mbed-os/targets/TARGET_STM/rtc_api.c

375 lines
13 KiB
C
Raw Normal View History

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2017, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#if DEVICE_RTC
#include "rtc_api_hal.h"
#include "mbed_mktime.h"
static RTC_HandleTypeDef RtcHandle;
#if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM
2018-01-12 10:52:47 +00:00
#define GET_TICK_PERIOD(VALUE) (2048 * 1000000 / VALUE) /* 1s / SynchPrediv value * 2^11 (value to get the maximum precision value with no u32 overflow) */
2016-12-06 08:54:24 +00:00
static void (*irq_handler)(void);
static void RTC_IRQHandler(void);
2018-01-12 10:52:47 +00:00
static uint32_t lp_TickPeriod_us = GET_TICK_PERIOD(4095); /* default SynchPrediv value = 4095 */
#endif /* DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */
2016-09-15 12:00:24 +00:00
void rtc_init(void)
{
2017-10-06 13:44:16 +00:00
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
// Enable access to Backup domain
__HAL_RCC_PWR_CLK_ENABLE();
HAL_PWR_EnableBkUpAccess();
2018-04-24 08:56:49 +00:00
#if DEVICE_LOWPOWERTIMER
if ( (rtc_isenabled()) && ((RTC->PRER & RTC_PRER_PREDIV_S) == PREDIV_S_VALUE) ) {
#else /* DEVICE_LOWPOWERTIMER */
if (rtc_isenabled()) {
2018-04-24 08:56:49 +00:00
#endif /* DEVICE_LOWPOWERTIMER */
return;
}
#if MBED_CONF_TARGET_LSE_AVAILABLE
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
2016-12-06 08:54:24 +00:00
error("Cannot initialize RTC with LSE\n");
}
__HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE);
__HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE);
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
2016-12-06 08:54:24 +00:00
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
error("PeriphClkInitStruct RTC failed with LSE\n");
2016-04-15 12:37:08 +00:00
}
#else /* MBED_CONF_TARGET_LSE_AVAILABLE */
// Reset Backup domain
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
2016-03-25 13:56:56 +00:00
// Enable LSI clock
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
2016-03-25 13:56:56 +00:00
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
2016-12-06 08:54:24 +00:00
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
error("Cannot initialize RTC with LSI\n");
2016-03-25 13:56:56 +00:00
}
__HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI);
__HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI);
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
2016-04-15 12:37:08 +00:00
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
2016-12-06 08:54:24 +00:00
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
error("PeriphClkInitStruct RTC failed with LSI\n");
2016-04-15 12:37:08 +00:00
}
#endif /* MBED_CONF_TARGET_LSE_AVAILABLE */
// Enable RTC
__HAL_RCC_RTC_ENABLE();
RtcHandle.Instance = RTC;
RtcHandle.State = HAL_RTC_STATE_RESET;
#if TARGET_STM32F1
RtcHandle.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
#else /* TARGET_STM32F1 */
RtcHandle.Init.HourFormat = RTC_HOURFORMAT_24;
2018-04-24 08:56:49 +00:00
RtcHandle.Init.AsynchPrediv = PREDIV_A_VALUE;
RtcHandle.Init.SynchPrediv = PREDIV_S_VALUE;
RtcHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RtcHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#endif /* TARGET_STM32F1 */
2018-01-12 10:52:47 +00:00
#if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM
lp_TickPeriod_us = GET_TICK_PERIOD(RtcHandle.Init.SynchPrediv);
#endif
if (HAL_RTC_Init(&RtcHandle) != HAL_OK) {
error("RTC initialization failed");
}
2016-09-15 12:00:24 +00:00
rtc_synchronize(); // Wait for RSF
if (!rtc_isenabled()) {
2016-09-15 12:00:24 +00:00
rtc_write(0);
}
}
void rtc_free(void)
{
// Disable access to Backup domain
HAL_PWR_DisableBkUpAccess();
}
/*
ST RTC_DateTypeDef structure
WeekDay 1=monday, 2=tuesday, ..., 7=sunday
Month 0x1=january, 0x2=february, ..., 0x12=december
Date day of the month 1-31
Year year 0-99
ST RTC_TimeTypeDef structure
Hours 0-12 if the RTC_HourFormat_12 is selected during init
0-23 if the RTC_HourFormat_24 is selected during init
Minutes 0-59
Seconds 0-59
TimeFormat RTC_HOURFORMAT12_AM/RTC_HOURFORMAT12_PM
SubSeconds time unit range between [0-1] Second with [1 Sec / SecondFraction +1] granularity
SecondFraction range or granularity of Sub Second register content corresponding to Synchronous pre-scaler factor value (PREDIV_S)
DayLightSaving RTC_DAYLIGHTSAVING_SUB1H/RTC_DAYLIGHTSAVING_ADD1H/RTC_DAYLIGHTSAVING_NONE
StoreOperation RTC_STOREOPERATION_RESET/RTC_STOREOPERATION_SET
struct tm
tm_sec seconds after the minute 0-61
tm_min minutes after the hour 0-59
tm_hour hours since midnight 0-23
tm_mday day of the month 1-31
tm_mon months since January 0-11
tm_year years since 1900
tm_wday days since Sunday 0-6
tm_yday days since January 1 0-365
tm_isdst Daylight Saving Time flag
*/
/*
Information about STM32F0, STM32F2, STM32F3, STM32F4, STM32F7, STM32L0, STM32L1, STM32L4:
BCD format is used to store the date in the RTC. The year is store on 2 * 4 bits.
Because the first year is reserved to see if the RTC is init, the supposed range is 01-99.
1st point is to cover the standard range from 1970 to 2038 (limited by the 32 bits of time_t).
2nd point is to keep the year 1970 and the leap years synchronized.
So by moving it 68 years forward from 1970, it become 1969-2067 which include 1970-2038.
68 is also a multiple of 4 so it let the leap year synchronized.
Information about STM32F1:
32bit register is used (no BCD format) for the seconds.
For date, there is no specific register, only a software structure.
It is then not a problem to not use shifts.
*/
time_t rtc_read(void)
{
2017-10-06 13:44:16 +00:00
RTC_DateTypeDef dateStruct = {0};
RTC_TimeTypeDef timeStruct = {0};
struct tm timeinfo;
RtcHandle.Instance = RTC;
// Read actual date and time
// Warning: the time must be read first!
HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN);
#if TARGET_STM32F1
/* date information is null before first write procedure */
/* set 01/01/1970 as default values */
if (dateStruct.Year == 0) {
dateStruct.Year = 2 ;
dateStruct.Month = 1 ;
dateStruct.Date = 1 ;
}
#endif
// Setup a tm structure based on the RTC
/* tm_wday information is ignored by _rtc_maketime */
/* tm_isdst information is ignored by _rtc_maketime */
timeinfo.tm_mon = dateStruct.Month - 1;
timeinfo.tm_mday = dateStruct.Date;
2016-07-06 15:24:16 +00:00
timeinfo.tm_year = dateStruct.Year + 68;
timeinfo.tm_hour = timeStruct.Hours;
timeinfo.tm_min = timeStruct.Minutes;
timeinfo.tm_sec = timeStruct.Seconds;
// Convert to timestamp
2017-11-16 13:42:49 +00:00
time_t t;
if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
return 0;
}
return t;
}
void rtc_write(time_t t)
{
2017-10-06 13:44:16 +00:00
RTC_DateTypeDef dateStruct = {0};
RTC_TimeTypeDef timeStruct = {0};
RtcHandle.Instance = RTC;
// Convert the time into a tm
struct tm timeinfo;
2017-11-16 13:42:49 +00:00
if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
return;
}
// Fill RTC structures
if (timeinfo.tm_wday == 0) {
dateStruct.WeekDay = 7;
} else {
dateStruct.WeekDay = timeinfo.tm_wday;
}
dateStruct.Month = timeinfo.tm_mon + 1;
dateStruct.Date = timeinfo.tm_mday;
dateStruct.Year = timeinfo.tm_year - 68;
timeStruct.Hours = timeinfo.tm_hour;
timeStruct.Minutes = timeinfo.tm_min;
timeStruct.Seconds = timeinfo.tm_sec;
#if !(TARGET_STM32F1)
2016-07-06 15:24:16 +00:00
timeStruct.TimeFormat = RTC_HOURFORMAT_24;
timeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
timeStruct.StoreOperation = RTC_STOREOPERATION_RESET;
#endif /* TARGET_STM32F1 */
// Change the RTC current date/time
if (HAL_RTC_SetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN) != HAL_OK) {
error("HAL_RTC_SetDate error\n");
}
if (HAL_RTC_SetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN) != HAL_OK) {
error("HAL_RTC_SetTime error\n");
}
}
int rtc_isenabled(void)
{
#if !(TARGET_STM32F1)
return ( ((RTC->ISR & RTC_ISR_INITS) == RTC_ISR_INITS) && ((RTC->ISR & RTC_ISR_RSF) == RTC_ISR_RSF) );
#else /* TARGET_STM32F1 */
return ((RTC->CRL & RTC_CRL_RSF) == RTC_CRL_RSF);
#endif /* TARGET_STM32F1 */
}
void rtc_synchronize(void)
{
RtcHandle.Instance = RTC;
if (HAL_RTC_WaitForSynchro(&RtcHandle) != HAL_OK) {
error("rtc_synchronize error\n");
}
}
#if DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM
2016-09-15 12:00:24 +00:00
static void RTC_IRQHandler(void)
{
/* Update HAL state */
RtcHandle.Instance = RTC;
2016-09-15 12:00:24 +00:00
HAL_RTCEx_WakeUpTimerIRQHandler(&RtcHandle);
/* In case of registered handler, call it. */
2016-09-15 12:00:24 +00:00
if (irq_handler) {
irq_handler();
}
}
2018-01-12 10:52:47 +00:00
uint32_t rtc_read_us(void)
2016-09-15 12:00:24 +00:00
{
2018-01-12 10:52:47 +00:00
RTC_TimeTypeDef timeStruct = {0};
RTC_DateTypeDef dateStruct = {0};
RtcHandle.Instance = RTC;
HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN);
/* Reading RTC current time locks the values in calendar shadow registers until Current date is read
to ensure consistency between the time and date values */
HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN);
if (timeStruct.SubSeconds > timeStruct.SecondFraction) {
/* SS can be larger than PREDIV_S only after a shift operation. In that case, the correct
time/date is one second less than as indicated by RTC_TR/RTC_DR. */
timeStruct.Seconds -= 1;
}
uint32_t RTCTime = timeStruct.Seconds + timeStruct.Minutes * 60 + timeStruct.Hours * 60 * 60;
uint32_t Time_us = ((timeStruct.SecondFraction - timeStruct.SubSeconds) * lp_TickPeriod_us) >> 11;
return (RTCTime * 1000000) + Time_us ;
2016-09-15 12:00:24 +00:00
}
void rtc_set_wake_up_timer(uint32_t delta)
{
#define RTC_CLOCK_US (((uint64_t)RTC_CLOCK << 32 ) / 1000000)
uint32_t WakeUpCounter;
uint32_t WakeUpClock;
/* Ex for Wakeup period resolution with RTCCLK=32768 Hz :
* RTCCLK_DIV2: ~122us < wakeup period < ~4s
* RTCCLK_DIV4: ~244us < wakeup period < ~8s
* RTCCLK_DIV8: ~488us < wakeup period < ~16s
* RTCCLK_DIV16: ~976us < wakeup period < ~32s
* CK_SPRE_16BITS: 1s < wakeup period < (0xFFFF+ 1) x 1 s = 65536 s (18 hours)
* CK_SPRE_17BITS: 18h+1s < wakeup period < (0x1FFFF+ 1) x 1 s = 131072 s (36 hours)
*/
if (delta < (0x10000 * 2 / RTC_CLOCK * 1000000) ) { // (0xFFFF + 1) * RTCCLK_DIV2 / RTC_CLOCK * 1s
WakeUpCounter = (((uint64_t)delta * RTC_CLOCK_US) >> 32) >> 1 ;
WakeUpClock = RTC_WAKEUPCLOCK_RTCCLK_DIV2;
} else if (delta < (0x10000 * 4 / RTC_CLOCK * 1000000) ) {
WakeUpCounter = (((uint64_t)delta * RTC_CLOCK_US) >> 32) >> 2 ;
WakeUpClock = RTC_WAKEUPCLOCK_RTCCLK_DIV4;
} else if (delta < (0x10000 * 8 / RTC_CLOCK * 1000000) ) {
WakeUpCounter = (((uint64_t)delta * RTC_CLOCK_US) >> 32) >> 3 ;
WakeUpClock = RTC_WAKEUPCLOCK_RTCCLK_DIV8;
} else if (delta < (0x10000 * 16 / RTC_CLOCK * 1000000) ) {
WakeUpCounter = (((uint64_t)delta * RTC_CLOCK_US) >> 32) >> 4 ;
WakeUpClock = RTC_WAKEUPCLOCK_RTCCLK_DIV16;
} else {
WakeUpCounter = (delta / 1000000) ;
WakeUpClock = RTC_WAKEUPCLOCK_CK_SPRE_16BITS;
}
irq_handler = (void (*)(void))lp_ticker_irq_handler;
NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler);
NVIC_EnableIRQ(RTC_WKUP_IRQn);
RtcHandle.Instance = RTC;
if (HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle, (uint32_t)WakeUpCounter, WakeUpClock) != HAL_OK) {
error("rtc_set_wake_up_timer init error\n");
2016-09-15 12:00:24 +00:00
}
}
void rtc_deactivate_wake_up_timer(void)
{
RtcHandle.Instance = RTC;
2016-09-15 12:00:24 +00:00
HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle);
}
#endif /* DEVICE_LOWPOWERTIMER && !MBED_CONF_TARGET_LOWPOWERTIMER_LPTIM */
2016-09-15 12:00:24 +00:00
#endif /* DEVICE_RTC */