sub32( &cur, A( j ), &c ); + +/* + * Helpers for the main 'loop' + * (see fix_negative for the motivation of C) + */ +#define INIT( b ) \ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \ + signed char c = 0, cc; \ + uint32_t cur; \ + size_t i = 0, bits = (b); \ + mbedtls_mpi C; \ + mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \ + \ + C.s = 1; \ + C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1; \ + C.p = Cp; \ + memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \ + \ + MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 / \ + sizeof( mbedtls_mpi_uint ) ) ); \ + LOAD32; + +#define NEXT \ + STORE32; i++; LOAD32; \ + cc = c; c = 0; \ + if( cc < 0 ) \ + sub32( &cur, -cc, &c ); \ + else \ + add32( &cur, cc, &c ); \ + +#define LAST \ + STORE32; i++; \ + cur = c > 0 ? c : 0; STORE32; \ + cur = 0; while( ++i < MAX32 ) { STORE32; } \ + if( c < 0 ) MBEDTLS_MPI_CHK( fix_negative( N, c, &C, bits ) ); + +/* + * If the result is negative, we get it in the form + * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits' + */ +static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + /* C = - c * 2^(bits + 32) */ +#if !defined(MBEDTLS_HAVE_INT64) + ((void) bits); +#else + if( bits == 224 ) + C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32; + else +#endif + C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c; + + /* N = - ( C - N ) */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) ); + N->s = -1; + +cleanup: + + return( ret ); +} + +#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) +/* + * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2) + */ +static int ecp_mod_p224( mbedtls_mpi *N ) +{ + INIT( 224 ); + + SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11 + SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12 + SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13 + SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11 + SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12 + SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13 + SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10 + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) +/* + * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3) + */ +static int ecp_mod_p256( mbedtls_mpi *N ) +{ + INIT( 256 ); + + ADD( 8 ); ADD( 9 ); + SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0 + + ADD( 9 ); ADD( 10 ); + SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1 + + ADD( 10 ); ADD( 11 ); + SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2 + + ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 ); + SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3 + + ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 ); + SUB( 9 ); SUB( 10 ); NEXT; // A4 + + ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 ); + SUB( 10 ); SUB( 11 ); NEXT; // A5 + + ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 ); + SUB( 8 ); SUB( 9 ); NEXT; // A6 + + ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 ); + SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7 + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) +/* + * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4) + */ +static int ecp_mod_p384( mbedtls_mpi *N ) +{ + INIT( 384 ); + + ADD( 12 ); ADD( 21 ); ADD( 20 ); + SUB( 23 ); NEXT; // A0 + + ADD( 13 ); ADD( 22 ); ADD( 23 ); + SUB( 12 ); SUB( 20 ); NEXT; // A2 + + ADD( 14 ); ADD( 23 ); + SUB( 13 ); SUB( 21 ); NEXT; // A2 + + ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 ); + SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3 + + ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 ); + SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4 + + ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 ); + SUB( 16 ); NEXT; // A5 + + ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 ); + SUB( 17 ); NEXT; // A6 + + ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 ); + SUB( 18 ); NEXT; // A7 + + ADD( 20 ); ADD( 17 ); ADD( 16 ); + SUB( 19 ); NEXT; // A8 + + ADD( 21 ); ADD( 18 ); ADD( 17 ); + SUB( 20 ); NEXT; // A9 + + ADD( 22 ); ADD( 19 ); ADD( 18 ); + SUB( 21 ); NEXT; // A10 + + ADD( 23 ); ADD( 20 ); ADD( 19 ); + SUB( 22 ); LAST; // A11 + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ + +#undef A +#undef LOAD32 +#undef STORE32 +#undef MAX32 +#undef INIT +#undef NEXT +#undef LAST + +#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED || + MBEDTLS_ECP_DP_SECP256R1_ENABLED || + MBEDTLS_ECP_DP_SECP384R1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) +/* + * Here we have an actual Mersenne prime, so things are more straightforward. + * However, chunks are aligned on a 'weird' boundary (521 bits). + */ + +/* Size of p521 in terms of mbedtls_mpi_uint */ +#define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 ) + +/* Bits to keep in the most significant mbedtls_mpi_uint */ +#define P521_MASK 0x01FF + +/* + * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) + * Write N as A1 + 2^521 A0, return A0 + A1 + */ +static int ecp_mod_p521( mbedtls_mpi *N ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + mbedtls_mpi M; + mbedtls_mpi_uint Mp[P521_WIDTH + 1]; + /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits: + * we need to hold bits 513 to 1056, which is 34 limbs, that is + * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */ + + if( N->n < P521_WIDTH ) + return( 0 ); + + /* M = A1 */ + M.s = 1; + M.n = N->n - ( P521_WIDTH - 1 ); + if( M.n > P521_WIDTH + 1 ) + M.n = P521_WIDTH + 1; + M.p = Mp; + memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) ); + + /* N = A0 */ + N->p[P521_WIDTH - 1] &= P521_MASK; + for( i = P521_WIDTH; i < N->n; i++ ) + N->p[i] = 0; + + /* N = A0 + A1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); + +cleanup: + return( ret ); +} + +#undef P521_WIDTH +#undef P521_MASK +#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ + +#endif /* MBEDTLS_ECP_NIST_OPTIM */ + +#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) + +/* Size of p255 in terms of mbedtls_mpi_uint */ +#define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 ) + +/* + * Fast quasi-reduction modulo p255 = 2^255 - 19 + * Write N as A0 + 2^255 A1, return A0 + 19 * A1 + */ +static int ecp_mod_p255( mbedtls_mpi *N ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + mbedtls_mpi M; + mbedtls_mpi_uint Mp[P255_WIDTH + 2]; + + if( N->n < P255_WIDTH ) + return( 0 ); + + /* M = A1 */ + M.s = 1; + M.n = N->n - ( P255_WIDTH - 1 ); + if( M.n > P255_WIDTH + 1 ) + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + M.p = Mp; + memset( Mp, 0, sizeof Mp ); + memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) ); + M.n++; /* Make room for multiplication by 19 */ + + /* N = A0 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) ); + for( i = P255_WIDTH; i < N->n; i++ ) + N->p[i] = 0; + + /* N = A0 + 19 * A1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) + +/* Size of p448 in terms of mbedtls_mpi_uint */ +#define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) ) + +/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */ +#define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) ) +#define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) ) +#define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) ) +#define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 ) + +/* + * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1 + * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return + * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference + * implementation of Curve448, which uses its own special 56-bit limbs rather + * than a generic bignum library. We could squeeze some extra speed out on + * 32-bit machines by splitting N up into 32-bit limbs and doing the + * arithmetic using the limbs directly as we do for the NIST primes above, + * but for 64-bit targets it should use half the number of operations if we do + * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds. + */ +static int ecp_mod_p448( mbedtls_mpi *N ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + mbedtls_mpi M, Q; + mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH]; + + if( N->n <= P448_WIDTH ) + return( 0 ); + + /* M = A1 */ + M.s = 1; + M.n = N->n - ( P448_WIDTH ); + if( M.n > P448_WIDTH ) + /* Shouldn't be called with N larger than 2^896! */ + return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); + M.p = Mp; + memset( Mp, 0, sizeof( Mp ) ); + memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) ); + + /* N = A0 */ + for( i = P448_WIDTH; i < N->n; i++ ) + N->p[i] = 0; + + /* N += A1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) ); + + /* Q = B1, N += B1 */ + Q = M; + Q.p = Qp; + memcpy( Qp, Mp, sizeof( Qp ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) ); + + /* M = (B0 + B1) * 2^224, N += M */ + if( sizeof( mbedtls_mpi_uint ) > 4 ) + Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS ); + for( i = P224_WIDTH_MAX; i < M.n; ++i ) + Mp[i] = 0; + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) ); + M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */ + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) ); + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ + defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +/* + * Fast quasi-reduction modulo P = 2^s - R, + * with R about 33 bits, used by the Koblitz curves. + * + * Write N as A0 + 2^224 A1, return A0 + R * A1. + * Actually do two passes, since R is big. + */ +#define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P +#define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R +static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs, + size_t adjust, size_t shift, mbedtls_mpi_uint mask ) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + size_t i; + mbedtls_mpi M, R; + mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1]; + + if( N->n < p_limbs ) + return( 0 ); + + /* Init R */ + R.s = 1; + R.p = Rp; + R.n = P_KOBLITZ_R; + + /* Common setup for M */ + M.s = 1; + M.p = Mp; + + /* M = A1 */ + M.n = N->n - ( p_limbs - adjust ); + if( M.n > p_limbs + adjust ) + M.n = p_limbs + adjust; + memset( Mp, 0, sizeof Mp ); + memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) ); + if( shift != 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) ); + M.n += R.n; /* Make room for multiplication by R */ + + /* N = A0 */ + if( mask != 0 ) + N->p[p_limbs - 1] &= mask; + for( i = p_limbs; i < N->n; i++ ) + N->p[i] = 0; + + /* N = A0 + R * A1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); + + /* Second pass */ + + /* M = A1 */ + M.n = N->n - ( p_limbs - adjust ); + if( M.n > p_limbs + adjust ) + M.n = p_limbs + adjust; + memset( Mp, 0, sizeof Mp ); + memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) ); + if( shift != 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) ); + M.n += R.n; /* Make room for multiplication by R */ + + /* N = A0 */ + if( mask != 0 ) + N->p[p_limbs - 1] &= mask; + for( i = p_limbs; i < N->n; i++ ) + N->p[i] = 0; + + /* N = A0 + R * A1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); + +cleanup: + return( ret ); +} +#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) || + MBEDTLS_ECP_DP_SECP224K1_ENABLED) || + MBEDTLS_ECP_DP_SECP256K1_ENABLED) */ + +#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) +/* + * Fast quasi-reduction modulo p192k1 = 2^192 - R, + * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119 + */ +static int ecp_mod_p192k1( mbedtls_mpi *N ) +{ + static mbedtls_mpi_uint Rp[] = { + BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; + + return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); +} +#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) +/* + * Fast quasi-reduction modulo p224k1 = 2^224 - R, + * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93 + */ +static int ecp_mod_p224k1( mbedtls_mpi *N ) +{ + static mbedtls_mpi_uint Rp[] = { + BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; + +#if defined(MBEDTLS_HAVE_INT64) + return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) ); +#else + return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); +#endif +} + +#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ + +#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) +/* + * Fast quasi-reduction modulo p256k1 = 2^256 - R, + * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1 + */ +static int ecp_mod_p256k1( mbedtls_mpi *N ) +{ + static mbedtls_mpi_uint Rp[] = { + BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; + return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); +} +#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ + +#endif /* MBEDTLS_ECP_ALT */ + +#endif /* MBEDTLS_ECP_C */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.c b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.c new file mode 100644 index 0000000000..5a7970bbf4 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.c @@ -0,0 +1,166 @@ +/* + * Copyright (c) 2022, Nuvoton Technology Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "common.h" + +#if defined(MBEDTLS_ECP_C) + +#include "mbedtls/ecp.h" +#include "mbedtls/threading.h" +#include "mbedtls/platform_util.h" +#include "mbedtls/error.h" + +#include + +#if defined(MBEDTLS_ECP_ALT) + +int ecp_helper_deduce_y(const mbedtls_ecp_group *grp, + mbedtls_mpi *y, + const mbedtls_mpi *x) +{ + int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; + + mbedtls_mpi A; + mbedtls_mpi B; + mbedtls_mpi xx; // x^2 + mbedtls_mpi yy; // y^2 + mbedtls_mpi T1; // Scratch + mbedtls_mpi T2; // Scratch + mbedtls_mpi T3; // Scratch + mbedtls_mpi T4; // Scratch + + mbedtls_mpi_init(&A); + mbedtls_mpi_init(&B); + mbedtls_mpi_init(&xx); + mbedtls_mpi_init(&yy); + mbedtls_mpi_init(&T1); + mbedtls_mpi_init(&T2); + mbedtls_mpi_init(&T3); + mbedtls_mpi_init(&T4); + + /* ECC curve type */ + mbedtls_ecp_curve_type curve_type = mbedtls_ecp_get_type(grp); + + /* Resolve A */ + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* + * In S/W impl, A is used as (A + 2) / 4. Figure out its original value for engine. + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L219-L220 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&A, &grp->A, 4)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&A, &A, 2)); + } else { + MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&A, &grp->A)); + } + + /* Resolve B */ + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* + * In S/W impl, B is unused. Actually, B is 1 for Curve25519/Curve448. + * https://github.com/ARMmbed/mbed-os/blob/2eb06e76208588afc6cb7580a8dd64c5429a10ce/connectivity/mbedtls/include/mbedtls/ecp.h#L221-L222 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&B, 1)); + } else { + MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&B, &grp->B)); + } + + /* y^2 = C(x) (mod P) */ + if (curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { + /* Montgomery curve: B y^2 = x^3 + A x^2 + x (mod P) + * For Curve25519/Curve448, B = 1 */ + MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&yy, x)); // yy = x (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&yy, &yy, &grp->P)); + + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&xx, x, x)); // xx = x^2 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&xx, &xx, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T1, &A, &xx)); // T1 = A x^2 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T1, &T1, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&yy, &T1, &yy)); // yy = A x^2 + x (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&yy, &yy, &grp->P)); + + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T1, &xx, x)); // T1 = x^3 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T1, &T1, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&yy, &T1, &yy)); // yy = x^3 + A x^2 + x (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&yy, &yy, &grp->P)); + } else { + ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + goto cleanup; + } + + mbedtls_mpi_uint rmn_4 = 0, rmn_8 = 0; + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&rmn_4, &grp->P, 4)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&rmn_8, &grp->P, 8)); + + /* y = sqrt(y^2) (mod P) */ + if (rmn_8 == 5) { + /* + * Modulus congruent to 5 modulo 8 (Curve25519), apply the formula below: + * https://www.rieselprime.de/ziki/Modular_square_root#Modulus_congruent_to_5_modulo_8 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T1, &grp->P, 5)); // T1 = (P - 5) / 8 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(&T1, NULL, &T1, 8)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T1, &T1, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T2, &yy, 2)); // T2 = 2 y^2 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T2, &T2, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T3, &T2, &T1, &grp->P, NULL)); // T3 = T2^T1 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T4, &T2, &T3)); // T4 = T2 T3^2 (mod P) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T4, &T4, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T4, &T4, &T3)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T4, &T4, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(y, &T4, 1)); // y = yy T3 (T4 - 1) + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(y, y, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(y, &T3, y)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(y, y, &grp->P)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(y, &yy, y)); + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(y, y, &grp->P)); + } else if (rmn_4 == 3) { + /* + * Modulus congruent to 3 modulo 4 (Curve448), apply the formula below: + * https://www.rieselprime.de/ziki/Modular_square_root#Modulus_congruent_to_3_modulo_4 + */ + MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&T1, &grp->P, 1)); // T1 = (P + 1) / 4 + MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(&T1, NULL, &T1, 4)); + MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(y, &yy, &T1, &grp->P, NULL)); // y = yy^T1 (mod P) + } else { + ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; + goto cleanup; + } + + /* y = min(y, P - y) */ + MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T1, &grp->P, y)); + if (mbedtls_mpi_cmp_mpi(y, &T1) > 0) { + MBEDTLS_MPI_CHK(mbedtls_mpi_copy(y, &T1)); + } + +cleanup: + + mbedtls_mpi_free(&T4); + mbedtls_mpi_free(&T3); + mbedtls_mpi_free(&T2); + mbedtls_mpi_free(&T1); + mbedtls_mpi_free(&yy); + mbedtls_mpi_free(&xx); + mbedtls_mpi_free(&B); + mbedtls_mpi_free(&A); + + return ret; +} + +#endif /* MBEDTLS_ECP_ALT */ + +#endif /* MBEDTLS_ECP_C */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.h b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.h new file mode 100644 index 0000000000..6903af4d50 --- /dev/null +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_helper.h @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2022, Nuvoton Technology Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ECP_HELPER_H +#define ECP_HELPER_H + +#if !defined(MBEDTLS_CONFIG_FILE) +#include "mbedtls/config.h" +#else +#include MBEDTLS_CONFIG_FILE +#endif + +#include "mbedtls/bignum.h" + +/** + * \brief Check if MPI has been normalized + * + * \param N Input MPI which is to check + * \param P Prime modulus + * + * \return 0 if not normalized, + * 1 if normalized + */ +#define ECP_HELPER_MPI_IS_NORM(N, P) \ + ((mbedtls_mpi_cmp_int(&N, 0) >= 0) && (mbedtls_mpi_cmp_mpi(&N, &P) < 0)) + +/** + * \brief Normalize MPI if it is not normalized yet + * + * \param R Holds pointer to normalized MPI (N1 or N2) + * \param N1 Input MPI which is to normalize + * \param N2 Output MPI which holds normalized N1 if N1 is not normalized yet + * \param P Prime modulus + */ +#define ECP_HELPER_MPI_NORM(R, N1, N2, P) \ + do { \ + if (ECP_HELPER_MPI_IS_NORM(N1, P)) { \ + *R = &N1; \ + } else { \ + MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&N2, &N1, &P)); \ + *R = &N2; \ + } \ + } while(0) + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * \brief This function deduces y coordinate from x coordinate + * for a ECP point expressed in compact representation. + * + * \param grp The ECP group to be exported. + * This must be initialized and have group parameters + * set, for example through mbedtls_ecp_group_load(). + * \param y Deduced y coordinate which is smaller. The other would be + * \p grp->P - \p y. \p y must point to an initialized MPI. + * + * \return \c 0 on success. + * \return #MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if \p grp does not + * designate a Curve25519 or Curve448 curve. + * \return Another negative error code on other kinds of failure. + */ +int ecp_helper_deduce_y(const mbedtls_ecp_group *grp, + mbedtls_mpi *y, + const mbedtls_mpi *x); + +#ifdef __cplusplus +} +#endif + +#endif /* ECP_HELPER_H */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_internal_alt.c b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_internal_alt.c index 15947b4bc3..51b99dd61f 100644 --- a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_internal_alt.c +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/ecp/ecp_internal_alt.c @@ -16,11 +16,7 @@ * limitations under the License. */ -#if !defined(MBEDTLS_CONFIG_FILE) -#include "mbedtls/config.h" -#else -#include MBEDTLS_CONFIG_FILE -#endif +#include "mbedtls/common.h" /* Some internal functions are used for Nuvoton internal self-test. * Remove the static modifier for self-test compile. */ @@ -39,17 +35,6 @@ #include #if !defined(MBEDTLS_ECP_ALT) - -#if defined(MBEDTLS_PLATFORM_C) -#include "mbedtls/platform.h" -#else -#include -#include -#define mbedtls_printf printf -#define mbedtls_calloc calloc -#define mbedtls_free free -#endif - #if defined(MBEDTLS_ECP_INTERNAL_ALT) #include "mbedtls/platform.h" @@ -60,63 +45,8 @@ #include "mbed_toolchain.h" #include "nu_bitutil.h" #include "crypto-misc.h" - -/* Max key size supported */ -#define NU_ECC_MAXKEYBITS 571 -/* Max ECC big-number words */ -#define NU_ECC_BIGNUM_MAXWORD 18 -/* words in limb */ -#define wiL (sizeof (mbedtls_mpi_uint) / sizeof (uint32_t)) -/* Min MPI limbs for ECC big-number */ -#define NU_ECC_BIGNUM_MINLIMB (NU_ECC_BIGNUM_MAXWORD / wiL) - -/* - * Convert between words and number of limbs - * Divide first in order to avoid potential overflows - */ -#define WORDS_TO_LIMBS(i) ( (i) / wiL + ( (i) % wiL != 0 ) ) - - -#define ECCOP_POINT_MUL (0x0UL << CRPT_ECC_CTL_ECCOP_Pos) -#define ECCOP_MODULE (0x1UL << CRPT_ECC_CTL_ECCOP_Pos) -#define ECCOP_POINT_ADD (0x2UL << CRPT_ECC_CTL_ECCOP_Pos) -#define ECCOP_POINT_DOUBLE (0x3UL << CRPT_ECC_CTL_ECCOP_Pos) - -#define MODOP_DIV (0x0UL << CRPT_ECC_CTL_MODOP_Pos) -#define MODOP_MUL (0x1UL << CRPT_ECC_CTL_MODOP_Pos) -#define MODOP_ADD (0x2UL << CRPT_ECC_CTL_MODOP_Pos) -#define MODOP_SUB (0x3UL << CRPT_ECC_CTL_MODOP_Pos) - -/** - * \brief Check if MPI has been normalized - * - * \param N Input MPI which is to check - * \param P Prime modulus - * - * \return 0 if not normalized, - * 1 if normalized - */ -#define INTERNAL_MPI_IS_NORM(N, P) \ - ((mbedtls_mpi_cmp_int(&N, 0) >= 0) && (mbedtls_mpi_cmp_mpi(&N, &P) < 0)) - - -/** - * \brief Normalize MPI if it is not normalized yet - * - * \param R Holds pointer to normalized MPI (N1 or N2) - * \param N1 Input MPI which is to normalize - * \param N2 Output MPI which holds normalized N1 if N1 is not normalized yet - * \param P Prime modulus - */ -#define INTERNAL_MPI_NORM(R, N1, N2, P) \ - do { \ - if (INTERNAL_MPI_IS_NORM(N1, P)) { \ - *R = &N1; \ - } else { \ - MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&N2, &N1, &P)); \ - *R = &N2; \ - } \ - } while(0) +#include "crypto_ecc_hw.h" +#include "ecp_helper.h" /** * \brief Normalize Jacobian coordinates or Montgomery x/z coordinates, dependent on curve type. @@ -132,99 +62,43 @@ NU_STATIC int internal_ecp_normalize(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt); /** - * \brief Configure ECCOP operation, start it, and wait for its completion - * - * \param grp ECP group - * \param R Destination point - * \param m Integer by which to multiply P - * \param P Point to multiply by m - * \param n Integer by which to multiply Q - * \param Q Point to be multiplied by n - * \param eccop ECCOP code. Could be ECCOP_POINT_MUL/ADD/DOUBLE - * Dependent on passed-in eccop, only partial parameters among m/P/n/Q are needed and checked. - * ECCOP_POINT_MUL R = m*P - * ECCOP_POINT_ADD R = P + Q - * ECCOP_POINT_DOUBLE R = 2*P - * - * \return 0 if successful - * - * \note P/Q must be normalized (= affine). R would be normalized. - * - * \note m/n could be negative. - * - * \note ECC accelerator doesn't support R = 0, and we need to detect it additionally. - * For R = P + Q or R = 2*P, we can detect all R = 0 cases. - * For R = m*P, we can detect all R = 0 cases only if grp->N (order) is a prime. - * - * \note According to ECCOP operation, n is unnecessary. But to be consistent with R = m*P + n*Q, - * n is kept with unused modifier. - * + * \note See \c crypto_ecc_run_eccop. */ NU_STATIC int internal_run_eccop(const mbedtls_ecp_group *grp, - mbedtls_ecp_point *R, - const mbedtls_mpi *m, - const mbedtls_ecp_point *P, - MBED_UNUSED const mbedtls_mpi *n, - const mbedtls_ecp_point *Q, - uint32_t eccop); + mbedtls_ecp_point *R, + const mbedtls_mpi *m, + const mbedtls_ecp_point *P, + const mbedtls_mpi *n, + const mbedtls_ecp_point *Q, + uint32_t eccop); /** - * \brief Configure MODOP operation and wait for its completion - * - * \param r Destination MPI - * \param o1 Input MPI for first operand of MODOP - * \param o2 Input MPI for second operand of MODOP - * \param p Prime modulus - * \param pbits Bit number of p - * \param modop ECCOP code. Could be MODOP_ADD/SUB/MUL/DIV - * MODOP_ADD r = o1 + o2 mod p - * MODOP_SUB r = o1 - o2 mod p - * MODOP_MUL r = o1 * o2 mod p - * MODOP_DIV r = o1 / o2 mod p - * - * \return 0 if successful - * - * \note o1/o2 must be normalized (within [0, p - 1]). r would be normalized. + * \note See \c crypto_ecc_run_modop. */ NU_STATIC int internal_run_modop(mbedtls_mpi *r, - const mbedtls_mpi *o1, - const mbedtls_mpi *o2, - const mbedtls_mpi *p, - uint32_t pbits, - uint32_t modop); + const mbedtls_mpi *o1, + const mbedtls_mpi *o2, + const mbedtls_mpi *p, + uint32_t pbits, + uint32_t modop); /** - * \brief Import X from ECC registers, little endian - * - * \param X Destination MPI - * \param eccreg Start of input ECC register - * \param eccreg_num Number of input ECC register - * - * \return 0 if successful - * - * \note Destination MPI is always non-negative. + * \note See \c crypto_ecc_mpi_read_eccreg. */ NU_STATIC int internal_mpi_read_eccreg( mbedtls_mpi *X, const volatile uint32_t *eccreg, size_t eccreg_num ); /** - * \brief Export X into ECC registers, little endian - * - * \param X Source MPI - * \param eccreg Start of ECC output registers - * \param eccreg_num Number of ECC output registers - * - * \return 0 if successful - * - * \note Source MPI cannot be negative. - * \note Fills the remaining MSB ECC registers with zeros if X doesn't cover all. + * \note See \c crypto_ecc_mpi_write_eccreg. */ NU_STATIC int internal_mpi_write_eccreg( const mbedtls_mpi *X, volatile uint32_t *eccreg, size_t eccreg_num ); unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ) { - /* Support types - * 1. Short Weierstrass - * 2. Montgomery */ + /* Curve types + * + * - Short Weierstrass + * - Montgomery + */ mbedtls_ecp_curve_type curve_type = mbedtls_ecp_get_type(grp); if (curve_type == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS || curve_type == MBEDTLS_ECP_TYPE_MONTGOMERY) { @@ -236,38 +110,12 @@ unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ) int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp ) { - /* Behavior of mbedtls_internal_ecp_init()/mbedtls_internal_ecp_free() - * - * mbedtls_internal_ecp_init()/mbedtls_internal_ecp_free() are like pre-op/post-op calls - * and they guarantee: - * - * 1. Paired - * 2. No overlapping - * 3. Upper public function cannot return when ECP alter. is still activated. - */ - - /* Acquire ownership of ECC accelerator */ - crypto_ecc_acquire(); - - /* Initialize crypto module */ - crypto_init(); - - /* Enable ECC interrupt */ - ECC_ENABLE_INT(CRPT); - - return 0; + return crypto_ecc_init( grp ); } void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp ) { - /* Disable ECC interrupt */ - ECC_DISABLE_INT(CRPT); - - /* Uninit crypto module */ - crypto_uninit(); - - /* Release ownership of ECC accelerator */ - crypto_ecc_release(); + crypto_ecc_free( grp ); } #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) @@ -482,7 +330,7 @@ int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi); - /* Use INTERNAL_MPI_NORM(Np, N1, N_, P) to get normalized MPI + /* Use ECP_HELPER_MPI_NORM(Np, N1, N_, P) to get normalized MPI * * N_: Holds normalized MPI if the passed-in MPI N1 is not * Np: Pointer to normalized MPI, which could be N1 or N_ @@ -490,18 +338,18 @@ int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, /* Zi = 1 / Z */ mbedtls_mpi_lset(&Zi, 1); - INTERNAL_MPI_NORM(&Np, pt->Z, N, grp->P); + ECP_HELPER_MPI_NORM(&Np, pt->Z, N, grp->P); MBEDTLS_MPI_CHK(internal_run_modop(&Zi, &Zi, Np, &grp->P, grp->pbits, MODOP_DIV)); /* ZZi = 1 / Z^2 = Zi * Zi */ MBEDTLS_MPI_CHK(internal_run_modop(&ZZi, &Zi, &Zi, &grp->P, grp->pbits, MODOP_MUL)); /* X = X / Z^2 = X * ZZi */ - INTERNAL_MPI_NORM(&Np, pt->X, N, grp->P); + ECP_HELPER_MPI_NORM(&Np, pt->X, N, grp->P); MBEDTLS_MPI_CHK(internal_run_modop(&pt->X, Np, &ZZi, &grp->P, grp->pbits, MODOP_MUL)); /* Y = Y / Z^3 = Y * ZZi * Zi */ - INTERNAL_MPI_NORM(&Np, pt->Y, N, grp->P); + ECP_HELPER_MPI_NORM(&Np, pt->Y, N, grp->P); MBEDTLS_MPI_CHK(internal_run_modop(&pt->Y, Np, &ZZi, &grp->P, grp->pbits, MODOP_MUL)); MBEDTLS_MPI_CHK(internal_run_modop(&pt->Y, &pt->Y, &Zi, &grp->P, grp->pbits, MODOP_MUL)); @@ -699,7 +547,7 @@ int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_mpi_init(&N); mbedtls_mpi_init(&Zi); - /* Use INTERNAL_MPI_NORM(Np, N1, N_, P) to get normalized MPI + /* Use ECP_HELPER_MPI_NORM(Np, N1, N_, P) to get normalized MPI * * N_: Holds normalized MPI if the passed-in MPI N1 is not * Np: Pointer to normalized MPI, which could be N1 or N_ @@ -707,11 +555,11 @@ int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, /* Zi = 1 / Z */ mbedtls_mpi_lset(&Zi, 1); - INTERNAL_MPI_NORM(&Np, pt->Z, N, grp->P); + ECP_HELPER_MPI_NORM(&Np, pt->Z, N, grp->P); MBEDTLS_MPI_CHK(internal_run_modop(&Zi, &Zi, Np, &grp->P, grp->pbits, MODOP_DIV)); /* X = X / Z = X * Zi */ - INTERNAL_MPI_NORM(&Np, pt->X, N, grp->P); + ECP_HELPER_MPI_NORM(&Np, pt->X, N, grp->P); MBEDTLS_MPI_CHK(internal_run_modop(&pt->X, Np, &Zi, &grp->P, grp->pbits, MODOP_MUL)); /* Z = 1 */ @@ -745,208 +593,11 @@ NU_STATIC int internal_run_eccop(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, - MBED_UNUSED const mbedtls_mpi *n, + const mbedtls_mpi *n, const mbedtls_ecp_point *Q, uint32_t eccop) { - /* Check necessary arguments for all ECC operations */ - if (grp == NULL || R == NULL) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - /* Check grp->P is positive */ - if (mbedtls_mpi_cmp_int(&grp->P, 0) <= 0) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - /* Check supported maximum key bits */ - if (grp->pbits > NU_ECC_MAXKEYBITS) { - return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED; - } - - int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; - bool ecc_done; - - mbedtls_mpi N_; - const mbedtls_mpi *Np; - - mbedtls_mpi_init(&N_); - - /* Use INTERNAL_MPI_NORM(Np, N1, N_, P) to get normalized MPI - * - * N_: Holds normalized MPI if the passed-in MPI N1 is not - * Np: Pointer to normalized MPI, which could be N1 or N_ - */ - - /* Check necessary arguments and handle special cases for specified ECC operation - * - * ECCOP_POINT_MUL R = m*P - * ECCOP_POINT_ADD R = P + Q - * ECCOP_POINT_DOUBLE R = 2*P - * - * ECC accelerator doesn't support R = 0, and we need to detect it. - */ - if (eccop == ECCOP_POINT_MUL) { - /* R = m*P */ - if (m == NULL || P == NULL) { - ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - goto cleanup; - } - - /* R = 0*P = 0 or R = P = 0 */ - if (mbedtls_mpi_cmp_int(m, 0) == 0 || mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { - ret = mbedtls_ecp_set_zero(R); - goto cleanup; - } - - /* R = 1*P */ - if (mbedtls_mpi_cmp_int(m, 1) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); - MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); - goto cleanup; - } - - /* R = m*P = (multiple of order)*G = 0 */ - /* NOTE: If grp->N (order) is a prime, we could detect R = 0 for all m*P cases - * by just checking if m is a multiple of grp->N. Otherwise, sigh. */ - /* TODO: Find an approach to detecting R = 0 for all m*P cases */ - INTERNAL_MPI_NORM(&Np, *m, N_, grp->N); - if (mbedtls_mpi_cmp_int(Np, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); - goto cleanup; - } - } else if (eccop == ECCOP_POINT_ADD) { - /* R = P + Q */ - if (P == NULL || Q == NULL) { - ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - goto cleanup; - } - - /* R = 0 + Q = Q */ - if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, Q)); - MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); - goto cleanup; - } - - /* R = P + 0 = P */ - if (mbedtls_mpi_cmp_int(&Q->Z, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); - MBEDTLS_MPI_CHK(internal_ecp_normalize(grp, R)); - goto cleanup; - } - - /* R = P + Q = P + (-P) = 0 */ - MBEDTLS_MPI_CHK(internal_run_modop(&N_, &P->Y, &Q->Y, &grp->P, grp->pbits, MODOP_ADD)); - if (mbedtls_mpi_cmp_int(&N_, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); - goto cleanup; - } - } else if (eccop == ECCOP_POINT_DOUBLE) { - /* R = 2*P */ - if (P == NULL) { - ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - goto cleanup; - } - - /* R = 2*0 = 0 */ - if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); - goto cleanup; - } - - /* R = 2*P = P + P = P + (-P) = 0 */ - MBEDTLS_MPI_CHK(internal_run_modop(&N_, &P->Y, &P->Y, &grp->P, grp->pbits, MODOP_ADD)); - if (mbedtls_mpi_cmp_int(&N_, 0) == 0) { - MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R)); - goto cleanup; - } - } else { - ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - goto cleanup; - } - - /* Configure ECC curve coefficients A/B */ - /* Special case for A = -3 */ - if (grp->A.p == NULL) { - MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&N_, -3)); - INTERNAL_MPI_NORM(&Np, N_, N_, grp->P); - } else { - INTERNAL_MPI_NORM(&Np, grp->A, N_, grp->P); - } - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_A, NU_ECC_BIGNUM_MAXWORD)); - INTERNAL_MPI_NORM(&Np, grp->B, N_, grp->P); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_B, NU_ECC_BIGNUM_MAXWORD)); - - /* Configure ECC prime modulus */ - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(&grp->P, (uint32_t *) CRPT->ECC_N, NU_ECC_BIGNUM_MAXWORD)); - - /* Configure ECC scalar for point multiplication - * - * Normalize m to within [1, order - 1] which ECCOP_POINT_MUL supports - * Special cases R = 0 should have been detected out above. - */ - if (eccop == ECCOP_POINT_MUL) { - INTERNAL_MPI_NORM(&Np, *m, N_, grp->N); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_K, NU_ECC_BIGNUM_MAXWORD)); - } - - /* Configure ECC point (X1, Y1) */ - INTERNAL_MPI_NORM(&Np, P->X, N_, grp->P); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); - INTERNAL_MPI_NORM(&Np, P->Y, N_, grp->P); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); - - /* Configure ECC points (X2, Y2) */ - if (eccop == ECCOP_POINT_ADD) { - INTERNAL_MPI_NORM(&Np, Q->X, N_, grp->P); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X2, NU_ECC_BIGNUM_MAXWORD)); - INTERNAL_MPI_NORM(&Np, Q->Y, N_, grp->P); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y2, NU_ECC_BIGNUM_MAXWORD)); - } - - /* ECC curve type */ - mbedtls_ecp_curve_type curve_type = mbedtls_ecp_get_type(grp); - uint32_t curve_sel = 0; - switch (curve_type) { - case MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS: - curve_sel = 0; // Short Weierstrass - break; - - case MBEDTLS_ECP_TYPE_MONTGOMERY: - curve_sel = CRPT_ECC_CTL_CSEL_Msk; // Montgomery - break; - - default: - ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - goto cleanup; - } - - /* Configure for point operation */ - uint32_t ecc_ctl = 0 | - CRPT_ECC_CTL_START_Msk | // Start - CRPT_ECC_CTL_FSEL_Msk | // Prime field (GF(p)) - eccop | // Point operation - curve_sel | // Curve selection - (grp->pbits << CRPT_ECC_CTL_CURVEM_Pos) | // Key length of elliptic curve - 0; - - crypto_ecc_prestart(); - CRPT->ECC_CTL = ecc_ctl; - ecc_done = crypto_ecc_wait(); - - MBEDTLS_MPI_CHK(ecc_done ? 0 : MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED); - - /* (X1, Y1) hold the normalized result. */ - MBEDTLS_MPI_CHK(internal_mpi_read_eccreg(&R->X, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); - MBEDTLS_MPI_CHK(internal_mpi_read_eccreg(&R->Y, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); - MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 1)); - -cleanup: - - mbedtls_mpi_free(&N_); - - return ret; + return crypto_ecc_run_eccop( grp, R, m, P, n, Q, eccop, false ); } NU_STATIC int internal_run_modop(mbedtls_mpi *r, @@ -956,157 +607,17 @@ NU_STATIC int internal_run_modop(mbedtls_mpi *r, uint32_t pbits, uint32_t modop) { - if (r == NULL || - o1 == NULL || - o2 == NULL || - p == NULL) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - /* Check o1/o2 are not negative */ - if (mbedtls_mpi_cmp_int(o1, 0) < 0 || - mbedtls_mpi_cmp_int(o2, 0) < 0) { - return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; - } - - /* Check p is positive */ - if (mbedtls_mpi_cmp_int(p, 0) <= 0) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - /* Check supported maximum key bits */ - if (pbits > NU_ECC_MAXKEYBITS) { - return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED; - } - - /* Check MODOP operations are legal */ - if (modop != MODOP_DIV && - modop != MODOP_MUL && - modop != MODOP_ADD && - modop != MODOP_SUB) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - /* Check divisor is not zero in MODOP_DIV operation */ - if (modop == MODOP_DIV && mbedtls_mpi_cmp_int(o2, 0) == 0) { - return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; - } - - int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; - bool ecc_done; - - mbedtls_mpi N_; - const mbedtls_mpi *Np; - - mbedtls_mpi_init(&N_); - - /* Use INTERNAL_MPI_NORM(Np, N1, N_, P) to get normalized MPI - * - * N_: Holds normalized MPI if the passed-in MPI N1 is not - * Np: Pointer to normalized MPI, which could be N1 or N_ - */ - - if (modop == MODOP_MUL || - modop == MODOP_ADD || - modop == MODOP_SUB) { - INTERNAL_MPI_NORM(&Np, *o1, N_, *p); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); - INTERNAL_MPI_NORM(&Np, *o2, N_, *p); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); - } else if (modop == MODOP_DIV) { - INTERNAL_MPI_NORM(&Np, *o2, N_, *p); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); - INTERNAL_MPI_NORM(&Np, *o1, N_, *p); - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(Np, (uint32_t *) CRPT->ECC_Y1, NU_ECC_BIGNUM_MAXWORD)); - } else { - MBEDTLS_MPI_CHK(MBEDTLS_ERR_ECP_BAD_INPUT_DATA); - } - - MBEDTLS_MPI_CHK(internal_mpi_write_eccreg(p, (uint32_t *) CRPT->ECC_N, NU_ECC_BIGNUM_MAXWORD)); - - /* Configure for modulus operation */ - uint32_t ecc_ctl = 0 | - CRPT_ECC_CTL_START_Msk | // Start - CRPT_ECC_CTL_FSEL_Msk | // Prime field (GF(p)) - ECCOP_MODULE | // No point operation - modop | // Modulus operation - (pbits << CRPT_ECC_CTL_CURVEM_Pos) | // Key length of elliptic curve - 0; - - crypto_ecc_prestart(); - CRPT->ECC_CTL = ecc_ctl; - ecc_done = crypto_ecc_wait(); - - MBEDTLS_MPI_CHK(ecc_done ? 0 : MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED); - - /* X1 holds the result. */ - MBEDTLS_MPI_CHK(internal_mpi_read_eccreg(r, (uint32_t *) CRPT->ECC_X1, NU_ECC_BIGNUM_MAXWORD)); - -cleanup: - - mbedtls_mpi_free(&N_); - - return ret; + return crypto_ecc_run_modop( r, o1, o2, p, pbits, modop ); } NU_STATIC int internal_mpi_read_eccreg(mbedtls_mpi *x, const volatile uint32_t *eccreg, size_t eccreg_num) { - if (x == NULL) { - return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; - } - - int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; - size_t i, n; - - for (n = eccreg_num; n > 0; n --) { - if (eccreg[n - 1] != 0) { - break; - } - } - - MBEDTLS_MPI_CHK(mbedtls_mpi_lset(x, 0)); - MBEDTLS_MPI_CHK(mbedtls_mpi_grow(x, WORDS_TO_LIMBS(n))); - - for (i = 0; i < n; i ++) { - x->p[i / wiL] |= ((mbedtls_mpi_uint) eccreg[i]) << ((i % wiL) << 5); - } - -cleanup: - - return ret; + return crypto_ecc_mpi_read_eccreg( x, eccreg, eccreg_num); } NU_STATIC int internal_mpi_write_eccreg( const mbedtls_mpi *x, volatile uint32_t *eccreg, size_t eccreg_num ) { - if (x == NULL) { - return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; - } - - if (mbedtls_mpi_cmp_int(x, 0) < 0) { - return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; - } - - size_t i, n; - - /* How many words needed? */ - n = (mbedtls_mpi_size(x) + sizeof (uint32_t) - 1) / sizeof (uint32_t); - - if (eccreg_num < n) { - return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; - } - - /* Fill non-zero part */ - for (i = 0; i < n; i ++) { - eccreg[i] = (uint32_t) (x->p[i / wiL] >> ((i % wiL) << 5)); - } - - /* Zeroize remaining part - * - * crypto_zeroize32() has excluded optimization doubt, so we can safely set H/W registers to 0 via it. - */ - crypto_zeroize32((uint32_t *) eccreg + n, eccreg_num - n); - - return 0; + return crypto_ecc_mpi_write_eccreg( x, eccreg, eccreg_num ); } #endif /* MBEDTLS_ECP_INTERNAL_ALT */ diff --git a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/mbedtls_device.h b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/mbedtls_device.h index ec8837f402..71ed198f0a 100644 --- a/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/mbedtls_device.h +++ b/connectivity/drivers/mbedtls/TARGET_NUVOTON/TARGET_M460/mbedtls_device.h @@ -27,18 +27,26 @@ #define MBEDTLS_GCM_ALT #define MBEDTLS_CCM_ALT +#define MBEDTLS_ECP_ALT + +#if !defined(MBEDTLS_ECP_ALT) + #define MBEDTLS_ECP_INTERNAL_ALT + /* Support for Weierstrass curves with Jacobi representation */ #define MBEDTLS_ECP_RANDOMIZE_JAC_ALT #define MBEDTLS_ECP_ADD_MIXED_ALT #define MBEDTLS_ECP_DOUBLE_JAC_ALT #define MBEDTLS_ECP_NORMALIZE_JAC_ALT #define MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT + /* Support for curves with Montgomery arithmetic */ //#define MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT #define MBEDTLS_ECP_RANDOMIZE_MXZ_ALT #define MBEDTLS_ECP_NORMALIZE_MXZ_ALT +#endif /* !MBEDTLS_ECP_ALT */ + #define MBEDTLS_RSA_ALT #endif /* MBEDTLS_DEVICE_H */