mbed-os/targets/TARGET_NUVOTON/TARGET_NUC472/lp_ticker.c

207 lines
7.5 KiB
C
Raw Normal View History

2016-07-22 05:04:53 +00:00
/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lp_ticker_api.h"
#if DEVICE_LOWPOWERTIMER
#include "sleep_api.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "critical.h"
2016-07-22 05:04:53 +00:00
// lp_ticker tick = us = timestamp
// clock of timer peripheral = ms
#define US_PER_TICK (1)
#define MS_PER_TMR2_INT (1000 * 10)
#define TMR2_FIRE_FREQ (1000 / MS_PER_TMR2_INT)
#define MS_PER_TMR2_CLK 1
#define TMR2_CLK_FREQ (1000 / MS_PER_TMR2_CLK)
#define MS_PER_TMR3_CLK 1
#define TMR3_CLK_FREQ (1000 / MS_PER_TMR3_CLK)
static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);
static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile int cd_major_minor_ms = 0;
static volatile int cd_minor_ms = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
#define TMR_CMP_MIN 2
#define TMR_CMP_MAX 0xFFFFFFu
void lp_ticker_init(void)
{
if (lp_ticker_inited) {
return;
}
lp_ticker_inited = 1;
counter_major = 0;
cd_major_minor_ms = 0;
cd_minor_ms = 0;
wakeup_tick = (uint32_t) -1;
// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
SYS_ResetModule(timer3_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
// Enable IP clock
CLK_EnableModuleClock(timer2_modinit.clkidx);
CLK_EnableModuleClock(timer3_modinit.clkidx);
// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_FREQ - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
uint32_t cmp_timer2 = MS_PER_TMR2_INT / MS_PER_TMR2_CLK;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2 | TIMER_CTL_CNTDATEN_Msk;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
// Set vector
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
NVIC_EnableIRQ(timer2_modinit.irq_n);
NVIC_EnableIRQ(timer3_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
// Start timer
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
}
timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
lp_ticker_init();
}
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
do {
uint64_t major_minor_ms;
uint32_t minor_ms;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
2016-07-22 05:04:53 +00:00
// NOTE: Order of reading minor_us/carry here is significant.
minor_ms = TIMER_GetCounter(timer2_base) * MS_PER_TMR2_CLK;
uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_ms > (MS_PER_TMR2_INT / 2)) {
major_minor_ms = (counter_major + 1) * MS_PER_TMR2_INT;
}
else {
major_minor_ms = (counter_major + carry) * MS_PER_TMR2_INT + minor_ms;
}
core_util_critical_section_exit();
2016-07-22 05:04:53 +00:00
}
while (minor_ms == 0 || minor_ms == MS_PER_TMR2_INT);
// Add power-down compensation
return (major_minor_ms * 1000 / US_PER_TICK);
}
while (0);
}
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t now = lp_ticker_read();
wakeup_tick = timestamp;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
int delta = (timestamp > now) ? (timestamp - now) : (uint32_t) ((uint64_t) timestamp + 0xFFFFFFFFu - now);
// NOTE: If this event was in the past, arm an interrupt to be triggered immediately.
cd_major_minor_ms = delta * US_PER_TICK / 1000;
lp_ticker_arm_cd();
}
void lp_ticker_disable_interrupt(void)
{
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
void lp_ticker_clear_interrupt(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
static void tmr2_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}
static void tmr3_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_ms -= cd_minor_ms;
if (cd_major_minor_ms > 0) {
lp_ticker_arm_cd();
}
}
static void lp_ticker_arm_cd(void)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_FREQ - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3 | TIMER_CTL_CNTDATEN_Msk;
cd_minor_ms = cd_major_minor_ms;
cd_minor_ms = NU_CLAMP(cd_minor_ms, TMR_CMP_MIN * MS_PER_TMR3_CLK, TMR_CMP_MAX * MS_PER_TMR3_CLK);
timer3_base->CMP = cd_minor_ms / MS_PER_TMR3_CLK;
TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_Start(timer3_base);
}
#endif