mbed-os/targets/TARGET_STM/TARGET_STM32L0/pwmout_api.c

205 lines
6.0 KiB
C
Raw Normal View History

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2015, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
static TIM_HandleTypeDef TimHandle;
void pwmout_init(pwmout_t* obj, PinName pin)
{
// Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(obj->pwm != (PWMName)NC);
// Get the pin function and assign the used channel to the object
uint32_t function = pinmap_function(pin, PinMap_PWM);
MBED_ASSERT(function != (uint32_t)NC);
obj->channel = STM_PIN_CHANNEL(function);
obj->inverted = STM_PIN_INVERTED(function);
// Enable TIM clock
if (obj->pwm == PWM_2) __TIM2_CLK_ENABLE();
#if defined(TIM3_BASE)
if (obj->pwm == PWM_3) __TIM3_CLK_ENABLE();
#endif
if (obj->pwm == PWM_21) __TIM21_CLK_ENABLE();
2016-06-02 14:27:04 +00:00
#if defined(TIM22_BASE)
if (obj->pwm == PWM_22) __TIM22_CLK_ENABLE();
2016-06-02 14:27:04 +00:00
#endif
// Configure GPIO
pinmap_pinout(pin, PinMap_PWM);
obj->pin = pin;
obj->period = 0;
obj->pulse = 0;
obj->prescaler = 1;
pwmout_period_us(obj, 20000); // 20 ms per default
}
void pwmout_free(pwmout_t* obj)
{
// Configure GPIO
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
void pwmout_write(pwmout_t* obj, float value)
{
TIM_OC_InitTypeDef sConfig;
int channel = 0;
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
if (value < (float)0.0) {
value = 0.0;
} else if (value > (float)1.0) {
value = 1.0;
}
obj->pulse = (uint32_t)((float)obj->period * value);
// Configure channels
sConfig.OCMode = TIM_OCMODE_PWM1;
sConfig.Pulse = obj->pulse / obj->prescaler;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.OCFastMode = TIM_OCFAST_ENABLE;
switch (obj->channel) {
case 1:
channel = TIM_CHANNEL_1;
break;
case 2:
channel = TIM_CHANNEL_2;
break;
case 3:
channel = TIM_CHANNEL_3;
break;
case 4:
channel = TIM_CHANNEL_4;
break;
default:
return;
}
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
error("Cannot initialize PWM");
}
HAL_TIM_PWM_Start(&TimHandle, channel);
}
float pwmout_read(pwmout_t* obj)
{
float value = 0;
if (obj->period > 0) {
value = (float)(obj->pulse) / (float)(obj->period);
}
return ((value > (float)1.0) ? (float)(1.0) : (value));
}
void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
void pwmout_period_us(pwmout_t* obj, int us)
{
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
float dc = pwmout_read(obj);
__HAL_TIM_DISABLE(&TimHandle);
/* To make it simple, we use to possible prescaler values which lead to:
* pwm unit = 1us, period/pulse can be from 1us to 65535us
* or
* pwm unit = 500us, period/pulse can be from 500us to ~32.76sec
* Be careful that all the channels of a PWM shares the same prescaler
*/
if (us > 0xFFFF) {
obj->prescaler = 500;
} else {
obj->prescaler = 1;
}
TimHandle.Init.Prescaler = ((SystemCoreClock / 1000000) * obj->prescaler) - 1;
if (TimHandle.Init.Prescaler > 0xFFFF)
error("PWM: out of range prescaler");
TimHandle.Init.Period = (us - 1) / obj->prescaler;
if (TimHandle.Init.Period > 0xFFFF)
error("PWM: out of range period");
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
error("Cannot initialize PWM");
}
// Save for future use
obj->period = us;
// Set duty cycle again
pwmout_write(obj, dc);
__HAL_TIM_ENABLE(&TimHandle);
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
float value = (float)us / (float)obj->period;
pwmout_write(obj, value);
}
#endif