2017-06-08 02:59:17 +00:00
|
|
|
/* mbed Microcontroller Library
|
|
|
|
* Copyright (c) 2017-2017 ARM Limited
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "mbed_mktime.h"
|
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Time constants. */
|
2017-06-08 02:59:17 +00:00
|
|
|
#define SECONDS_BY_MINUTES 60
|
|
|
|
#define MINUTES_BY_HOUR 60
|
|
|
|
#define SECONDS_BY_HOUR (SECONDS_BY_MINUTES * MINUTES_BY_HOUR)
|
2018-06-27 14:09:15 +00:00
|
|
|
#define HOURS_BY_DAY 24
|
2017-06-08 02:59:17 +00:00
|
|
|
#define SECONDS_BY_DAY (SECONDS_BY_HOUR * HOURS_BY_DAY)
|
2017-11-06 13:56:38 +00:00
|
|
|
#define LAST_VALID_YEAR 206
|
|
|
|
|
|
|
|
/* Macros which will be used to determine if we are within valid range. */
|
|
|
|
#define EDGE_TIMESTAMP_FULL_LEAP_YEAR_SUPPORT 3220095 // 7th of February 1970 at 06:28:15
|
|
|
|
#define EDGE_TIMESTAMP_4_YEAR_LEAP_YEAR_SUPPORT 3133695 // 6th of February 1970 at 06:28:15
|
2017-06-08 02:59:17 +00:00
|
|
|
|
|
|
|
/*
|
2018-06-27 14:09:15 +00:00
|
|
|
* 2 dimensional array containing the number of seconds elapsed before a given
|
2017-06-08 02:59:17 +00:00
|
|
|
* month.
|
|
|
|
* The second index map to the month while the first map to the type of year:
|
2018-06-27 14:09:15 +00:00
|
|
|
* - 0: non leap year
|
2017-06-08 02:59:17 +00:00
|
|
|
* - 1: leap year
|
|
|
|
*/
|
|
|
|
static const uint32_t seconds_before_month[2][12] = {
|
|
|
|
{
|
|
|
|
0,
|
|
|
|
31 * SECONDS_BY_DAY,
|
2018-06-27 14:09:15 +00:00
|
|
|
(31 + 28) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30) *SECONDS_BY_DAY,
|
2017-06-08 02:59:17 +00:00
|
|
|
},
|
|
|
|
{
|
|
|
|
0,
|
|
|
|
31 * SECONDS_BY_DAY,
|
2018-06-27 14:09:15 +00:00
|
|
|
(31 + 29) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31) *SECONDS_BY_DAY,
|
|
|
|
(31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30) *SECONDS_BY_DAY,
|
2017-06-08 02:59:17 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-06-27 14:09:15 +00:00
|
|
|
bool _rtc_is_leap_year(int year, rtc_leap_year_support_t leap_year_support)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* since in practice, the value manipulated by this algorithm lie in the
|
2017-11-06 13:56:38 +00:00
|
|
|
* range: [70 : 206] the algorithm can be reduced to: year % 4 with exception for 200 (year 2100 is not leap year).
|
2018-06-27 14:09:15 +00:00
|
|
|
* The algorithm valid over the full range of value is:
|
2017-06-08 02:59:17 +00:00
|
|
|
|
|
|
|
year = 1900 + year;
|
|
|
|
if (year % 4) {
|
|
|
|
return false;
|
|
|
|
} else if (year % 100) {
|
|
|
|
return true;
|
|
|
|
} else if (year % 400) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
|
2018-06-27 14:09:15 +00:00
|
|
|
*/
|
2017-11-06 13:56:38 +00:00
|
|
|
if (leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT && year == 200) {
|
|
|
|
return false; // 2100 is not a leap year
|
|
|
|
}
|
|
|
|
|
2017-06-08 02:59:17 +00:00
|
|
|
return (year) % 4 ? false : true;
|
|
|
|
}
|
|
|
|
|
2018-06-27 14:09:15 +00:00
|
|
|
bool _rtc_maketime(const struct tm *time, time_t *seconds, rtc_leap_year_support_t leap_year_support)
|
|
|
|
{
|
2017-11-06 13:56:38 +00:00
|
|
|
if (seconds == NULL || time == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Partial check for the upper bound of the range - check years only. Full check will be performed after the
|
|
|
|
* elapsed time since the beginning of the year is calculated.
|
|
|
|
*/
|
|
|
|
if ((time->tm_year < 70) || (time->tm_year > LAST_VALID_YEAR)) {
|
|
|
|
return false;
|
2017-06-08 02:59:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t result = time->tm_sec;
|
|
|
|
result += time->tm_min * SECONDS_BY_MINUTES;
|
|
|
|
result += time->tm_hour * SECONDS_BY_HOUR;
|
|
|
|
result += (time->tm_mday - 1) * SECONDS_BY_DAY;
|
2017-11-06 13:56:38 +00:00
|
|
|
result += seconds_before_month[_rtc_is_leap_year(time->tm_year, leap_year_support)][time->tm_mon];
|
|
|
|
|
|
|
|
/* Check if we are within valid range. */
|
|
|
|
if (time->tm_year == LAST_VALID_YEAR) {
|
|
|
|
if ((leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT && result > EDGE_TIMESTAMP_FULL_LEAP_YEAR_SUPPORT) ||
|
2018-06-27 14:09:15 +00:00
|
|
|
(leap_year_support == RTC_4_YEAR_LEAP_YEAR_SUPPORT && result > EDGE_TIMESTAMP_4_YEAR_LEAP_YEAR_SUPPORT)) {
|
|
|
|
return false;
|
2017-11-06 13:56:38 +00:00
|
|
|
}
|
|
|
|
}
|
2017-06-08 02:59:17 +00:00
|
|
|
|
2018-06-27 14:09:15 +00:00
|
|
|
if (time->tm_year > 70) {
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Valid in the range [70:206]. */
|
2017-06-08 02:59:17 +00:00
|
|
|
uint32_t count_of_leap_days = ((time->tm_year - 1) / 4) - (70 / 4);
|
2017-11-06 13:56:38 +00:00
|
|
|
if (leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT) {
|
|
|
|
if (time->tm_year > 200) {
|
|
|
|
count_of_leap_days--; // 2100 is not a leap year
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-08 02:59:17 +00:00
|
|
|
result += (((time->tm_year - 70) * 365) + count_of_leap_days) * SECONDS_BY_DAY;
|
|
|
|
}
|
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
*seconds = result;
|
2017-06-08 02:59:17 +00:00
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
return true;
|
2017-06-08 02:59:17 +00:00
|
|
|
}
|
|
|
|
|
2018-06-27 14:09:15 +00:00
|
|
|
bool _rtc_localtime(time_t timestamp, struct tm *time_info, rtc_leap_year_support_t leap_year_support)
|
|
|
|
{
|
2017-11-06 13:56:38 +00:00
|
|
|
if (time_info == NULL) {
|
2017-06-08 02:59:17 +00:00
|
|
|
return false;
|
2017-11-06 13:56:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t seconds = (uint32_t)timestamp;
|
2017-06-08 02:59:17 +00:00
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
time_info->tm_sec = seconds % 60;
|
|
|
|
seconds = seconds / 60; // timestamp in minutes
|
|
|
|
time_info->tm_min = seconds % 60;
|
|
|
|
seconds = seconds / 60; // timestamp in hours
|
|
|
|
time_info->tm_hour = seconds % 24;
|
|
|
|
seconds = seconds / 24; // timestamp in days;
|
2017-06-08 02:59:17 +00:00
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Compute the weekday.
|
|
|
|
* The 1st of January 1970 was a Thursday which is equal to 4 in the weekday representation ranging from [0:6].
|
|
|
|
*/
|
|
|
|
time_info->tm_wday = (seconds + 4) % 7;
|
2017-06-08 09:11:01 +00:00
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Years start at 70. */
|
2017-06-08 02:59:17 +00:00
|
|
|
time_info->tm_year = 70;
|
2018-06-27 14:09:15 +00:00
|
|
|
while (true) {
|
2017-11-06 13:56:38 +00:00
|
|
|
if (_rtc_is_leap_year(time_info->tm_year, leap_year_support) && seconds >= 366) {
|
2017-06-08 02:59:17 +00:00
|
|
|
++time_info->tm_year;
|
2017-11-06 13:56:38 +00:00
|
|
|
seconds -= 366;
|
|
|
|
} else if (!_rtc_is_leap_year(time_info->tm_year, leap_year_support) && seconds >= 365) {
|
2017-06-08 02:59:17 +00:00
|
|
|
++time_info->tm_year;
|
2017-11-06 13:56:38 +00:00
|
|
|
seconds -= 365;
|
2017-06-08 02:59:17 +00:00
|
|
|
} else {
|
2017-11-06 13:56:38 +00:00
|
|
|
/* The remaining days are less than a years. */
|
2017-06-08 02:59:17 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
time_info->tm_yday = seconds;
|
2017-06-08 09:32:57 +00:00
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Convert days into seconds and find the current month. */
|
|
|
|
seconds *= SECONDS_BY_DAY;
|
2017-06-08 02:59:17 +00:00
|
|
|
time_info->tm_mon = 11;
|
2017-11-06 13:56:38 +00:00
|
|
|
bool leap = _rtc_is_leap_year(time_info->tm_year, leap_year_support);
|
2017-06-08 02:59:17 +00:00
|
|
|
for (uint32_t i = 0; i < 12; ++i) {
|
2017-11-06 13:56:38 +00:00
|
|
|
if ((uint32_t) seconds < seconds_before_month[leap][i]) {
|
2017-06-08 02:59:17 +00:00
|
|
|
time_info->tm_mon = i - 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-06 13:56:38 +00:00
|
|
|
/* Remove month from timestamp and compute the number of days.
|
|
|
|
* Note: unlike other fields, days are not 0 indexed.
|
|
|
|
*/
|
|
|
|
seconds -= seconds_before_month[leap][time_info->tm_mon];
|
|
|
|
time_info->tm_mday = (seconds / SECONDS_BY_DAY) + 1;
|
2017-06-08 02:59:17 +00:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|