FUTURE_SEQUANA: SPI HAL API fixes.

- Fixed miscalculation in SPI frequency setup (divider value).
- Added possibility to set up SCK line as NC (usable when SPI peripheral
   is used to handle non-SPI protocols.
- Fixed handlingh of 16-bit (and other >8 bit) transfers.

(cherry picked from commit 7d391f257b4ff6cdd7b43eeaa4894f8ce6d2cf8e)
pull/11894/head
Leszek Rusinowicz 2019-09-30 12:28:33 +02:00 committed by adbridge
parent 9ab22274a6
commit 060e8cfb8b
1 changed files with 65 additions and 18 deletions

View File

@ -160,7 +160,7 @@ static cy_en_sysclk_status_t spi_init_clock(spi_obj_t *obj, uint32_t frequency)
// Delay (in us) required for serialized read operation == 1.5 clocks, min 1us. // Delay (in us) required for serialized read operation == 1.5 clocks, min 1us.
obj->clk_delay = (1500000UL - 1 + obj->clk_frequency) / obj->clk_frequency; obj->clk_delay = (1500000UL - 1 + obj->clk_frequency) / obj->clk_frequency;
Cy_SysClk_PeriphDisableDivider(obj->div_type, obj->div_num); Cy_SysClk_PeriphDisableDivider(obj->div_type, obj->div_num);
if (Cy_SysClk_PeriphSetDivider(obj->div_type, obj->div_num, div_value) != CY_SYSCLK_SUCCESS) { if (Cy_SysClk_PeriphSetDivider(obj->div_type, obj->div_num, div_value - 1) != CY_SYSCLK_SUCCESS) {
obj->div_num = CY_INVALID_DIVIDER; obj->div_num = CY_INVALID_DIVIDER;
} }
Cy_SysClk_PeriphEnableDivider(obj->div_type, obj->div_num); Cy_SysClk_PeriphEnableDivider(obj->div_type, obj->div_num);
@ -189,13 +189,23 @@ static void spi_set_pins(spi_obj_t *obj)
if (obj->pin_ssel != NC) { if (obj->pin_ssel != NC) {
pin_function(obj->pin_ssel, pinmap_function(obj->pin_ssel, PinMap_SPI_SSEL)); pin_function(obj->pin_ssel, pinmap_function(obj->pin_ssel, PinMap_SPI_SSEL));
} }
pin_function(obj->pin_sclk, pinmap_function(obj->pin_sclk, PinMap_SPI_SCLK)); if (obj->pin_sclk != NC) {
pin_function(obj->pin_sclk, pinmap_function(obj->pin_sclk, PinMap_SPI_SCLK));
}
// Pin configuration in PinMap defaults to Master mode; revert for Slave. // Pin configuration in PinMap defaults to Master mode; revert for Slave.
if (obj->ms_mode == CY_SCB_SPI_SLAVE) { if (obj->ms_mode == CY_SCB_SPI_SLAVE) {
pin_mode(obj->pin_sclk, PullNone); if (obj->pin_sclk != NC) {
pin_mode(obj->pin_mosi, PullNone); pin_mode(obj->pin_sclk, PullNone);
pin_mode(obj->pin_miso, PushPull); }
pin_mode(obj->pin_ssel, PullNone); if (obj->pin_mosi != NC) {
pin_mode(obj->pin_mosi, PullNone);
}
if (obj->pin_miso != NC) {
pin_mode(obj->pin_miso, PushPull);
}
if (obj->pin_ssel != NC) {
pin_mode(obj->pin_ssel, PullNone);
}
} }
} }
@ -206,7 +216,9 @@ static void spi_default_pins(spi_obj_t *obj)
{ {
if (obj->ms_mode == CY_SCB_SPI_MASTER) { if (obj->ms_mode == CY_SCB_SPI_MASTER) {
pin_function(obj->pin_sclk, CY_PIN_FUNCTION(HSIOM_SEL_GPIO, 0, PullDown, PIN_OUTPUT)); if (obj->pin_sclk != NC) {
pin_function(obj->pin_sclk, CY_PIN_FUNCTION(HSIOM_SEL_GPIO, 0, PullDown, PIN_OUTPUT));
}
if (obj->pin_mosi != NC) { if (obj->pin_mosi != NC) {
pin_function(obj->pin_mosi, CY_PIN_FUNCTION(HSIOM_SEL_GPIO, 0, PullUp, PIN_OUTPUT)); pin_function(obj->pin_mosi, CY_PIN_FUNCTION(HSIOM_SEL_GPIO, 0, PullUp, PIN_OUTPUT));
} }
@ -226,7 +238,11 @@ static void spi_default_pins(spi_obj_t *obj)
static void spi_init_pins(spi_obj_t *obj) static void spi_init_pins(spi_obj_t *obj)
{ {
bool conflict = false; bool conflict = false;
conflict = cy_reserve_io_pin(obj->pin_sclk); if (obj->pin_sclk != NC) {
if (cy_reserve_io_pin(obj->pin_sclk)) {
conflict = true;
}
}
if (obj->pin_mosi != NC) { if (obj->pin_mosi != NC) {
if (cy_reserve_io_pin(obj->pin_mosi)) { if (cy_reserve_io_pin(obj->pin_mosi)) {
conflict = true; conflict = true;
@ -436,35 +452,58 @@ int spi_master_block_write(spi_t *obj_in, const char *tx_buffer, int tx_length,
int trans_length = 0; int trans_length = 0;
int rx_count = 0; int rx_count = 0;
int tx_count = 0; int tx_count = 0;
uint8_t tx_byte = (uint8_t)write_fill; uint16_t tx_data = (uint8_t)write_fill;
uint16_t write_fill16 = (tx_data << 8) | tx_data;
const uint16_t *tx_buffer16 = (const uint16_t*)tx_buffer;
uint16_t *rx_buffer16 = (uint16_t*)rx_buffer;
if (obj->ms_mode != CY_SCB_SPI_MASTER) { if (obj->ms_mode != CY_SCB_SPI_MASTER) {
return 0; return 0;
} }
// If single transfer (data bits) is larger than byte, then writing must be performed
// in words.
bool word_transfer = !Cy_SCB_IsTxDataWidthByte(obj->base);
if (word_transfer) {
tx_length /= 2;
rx_length /= 2;
tx_data = write_fill16;
}
// Make sure no leftovers from previous transactions. // Make sure no leftovers from previous transactions.
Cy_SCB_SPI_ClearRxFifo(obj->base); Cy_SCB_SPI_ClearRxFifo(obj->base);
// Calculate transaction length, // Calculate transaction length.
trans_length = (tx_length > rx_length)? tx_length : rx_length; trans_length = (tx_length > rx_length)? tx_length : rx_length;
// get first byte to transmit. // get first byte to transmit.
if (tx_count < tx_length) { if (tx_count < tx_length) {
tx_byte = *tx_buffer++; if (word_transfer) {
tx_data = *tx_buffer16++;
} else {
tx_data = *tx_buffer++;
}
} }
// Send required number of bytes. // Send required number of bytes.
while (tx_count < trans_length) { while (tx_count < trans_length) {
if (Cy_SCB_SPI_Write(obj->base, tx_byte)) { if (Cy_SCB_SPI_Write(obj->base, tx_data)) {
++tx_count; ++tx_count;
// Get next byte to transfer. // Get next byte to transfer.
if (tx_count < tx_length) { if (tx_count < tx_length) {
tx_byte = *tx_buffer++; if (word_transfer) {
tx_data = *tx_buffer16++;
} else {
tx_data = *tx_buffer++;
}
} else { } else {
tx_byte = (uint8_t)write_fill; tx_data = write_fill16;
} }
} }
// If we have bytes to receive check the rx fifo. // If we have bytes to receive check the rx fifo.
if (rx_count < rx_length) { if (rx_count < rx_length) {
if (Cy_SCB_SPI_GetNumInRxFifo(obj->base) > 0) { if (Cy_SCB_SPI_GetNumInRxFifo(obj->base) > 0) {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base); if (word_transfer) {
*rx_buffer16++ = (uint16_t)Cy_SCB_SPI_Read(obj->base);
} else {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base);
}
++rx_count; ++rx_count;
} }
} }
@ -472,7 +511,11 @@ int spi_master_block_write(spi_t *obj_in, const char *tx_buffer, int tx_length,
// Wait for tx fifo to empty while reading received bytes. // Wait for tx fifo to empty while reading received bytes.
while (!Cy_SCB_SPI_IsTxComplete(obj->base)) { while (!Cy_SCB_SPI_IsTxComplete(obj->base)) {
if ((rx_count < rx_length) && (Cy_SCB_SPI_GetNumInRxFifo(obj->base) > 0)) { if ((rx_count < rx_length) && (Cy_SCB_SPI_GetNumInRxFifo(obj->base) > 0)) {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base); if (word_transfer) {
*rx_buffer16++ = (uint16_t)Cy_SCB_SPI_Read(obj->base);
} else {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base);
}
++rx_count; ++rx_count;
} }
} }
@ -481,12 +524,16 @@ int spi_master_block_write(spi_t *obj_in, const char *tx_buffer, int tx_length,
Cy_SysLib_DelayUs(obj->clk_delay); Cy_SysLib_DelayUs(obj->clk_delay);
// Read any remaining bytes from the fifo. // Read any remaining bytes from the fifo.
while (rx_count < rx_length) { while (rx_count < rx_length) {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base); if (word_transfer) {
*rx_buffer16++ = (uint16_t)Cy_SCB_SPI_Read(obj->base);
} else {
*rx_buffer++ = (char)Cy_SCB_SPI_Read(obj->base);
}
++rx_count; ++rx_count;
} }
// Clean up if we have read less bytes than available. // Clean up if we have read less bytes than available.
Cy_SCB_SPI_ClearRxFifo(obj->base); Cy_SCB_SPI_ClearRxFifo(obj->base);
return trans_length; return word_transfer ? trans_length * 2 : trans_length;
} }
int spi_slave_receive(spi_t *obj_in) int spi_slave_receive(spi_t *obj_in)