Modify and add a file to support GCC. (mbed common codes)

pull/933/head
Masao Hamanaka 2015-02-26 16:35:45 +09:00
parent f6f45026f6
commit 0365977217
3 changed files with 670 additions and 1 deletions

View File

@ -459,6 +459,10 @@ extern "C" void __iar_argc_argv() {
// Linker defined symbol used by _sbrk to indicate where heap should start.
extern "C" int __end__;
#if (TARGET_CORTEX_A)
extern "C" uint32_t __HeapLimit;
#endif
// Turn off the errno macro and use actual global variable instead.
#undef errno
extern "C" int errno;
@ -474,6 +478,8 @@ extern "C" caddr_t _sbrk(int incr) {
#if defined(TARGET_ARM7)
if (new_heap >= stack_ptr) {
#elif (TARGET_CORTEX_A)
if (new_heap >= (unsigned char*)&__HeapLimit) { /* __HeapLimit is end of heap section */
#else
if (new_heap >= (unsigned char*)__get_MSP()) {
#endif

View File

@ -0,0 +1,94 @@
/* Copyright (c) 2009 - 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
* Functions
*---------------------------------------------------------------------------*/
.text
.global __v7_all_cache
/*
* __STATIC_ASM void __v7_all_cache(uint32_t op) {
*/
__v7_all_cache:
.arm
PUSH {R4-R11}
MRC p15, 1, R6, c0, c0, 1 // Read CLIDR
ANDS R3, R6, #0x07000000 // Extract coherency level
MOV R3, R3, LSR #23 // Total cache levels << 1
BEQ Finished // If 0, no need to clean
MOV R10, #0 // R10 holds current cache level << 1
Loop1: ADD R2, R10, R10, LSR #1 // R2 holds cache "Set" position
MOV R1, R6, LSR R2 // Bottom 3 bits are the Cache-type for this level
AND R1, R1, #7 // Isolate those lower 3 bits
CMP R1, #2
BLT Skip // No cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0 // Write the Cache Size selection register
ISB // ISB to sync the change to the CacheSizeID reg
MRC p15, 1, R1, c0, c0, 0 // Reads current Cache Size ID register
AND R2, R1, #7 // Extract the line length field
ADD R2, R2, #4 // Add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3 // R4 is the max number on the way size (right aligned)
CLZ R5, R4 // R5 is the bit position of the way size increment
LDR R7, =0x7FFF
ANDS R7, R7, R1, LSR #13 // R7 is the max number of the index size (right aligned)
Loop2: MOV R9, R4 // R9 working copy of the max way size (right aligned)
Loop3: ORR R11, R10, R9, LSL R5 // Factor in the Way number and cache number into R11
ORR R11, R11, R7, LSL R2 // Factor in the Set number
CMP R0, #0
BNE Dccsw
MCR p15, 0, R11, c7, c6, 2 // DCISW. Invalidate by Set/Way
B cont
Dccsw: CMP R0, #1
BNE Dccisw
MCR p15, 0, R11, c7, c10, 2 // DCCSW. Clean by Set/Way
B cont
Dccisw: MCR p15, 0, R11, c7, c14, 2 // DCCISW, Clean and Invalidate by Set/Way
cont: SUBS R9, R9, #1 // Decrement the Way number
BGE Loop3
SUBS R7, R7, #1 // Decrement the Set number
BGE Loop2
Skip: ADD R10, R10, #2 // increment the cache number
CMP R3, R10
BGT Loop1
Finished:
DSB
POP {R4-R11}
BX lr
.END
/*----------------------------------------------------------------------------
* end of file
*---------------------------------------------------------------------------*/

View File

@ -578,7 +578,576 @@ __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
//#error GNU Compiler support not implemented for Cortex-A
/* GNU gcc specific functions */
#define MODE_USR 0x10
#define MODE_FIQ 0x11
#define MODE_IRQ 0x12
#define MODE_SVC 0x13
#define MODE_MON 0x16
#define MODE_ABT 0x17
#define MODE_HYP 0x1A
#define MODE_UND 0x1B
#define MODE_SYS 0x1F
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __disable_irq(void)
{
uint32_t result;
__ASM volatile ("mrs %0, cpsr" : "=r" (result));
__ASM volatile ("cpsid i");
return(result & 0x80);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{
#if 1
uint32_t result;
__ASM volatile ("mrs %0, apsr" : "=r" (result) );
return (result);
#else
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
#endif
}
/** \brief Get CPSR Register
This function returns the content of the CPSR Register.
\return CPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPSR(void)
{
#if 1
register uint32_t __regCPSR;
__ASM volatile ("mrs %0, cpsr" : "=r" (__regCPSR));
#else
register uint32_t __regCPSR __ASM("cpsr");
#endif
return(__regCPSR);
}
#if 0
/** \brief Set Stack Pointer
This function assigns the given value to the current stack pointer.
\param [in] topOfStack Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SP(uint32_t topOfStack)
{
register uint32_t __regSP __ASM("sp");
__regSP = topOfStack;
}
#endif
/** \brief Get link register
This function returns the value of the link register
\return Value of link register
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_LR(void)
{
register uint32_t __reglr __ASM("lr");
return(__reglr);
}
#if 0
/** \brief Set link register
This function sets the value of the link register
\param [in] lr LR value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_LR(uint32_t lr)
{
register uint32_t __reglr __ASM("lr");
__reglr = lr;
}
#endif
/** \brief Set Process Stack Pointer
This function assigns the given value to the USR/SYS Stack Pointer (PSP).
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
extern void __set_PSP(uint32_t topOfProcStack);
/** \brief Set User Mode
This function changes the processor state to User Mode
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
extern void __set_CPS_USR(void);
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
#if 1
uint32_t result;
__ASM volatile ("vmrs %0, fpscr" : "=r" (result) );
return (result);
#else
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#endif
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
#if 1
__ASM volatile ("vmsr fpscr, %0" : : "r" (fpscr) );
#else
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
#endif
}
/** \brief Get FPEXC
This function returns the current value of the Floating Point Exception Control register.
\return Floating Point Exception Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
#if 1
uint32_t result;
__ASM volatile ("vmrs %0, fpexc" : "=r" (result));
return (result);
#else
register uint32_t __regfpexc __ASM("fpexc");
return(__regfpexc);
#endif
#else
return(0);
#endif
}
/** \brief Set FPEXC
This function assigns the given value to the Floating Point Exception Control register.
\param [in] fpscr Floating Point Exception Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
#if 1
__ASM volatile ("vmsr fpexc, %0" : : "r" (fpexc));
#else
register uint32_t __regfpexc __ASM("fpexc");
__regfpexc = (fpexc);
#endif
#endif
}
/** \brief Get CPACR
This function returns the current value of the Coprocessor Access Control register.
\return Coprocessor Access Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPACR(void)
{
#if 1
register uint32_t __regCPACR;
__ASM volatile ("mrc p15, 0, %0, c1, c0, 2" : "=r" (__regCPACR));
#else
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
#endif
return __regCPACR;
}
/** \brief Set CPACR
This function assigns the given value to the Coprocessor Access Control register.
\param [in] cpacr Coporcessor Acccess Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPACR(uint32_t cpacr)
{
#if 1
__ASM volatile ("mcr p15, 0, %0, c1, c0, 2" : : "r" (cpacr));
#else
register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
__regCPACR = cpacr;
#endif
__ISB();
}
/** \brief Get CBAR
This function returns the value of the Configuration Base Address register.
\return Configuration Base Address register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CBAR() {
#if 1
register uint32_t __regCBAR;
__ASM volatile ("mrc p15, 4, %0, c15, c0, 0" : "=r" (__regCBAR));
#else
register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0");
#endif
return(__regCBAR);
}
/** \brief Get TTBR0
This function returns the value of the Configuration Base Address register.
\return Translation Table Base Register 0 value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_TTBR0() {
#if 1
register uint32_t __regTTBR0;
__ASM volatile ("mrc p15, 0, %0, c2, c0, 0" : "=r" (__regTTBR0));
#else
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
#endif
return(__regTTBR0);
}
/** \brief Set TTBR0
This function assigns the given value to the Coprocessor Access Control register.
\param [in] ttbr0 Translation Table Base Register 0 value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c2, c0, 0" : : "r" (ttbr0));
#else
register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
__regTTBR0 = ttbr0;
#endif
__ISB();
}
/** \brief Get DACR
This function returns the value of the Domain Access Control Register.
\return Domain Access Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_DACR() {
#if 1
register uint32_t __regDACR;
__ASM volatile ("mrc p15, 0, %0, c3, c0, 0" : "=r" (__regDACR));
#else
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
#endif
return(__regDACR);
}
/** \brief Set DACR
This function assigns the given value to the Coprocessor Access Control register.
\param [in] dacr Domain Access Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_DACR(uint32_t dacr) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c3, c0, 0" : : "r" (dacr));
#else
register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
__regDACR = dacr;
#endif
__ISB();
}
/******************************** Cache and BTAC enable ****************************************************/
/** \brief Set SCTLR
This function assigns the given value to the System Control Register.
\param [in] sctlr System Control Register, value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
{
#if 1
__ASM volatile ("mcr p15, 0, %0, c1, c0, 0" : : "r" (sctlr));
#else
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
__regSCTLR = sctlr;
#endif
}
/** \brief Get SCTLR
This function returns the value of the System Control Register.
\return System Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_SCTLR() {
#if 1
register uint32_t __regSCTLR;
__ASM volatile ("mrc p15, 0, %0, c1, c0, 0" : "=r" (__regSCTLR));
#else
register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
#endif
return(__regSCTLR);
}
/** \brief Enable Caches
Enable Caches
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_caches(void) {
// Set I bit 12 to enable I Cache
// Set C bit 2 to enable D Cache
__set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
}
/** \brief Disable Caches
Disable Caches
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_caches(void) {
// Clear I bit 12 to disable I Cache
// Clear C bit 2 to disable D Cache
__set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
__ISB();
}
/** \brief Enable BTAC
Enable BTAC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_btac(void) {
// Set Z bit 11 to enable branch prediction
__set_SCTLR( __get_SCTLR() | (1 << 11));
__ISB();
}
/** \brief Disable BTAC
Disable BTAC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_btac(void) {
// Clear Z bit 11 to disable branch prediction
__set_SCTLR( __get_SCTLR() & ~(1 << 11));
}
/** \brief Enable MMU
Enable MMU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_mmu(void) {
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/** \brief Enable MMU
Enable MMU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_mmu(void) {
// Clear M bit 0 to disable the MMU
__set_SCTLR( __get_SCTLR() & ~1);
__ISB();
}
/******************************** TLB maintenance operations ************************************************/
/** \brief Invalidate the whole tlb
TLBIALL. Invalidate the whole tlb
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ca9u_inv_tlb_all(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c8, c7, 0" : : "r" (0));
#else
register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0");
__TLBIALL = 0;
#endif
__DSB();
__ISB();
}
/******************************** BTB maintenance operations ************************************************/
/** \brief Invalidate entire branch predictor array
BPIALL. Branch Predictor Invalidate All.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_btac(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c5, 6" : : "r" (0));
#else
register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6");
__BPIALL = 0;
#endif
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/******************************** L1 cache operations ******************************************************/
/** \brief Invalidate the whole I$
ICIALLU. Instruction Cache Invalidate All to PoU
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_icache_all(void) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
#else
register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0");
__ICIALLU = 0;
#endif
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
/** \brief Clean D$ by MVA
DCCMVAC. Data cache clean by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c10, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1");
__DCCMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Invalidate D$ by MVA
DCIMVAC. Data cache invalidate by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c6, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1");
__DCIMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate D$ by MVA
DCCIMVAC. Data cache clean and invalidate by MVA to PoC
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
#if 1
__ASM volatile ("mcr p15, 0, %0, c7, c14, 1" : : "r" ((uint32_t)va));
#else
register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1");
__DCCIMVAC = (uint32_t)va;
#endif
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief
* Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
*/
/** \brief __v7_all_cache - helper function
*/
extern void __v7_all_cache(uint32_t op);
/** \brief Invalidate the whole D$
DCISW. Invalidate by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_all(void) {
__v7_all_cache(0);
}
/** \brief Clean the whole D$
DCCSW. Clean by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_all(void) {
__v7_all_cache(1);
}
/** \brief Clean and invalidate the whole D$
DCCISW. Clean and Invalidate by Set/Way
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
__v7_all_cache(2);
}
#include "core_ca_mmu.h"
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/