NCS36510 RTC driver: Fix driver.

* Initialization clear interrupt status
* Remove state in management of interrupt
* Handle timestamp in the past
* Handle current seconds, even if out of the relative timestamp.
* Simplify interrupt handling logic.
pull/4094/head
Vincent Coubard 2017-06-01 16:33:49 +01:00
parent c6433b018a
commit 045b026ad4
1 changed files with 128 additions and 110 deletions

View File

@ -45,8 +45,25 @@
#include "mbed_assert.h"
#include "lp_ticker_api.h"
static uint16_t SubSecond;
static uint64_t LastRtcTimeus;
static volatile uint64_t last_time_read;
/**
* Convert sub seconds ticks to micro seconds.
* The clock running at 32kHz, a tick is 1/32768 of a second.
*/
static inline uint32_t ticks_to_us(uint16_t ticks) {
return (((uint64_t)ticks * RTC_SEC_TO_US) / RTC_CLOCK_HZ);
}
/**
* Convert us into sub seconds ticks.
* @note result might be troncated to be in the range [0 - RTC_SUB_SEC_MASK].
*/
static inline uint16_t us_to_ticks(uint32_t us) {
return (((uint64_t) us * RTC_CLOCK_HZ) / RTC_SEC_TO_US) & RTC_SUB_SEC_MASK;
}
#define RTC_TICK_THRESHOLD 5
/* See rtc.h for details */
void fRtcInit(void)
@ -55,115 +72,131 @@ void fRtcInit(void)
CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */
/* Reset RTC control register */
RTCREG->CONTROL.WORD = False;
RTCREG->CONTROL.WORD = 0;
/* Initialize all counters */
RTCREG->SECOND_COUNTER = False;
RTCREG->SUB_SECOND_COUNTER = False;
RTCREG->SECOND_ALARM = False;
RTCREG->SUB_SECOND_ALARM = False;
LastRtcTimeus = 0;
RTCREG->SECOND_COUNTER = 0;
RTCREG->SUB_SECOND_COUNTER = 0;
RTCREG->SECOND_ALARM = 0;
RTCREG->SUB_SECOND_ALARM = 0;
last_time_read = 0;
/* Reset RTC Status register */
RTCREG->STATUS.WORD = False;
RTCREG->STATUS.WORD = 0;
/* Clear interrupt status */
RTCREG->INT_CLEAR.WORD = False;
RTCREG->INT_CLEAR.WORD = (
(1 << RTC_INT_CLR_SUB_SEC_BIT_POS) |
(1 << RTC_INT_CLR_SEC_BIT_POS)
);
/* Wait previous write to complete */
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
/* Start sec & sub_sec counter */
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */
RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
RTCREG->CONTROL.WORD |= (
(True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_START_BIT_POS)
);
/* enable interruption associated with the rtc at NVIC level */
NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */
NVIC_SetVector(Rtc_IRQn,(uint32_t) fRtcHandler); /* TODO define lp_ticker_isr */
NVIC_ClearPendingIRQ(Rtc_IRQn);
NVIC_EnableIRQ(Rtc_IRQn);
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
return;
/* Wait for RTC to finish writing register */
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
}
/* See rtc.h for details */
void fRtcFree(void)
{
/* Reset RTC control register */
RTCREG->CONTROL.WORD = False;
/* Disable interrupts and counter */
RTCREG->CONTROL.WORD = 0;
/* disable interruption associated with the rtc */
NVIC_DisableIRQ(Rtc_IRQn);
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
/* Wait for RTC to finish writing register */
while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);
}
/* See rtc.h for details */
void fRtcSetInterrupt(uint32_t timestamp)
{
SubSecond = False;
uint32_t Second = False, EnableInterrupt = False;
uint8_t DividerAdjust = 1;
uint64_t current_time = fRtcRead();
if(timestamp) {
if(timestamp >= RTC_SEC_TO_US) {
/* TimeStamp is big enough to set second alarm */
Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */
RTCREG->SECOND_ALARM = Second; /* Write to alarm register */
/* compute delta between current time and timestamp.
* Note: the current time used to compute the delta is relative (truncated
* to 32 bits).
*/
int32_t delta = timestamp - (uint32_t) current_time;
if (delta <= 0) {
// event considered in the past, set the interrupt as pending.
NVIC_SetPendingIRQ(Rtc_IRQn);
return;
}
/* Enable second interrupt */
EnableInterrupt = True << RTC_CONTROL_SEC_CNT_INT_BIT_POS;
}
timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */
if(timestamp > False) {
/* We have some thing for sub second */
uint64_t full_timestamp = (current_time & ~UINT32_MAX) | timestamp;
if ( (uint32_t)current_time > timestamp) {
full_timestamp += ((uint64_t) UINT32_MAX) + 1;
}
/* Convert micro second to sub_seconds(each count = 30.5 us) */
if(timestamp > 131000) {
DividerAdjust = 100;
}
uint32_t target_seconds = full_timestamp / RTC_SEC_TO_US;
uint16_t target_ticks = us_to_ticks(full_timestamp);
volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ);
Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust);
SubSecond = Temp & RTC_SUB_SEC_MASK;
/*
* If the interrupt is in more than one second from now then use the
* second alarm, otherwise use the subsecond alarm.
* In case of the second alarm is used, there is no need to preserve the
* remaining subsecond because the irq handler should manage spurious
* interrupts (like when the timestamp is in the past). In such case, irq
* handler will schedule a new interrupt with the remaining us.
*/
NVIC_DisableIRQ(Rtc_IRQn);
if (target_seconds != RTCREG->SECOND_COUNTER) {
RTCREG->SECOND_ALARM = target_seconds;
if(SubSecond <= 5) {
SubSecond = 0;
}
uint32_t rtc_control = RTCREG->CONTROL.WORD;
rtc_control |= (1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // enable seconds interrupt
rtc_control &= ~(1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // disable sub sec interrupt
RTCREG->CONTROL.WORD = rtc_control;
} else {
uint16_t current_ticks = RTCREG->SUB_SECOND_COUNTER;
if (current_ticks == target_ticks ||
((target_ticks > current_ticks) && ((target_ticks - current_ticks) < RTC_TICK_THRESHOLD)) ||
((target_ticks < current_ticks) && ((RTC_SUB_SEC_MASK - (current_ticks - target_ticks)) < RTC_TICK_THRESHOLD))) {
// target ticks too close; schedule the interrupt immediately
NVIC_SetPendingIRQ(Rtc_IRQn);
} else {
RTCREG->SUB_SECOND_ALARM = target_ticks;
if(SubSecond > False) {
/* Second interrupt not enabled */
uint32_t rtc_control = RTCREG->CONTROL.WORD;
rtc_control &= ~(1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // disable seconds interrupt
rtc_control |= (1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // enable sub sec interrupt
RTCREG->CONTROL.WORD = rtc_control;
}
}
NVIC_EnableIRQ(Rtc_IRQn);
/* Set SUB SEC_ALARM */
RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */
/* Enable sub second interrupt */
EnableInterrupt |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
}
}
RTCREG->CONTROL.WORD |= EnableInterrupt;
/* Enable RTC interrupt */
NVIC_EnableIRQ(Rtc_IRQn);
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_CONTROL_WRT_BIT_POS))));
}
return;
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
while(RTCREG->STATUS.WORD &
(
(True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_CONTROL_WRT_BIT_POS)
)
);
}
/* See rtc.h for details */
void fRtcDisableInterrupt(void)
{
/* Disable RTC interrupt */
NVIC_DisableIRQ(Rtc_IRQn);
}
/* See rtc.h for details */
void fRtcEnableInterrupt(void)
{
/* Enable RTC interrupt */
NVIC_EnableIRQ(Rtc_IRQn);
}
@ -182,33 +215,30 @@ void fRtcClearInterrupt(void)
/* See rtc.h for details */
uint64_t fRtcRead(void)
{
uint32_t Second;
uint16_t SubSecond;
/* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter.
* That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented
* and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure.
* If you read a zero in the sub-second counter then increment the second counter by 1.
* Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover.
*/
uint32_t seconds = RTCREG->SECOND_COUNTER;
uint16_t ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK;
/* Read the Second and Sub-second counters, then read the Second counter again.
* If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again.
/*
* If seconds has changed while reading ticks, read them both again.
*/
while (seconds != RTCREG->SECOND_COUNTER) {
seconds = RTCREG->SECOND_COUNTER;
ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK;
}
do {
Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */
SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* Get SUB_SEC_COUNTER reg value */
} while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */
//note: casting to float removed to avoid reduction in resolution
uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US);
uint64_t current_time = ((uint64_t) seconds * RTC_SEC_TO_US) + ticks_to_us(ticks);
/*check that the time did not go backwards */
MBED_ASSERT(RtcTimeus >= LastRtcTimeus);
LastRtcTimeus = RtcTimeus;
MBED_ASSERT(current_time >= last_time_read);
last_time_read = current_time;
return RtcTimeus;
return current_time;
}
/* See rtc.h for details */
@ -244,43 +274,31 @@ void fRtcWrite(uint64_t RtcTimeus)
/* See rtc.h for details */
void fRtcHandler(void)
{
/* SUB_SECOND/SECOND interrupt occured */
volatile uint32_t TempStatus = RTCREG->STATUS.WORD;
/* Disable RTC interrupt */
NVIC_DisableIRQ(Rtc_IRQn);
/* Clear sec & sub_sec interrupts */
RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
(True << RTC_INT_CLR_SEC_BIT_POS));
RTCREG->INT_CLEAR.WORD = (
(True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
(True << RTC_INT_CLR_SEC_BIT_POS)
);
/* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */
if(TempStatus & RTC_SEC_INT_STATUS_MASK) {
/* Second interrupt occured */
if(SubSecond > False) {
/* Set SUB SEC_ALARM */
RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER;
/* Enable sub second interrupt */
RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
} else {
/* We reach here after second interrupt is occured */
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
}
} else {
/* We reach here after sub_second or (Sub second + second) interrupt occured */
/* Disable Second and sub_second interrupt */
RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
}
/* Disable sub seconds and seconds interrupts */
RTCREG->CONTROL.WORD &= ~(
(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
(True << RTC_CONTROL_SEC_CNT_INT_BIT_POS)
);
NVIC_EnableIRQ(Rtc_IRQn);
/* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
(True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
(True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))));
/* Wait for RTC to finish writing registers */
while(RTCREG->STATUS.WORD &
(
(True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
(True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
(True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS)
)
);
lp_ticker_irq_handler();
}