mbed-os/targets/TARGET_NUVOTON/TARGET_M2351/spi_api.c

849 lines
29 KiB
C
Raw Normal View History

2018-02-02 06:57:03 +00:00
/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spi_api.h"
#if DEVICE_SPI
#include "cmsis.h"
#include "mbed_error.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "nu_bitutil.h"
#if DEVICE_SPI_ASYNCH
#include "dma_api.h"
#include "dma.h"
#endif
#define NU_SPI_FRAME_MIN 8
#define NU_SPI_FRAME_MAX 32
struct nu_spi_var {
#if DEVICE_SPI_ASYNCH
uint8_t pdma_perp_tx;
uint8_t pdma_perp_rx;
#endif
};
static struct nu_spi_var spi0_var = {
#if DEVICE_SPI_ASYNCH
.pdma_perp_tx = PDMA_SPI0_TX,
.pdma_perp_rx = PDMA_SPI0_RX
#endif
};
static struct nu_spi_var spi1_var = {
#if DEVICE_SPI_ASYNCH
.pdma_perp_tx = PDMA_SPI1_TX,
.pdma_perp_rx = PDMA_SPI1_RX
#endif
};
static struct nu_spi_var spi2_var = {
#if DEVICE_SPI_ASYNCH
.pdma_perp_tx = PDMA_SPI2_TX,
.pdma_perp_rx = PDMA_SPI2_RX
#endif
};
static struct nu_spi_var spi3_var = {
#if DEVICE_SPI_ASYNCH
.pdma_perp_tx = PDMA_SPI3_TX,
.pdma_perp_rx = PDMA_SPI3_RX
#endif
};
static struct nu_spi_var spi5_var = {
#if DEVICE_SPI_ASYNCH
.pdma_perp_tx = PDMA_SPI5_TX,
.pdma_perp_rx = PDMA_SPI5_RX
#endif
};
/* Synchronous version of SPI_ENABLE()/SPI_DISABLE() macros
*
* The SPI peripheral clock is asynchronous with the system clock. In order to make sure the SPI
* control logic is enabled/disabled, this bit indicates the real status of SPI controller.
*
* NOTE: All configurations shall be ready before calling SPI_ENABLE_SYNC().
* NOTE: Before changing the configurations of SPIx_CTL, SPIx_CLKDIV, SPIx_SSCTL and SPIx_FIFOCTL registers,
* user shall clear the SPIEN (SPIx_CTL[0]) and confirm the SPIENSTS (SPIx_STATUS[15]) is 0
* (by SPI_DISABLE_SYNC here).
*/
__STATIC_INLINE void SPI_ENABLE_SYNC(SPI_T *spi_base)
{
if (! (spi_base->CTL & SPI_CTL_SPIEN_Msk)) {
SPI_ENABLE(spi_base);
}
while (! (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk));
}
__STATIC_INLINE void SPI_DISABLE_SYNC(SPI_T *spi_base)
{
if (spi_base->CTL & SPI_CTL_SPIEN_Msk) {
// NOTE: SPI H/W may get out of state without the busy check.
while (SPI_IS_BUSY(spi_base));
SPI_DISABLE(spi_base);
}
while (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk);
}
#if DEVICE_SPI_ASYNCH
static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable);
static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable);
static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit);
static uint32_t spi_master_read_asynch(spi_t *obj);
static uint32_t spi_event_check(spi_t *obj);
static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable);
static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx);
static uint8_t spi_get_data_width(spi_t *obj);
static int spi_is_tx_complete(spi_t *obj);
static int spi_is_rx_complete(spi_t *obj);
static int spi_writeable(spi_t * obj);
static int spi_readable(spi_t * obj);
static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma);
static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma);
static uint32_t spi_fifo_depth(spi_t *obj);
#endif
static uint32_t spi_modinit_mask = 0;
static const struct nu_modinit_s spi_modinit_tab[] = {
{SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK1, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var},
{SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1SEL_PCLK0, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var},
{SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2SEL_PCLK1, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var},
{SPI_3, SPI3_MODULE, CLK_CLKSEL2_SPI3SEL_PCLK0, MODULE_NoMsk, SPI3_RST, SPI3_IRQn, &spi3_var},
{SPI_5, SPI5_MODULE, CLK_CLKSEL2_SPI5SEL_PCLK1, MODULE_NoMsk, SPI5_RST, SPI5_IRQn, &spi5_var},
{NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
};
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// Determine which SPI_x the pins are used for
uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->spi.spi != NC);
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
/* Reset module
*
* NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
*/
SYS_ResetModule_S(modinit->rsetidx);
/* Select IP clock source
*
* NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
*/
CLK_SetModuleClock_S(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
/* Enable IP clock
*
* NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
*/
CLK_EnableModuleClock_S(modinit->clkidx);
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->spi.pin_mosi = mosi;
obj->spi.pin_miso = miso;
obj->spi.pin_sclk = sclk;
obj->spi.pin_ssel = ssel;
#if DEVICE_SPI_ASYNCH
obj->spi.dma_usage = DMA_USAGE_NEVER;
obj->spi.event = 0;
obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
/* NOTE: We use vector to judge if asynchronous transfer is on-going (spi_active).
* At initial time, asynchronous transfer is not on-going and so vector must
* be cleared to zero for correct judgement. */
NVIC_SetVector(modinit->irq_n, 0);
#endif
// Mark this module to be inited.
int i = modinit - spi_modinit_tab;
spi_modinit_mask |= 1 << i;
}
void spi_free(spi_t *obj)
{
#if DEVICE_SPI_ASYNCH
if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
dma_channel_free(obj->spi.dma_chn_id_tx);
obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
}
if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
dma_channel_free(obj->spi.dma_chn_id_rx);
obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
}
#endif
SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi));
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOV_INT_MASK | SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK));
NVIC_DisableIRQ(modinit->irq_n);
/* Disable IP clock
*
* NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
*/
CLK_DisableModuleClock_S(modinit->clkidx);
// Mark this module to be deinited.
int i = modinit - spi_modinit_tab;
spi_modinit_mask &= ~(1 << i);
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_DISABLE_SYNC(spi_base);
SPI_Open(spi_base,
slave ? SPI_SLAVE : SPI_MASTER,
(mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3,
bits,
SPI_GetBusClock(spi_base));
// NOTE: Hardcode to be MSB first.
SPI_SET_MSB_FIRST(spi_base);
if (! slave) {
// Master
if (obj->spi.pin_ssel != NC) {
// Configure SS as low active.
SPI_EnableAutoSS(spi_base, SPI_SS, SPI_SS_ACTIVE_LOW);
} else {
SPI_DisableAutoSS(spi_base);
}
} else {
// Slave
// Configure SS as low active.
spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk;
}
/* NOTE: M451's/M480's/M2351's SPI_Open() will enable SPI transfer (SPI_CTL_SPIEN_Msk).
* We cannot use SPI_CTL_SPIEN_Msk for judgement of spi_active().
* Judge with vector instead. */
}
void spi_frequency(spi_t *obj, int hz)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_DISABLE_SYNC(spi_base);
SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz);
}
int spi_master_write(spi_t *obj, int value)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
// NOTE: Data in receive FIFO can be read out via ICE.
SPI_ENABLE_SYNC(spi_base);
// Wait for tx buffer empty
while(! spi_writeable(obj));
SPI_WRITE_TX(spi_base, value);
// Wait for rx buffer full
while (! spi_readable(obj));
int value2 = SPI_READ_RX(spi_base);
/* We don't call SPI_DISABLE_SYNC here for performance. */
return value2;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill) {
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
#if DEVICE_SPISLAVE
int spi_slave_receive(spi_t *obj)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_ENABLE_SYNC(spi_base);
return spi_readable(obj);
};
int spi_slave_read(spi_t *obj)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_ENABLE_SYNC(spi_base);
// Wait for rx buffer full
while (! spi_readable(obj));
int value = SPI_READ_RX(spi_base);
return value;
}
void spi_slave_write(spi_t *obj, int value)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_ENABLE_SYNC(spi_base);
// Wait for tx buffer empty
while(! spi_writeable(obj));
SPI_WRITE_TX(spi_base, value);
}
#endif
#if DEVICE_SPI_ASYNCH
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
SPI_SET_DATA_WIDTH(spi_base, bit_width);
obj->spi.dma_usage = hint;
spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx);
uint32_t data_width = spi_get_data_width(obj);
// Conditions to go DMA way:
// (1) No DMA support for non-8 multiple data width.
// (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx.
if ((data_width % 8) ||
(tx_length < rx_length)) {
obj->spi.dma_usage = DMA_USAGE_NEVER;
dma_channel_free(obj->spi.dma_chn_id_tx);
obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
dma_channel_free(obj->spi.dma_chn_id_rx);
obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
}
// SPI IRQ is necessary for both interrupt way and DMA way
spi_enable_event(obj, event, 1);
spi_buffer_set(obj, tx, tx_length, rx, rx_length);
SPI_ENABLE_SYNC(spi_base);
if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
// Interrupt way
spi_master_write_asynch(obj, spi_fifo_depth(obj) / 2);
spi_enable_vector_interrupt(obj, handler, 1);
spi_master_enable_interrupt(obj, 1);
} else {
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
// Configure tx DMA
pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(pdma_base,
obj->spi.dma_chn_id_tx,
((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
0); // Scatter-gather descriptor address
PDMA_SetTransferCnt(pdma_base,
obj->spi.dma_chn_id_tx,
(data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
tx_length);
PDMA_SetTransferAddr(pdma_base,
obj->spi.dma_chn_id_tx,
(uint32_t) tx, // NOTE:
// NUC472: End of source address
// M451/M480/M2351: Start of source address
PDMA_SAR_INC, // Source address incremental
(uint32_t) &spi_base->TX, // Destination address
PDMA_DAR_FIX); // Destination address fixed
PDMA_SetBurstType(pdma_base,
obj->spi.dma_chn_id_tx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
PDMA_EnableInt(pdma_base,
obj->spi.dma_chn_id_tx,
PDMA_INT_TRANS_DONE); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
// Configure rx DMA
pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(pdma_base,
obj->spi.dma_chn_id_rx,
((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
0); // Scatter-gather descriptor address
PDMA_SetTransferCnt(pdma_base,
obj->spi.dma_chn_id_rx,
(data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
rx_length);
PDMA_SetTransferAddr(pdma_base,
obj->spi.dma_chn_id_rx,
(uint32_t) &spi_base->RX, // Source address
PDMA_SAR_FIX, // Source address fixed
(uint32_t) rx, // NOTE:
// NUC472: End of destination address
// M451/M480/M2351: Start of destination address
PDMA_DAR_INC); // Destination address incremental
PDMA_SetBurstType(pdma_base,
obj->spi.dma_chn_id_rx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
PDMA_EnableInt(pdma_base,
obj->spi.dma_chn_id_rx,
PDMA_INT_TRANS_DONE); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
/* Start tx/rx DMA transfer
*
* If we have both PDMA and SPI interrupts enabled and PDMA priority is lower than SPI priority,
* we would trap in SPI interrupt handler endlessly with the sequence:
*
* 1. PDMA TX transfer done interrupt occurs and is well handled.
* 2. SPI RX FIFO threshold interrupt occurs. Trap here because PDMA RX transfer done interrupt doesn't get handled.
* 3. PDMA RX transfer done interrupt occurs but it cannot be handled due to above.
*
* To fix it, we don't enable SPI TX/RX threshold interrupts but keep SPI vector handler set to be called
* in PDMA TX/RX transfer done interrupt handlers (spi_dma_handler_tx/spi_dma_handler_rx).
*/
NVIC_SetVector(modinit->irq_n, handler);
2018-02-02 06:57:03 +00:00
/* Order to enable PDMA TX/RX functions
*
* H/W spec: In SPI Master mode with full duplex transfer, if both TX and RX PDMA functions are
* enabled, RX PDMA function cannot be enabled prior to TX PDMA function. User can enable
* TX PDMA function firstly or enable both functions simultaneously.
* Per real test, it is safer to start RX PDMA first and then TX PDMA. Otherwise, receive FIFO is
* subject to overflow by TX DMA.
*
* With the above conflicts, we enable PDMA TX/RX functions simultaneously.
*/
spi_base->PDMACTL |= (SPI_PDMACTL_TXPDMAEN_Msk | SPI_PDMACTL_RXPDMAEN_Msk);
/* Don't enable SPI TX/RX threshold interrupts as commented above */
}
}
/**
* Abort an SPI transfer
* This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing
* transfers
* @param[in] obj The SPI peripheral to stop
*/
void spi_abort_asynch(spi_t *obj)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
PDMA_T *pdma_base = dma_modbase();
if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
// Receive FIFO Overrun in case of tx length > rx length on DMA way
if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
}
if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(pdma_base, obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
// NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
}
SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(pdma_base, obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
// NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
}
SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
}
// Necessary for both interrupt way and DMA way
spi_enable_vector_interrupt(obj, 0, 0);
spi_master_enable_interrupt(obj, 0);
/* Necessary for accessing FIFOCTL below */
SPI_DISABLE_SYNC(spi_base);
SPI_ClearRxFIFO(spi_base);
SPI_ClearTxFIFO(spi_base);
}
/**
* Handle the SPI interrupt
* Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way,
* it is unlikely that the RX FIFO will overflow.
* @param[in] obj The SPI peripheral that generated the interrupt
* @return
*/
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
// Check for SPI events
uint32_t event = spi_event_check(obj);
if (event) {
spi_abort_asynch(obj);
}
return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0);
}
uint8_t spi_active(spi_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
/* Vector will be cleared when asynchronous transfer is finished or aborted.
Use it to judge if asynchronous transfer is on-going. */
uint32_t vec = NVIC_GetVector(modinit->irq_n);
return vec ? 1 : 0;
}
static int spi_writeable(spi_t * obj)
{
// Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive
return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
}
static int spi_readable(spi_t * obj)
{
return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)));
}
static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
{
obj->spi.event &= ~SPI_EVENT_ALL;
obj->spi.event |= (event & SPI_EVENT_ALL);
if (event & SPI_EVENT_RX_OVERFLOW) {
SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOV_INT_MASK);
}
}
static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
if (enable) {
NVIC_SetVector(modinit->irq_n, handler);
NVIC_EnableIRQ(modinit->irq_n);
} else {
NVIC_DisableIRQ(modinit->irq_n);
NVIC_SetVector(modinit->irq_n, 0);
}
}
static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
if (enable) {
uint32_t fifo_depth = spi_fifo_depth(obj);
SPI_SetFIFO(spi_base, fifo_depth / 2, fifo_depth / 2);
// Enable tx/rx FIFO threshold interrupt
SPI_EnableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
} else {
SPI_DisableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
}
}
static uint32_t spi_event_check(spi_t *obj)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
uint32_t event = 0;
if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
uint32_t n_rec = spi_master_read_asynch(obj);
spi_master_write_asynch(obj, n_rec);
}
if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) {
event |= SPI_EVENT_COMPLETE;
}
// Receive FIFO Overrun
if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
// In case of tx length > rx length on DMA way
if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
event |= SPI_EVENT_RX_OVERFLOW;
}
}
// Receive Time-Out
if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) {
spi_base->STATUS = SPI_STATUS_RXTOIF_Msk;
// Not using this IF. Just clear it.
}
// Transmit FIFO Under-Run
if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) {
spi_base->STATUS = SPI_STATUS_TXUFIF_Msk;
event |= SPI_EVENT_ERROR;
}
return event;
}
/**
* Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full
* tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed.
* @param[in] obj The SPI object on which to operate
* @param[in] tx_limit The maximum number of words to send
* @return The number of SPI words that have been transfered
*/
static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit)
{
uint32_t n_words = 0;
uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn);
max_tx = NU_MIN(max_tx, tx_limit);
uint8_t data_width = spi_get_data_width(obj);
uint8_t bytes_per_word = (data_width + 7) / 8;
uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
while ((n_words < max_tx) && spi_writeable(obj)) {
if (spi_is_tx_complete(obj)) {
// Transmit dummy as transmit buffer is empty
SPI_WRITE_TX(spi_base, 0);
} else {
switch (bytes_per_word) {
case 4:
SPI_WRITE_TX(spi_base, nu_get32_le(tx));
tx += 4;
break;
case 2:
SPI_WRITE_TX(spi_base, nu_get16_le(tx));
tx += 2;
break;
case 1:
SPI_WRITE_TX(spi_base, *((uint8_t *) tx));
tx += 1;
break;
}
obj->tx_buff.pos ++;
}
n_words ++;
}
//Return the number of words that have been sent
return n_words;
}
/**
* Read SPI words out of the RX FIFO
* Continues reading words out of the RX FIFO until the following condition is met:
* o There are no more words in the FIFO
* OR BOTH OF:
* o At least as many words as the TX buffer have been received
* o At least as many words as the RX buffer have been received
* This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size
* @param[in] obj The SPI object on which to operate
* @return Returns the number of words extracted from the RX FIFO
*/
static uint32_t spi_master_read_asynch(spi_t *obj)
{
uint32_t n_words = 0;
uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn);
uint8_t data_width = spi_get_data_width(obj);
uint8_t bytes_per_word = (data_width + 7) / 8;
uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
while ((n_words < max_rx) && spi_readable(obj)) {
if (spi_is_rx_complete(obj)) {
// Disregard as receive buffer is full
SPI_READ_RX(spi_base);
} else {
switch (bytes_per_word) {
case 4: {
uint32_t val = SPI_READ_RX(spi_base);
nu_set32_le(rx, val);
rx += 4;
break;
}
case 2: {
uint16_t val = SPI_READ_RX(spi_base);
nu_set16_le(rx, val);
rx += 2;
break;
}
case 1:
*rx ++ = SPI_READ_RX(spi_base);
break;
}
obj->rx_buff.pos ++;
}
n_words ++;
}
// Return the number of words received
return n_words;
}
static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
{
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->tx_buff.width = spi_get_data_width(obj);
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
obj->rx_buff.width = spi_get_data_width(obj);
}
static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx)
{
if (*dma_usage != DMA_USAGE_NEVER) {
if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) {
*dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE);
}
if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
*dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE);
}
if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
*dma_usage = DMA_USAGE_NEVER;
}
}
if (*dma_usage == DMA_USAGE_NEVER) {
dma_channel_free(*dma_ch_tx);
*dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS;
dma_channel_free(*dma_ch_rx);
*dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS;
}
}
static uint8_t spi_get_data_width(spi_t *obj)
{
SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos);
if (data_width == 0) {
data_width = 32;
}
return data_width;
}
static int spi_is_tx_complete(spi_t *obj)
{
return (obj->tx_buff.pos == obj->tx_buff.length);
}
static int spi_is_rx_complete(spi_t *obj)
{
return (obj->rx_buff.pos == obj->rx_buff.length);
}
static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma)
{
spi_t *obj = (spi_t *) id;
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_ABORT) {
}
// Expect SPI IRQ will catch this transfer done event
if (event_dma & DMA_EVENT_TRANSFER_DONE) {
obj->tx_buff.pos = obj->tx_buff.length;
}
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_TIMEOUT) {
}
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
vec();
}
static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma)
{
spi_t *obj = (spi_t *) id;
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_ABORT) {
}
// Expect SPI IRQ will catch this transfer done event
if (event_dma & DMA_EVENT_TRANSFER_DONE) {
obj->rx_buff.pos = obj->rx_buff.length;
}
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_TIMEOUT) {
}
const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
vec();
}
/** Return FIFO depth of the SPI peripheral
*
* @details
* M2351
* SPI0/1/2/3 8 if data width <=16; 4 otherwise
*/
static uint32_t spi_fifo_depth(spi_t *obj)
{
return (spi_get_data_width(obj) <= 16) ? 8 : 4;
}
#endif
#endif