mbed-os/targets/TARGET_ARM_SSG/TARGET_CM3DS_MPS2/serial_api.c

407 lines
11 KiB
C
Raw Normal View History

/* mbed Microcontroller Library
* Copyright (c) 2006-2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "gpio_api.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
static const PinMap PinMap_UART_TX[] = {
{MCC_TX , UART_0, 0},
{USBTX , UART_1, 0},
{SH0_TX , UART_2, ALTERNATE_FUNC},
{SH1_TX , UART_3, ALTERNATE_FUNC},
{XB_TX , UART_4, ALTERNATE_FUNC},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RX[] = {
{MCC_RX , UART_0, 0},
{USBRX , UART_1, 0},
{SH0_RX , UART_2, ALTERNATE_FUNC},
{SH1_RX , UART_3, ALTERNATE_FUNC},
{XB_RX , UART_4, ALTERNATE_FUNC},
{NC , NC , 0}
};
#define UART_NUM 5
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
struct serial_global_data_s {
uint32_t serial_irq_id;
gpio_t sw_rts, sw_cts;
uint8_t count, rx_irq_set_flow, rx_irq_set_api;
};
static struct serial_global_data_s uart_data[UART_NUM];
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
uint32_t uart_ctrl = 0;
/* Determine the UART to use */
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
if ((int)uart == NC) {
error("Serial pinout mapping failed");
return;
}
obj->uart = (CMSDK_UART_TypeDef *)uart;
if (tx != NC) {
uart_ctrl = 0x01; /* TX enable */
}
if (rx != NC) {
uart_ctrl |= 0x02; /* RX enable */
}
switch (uart) {
case UART_0:
CMSDK_UART0->CTRL = uart_ctrl;
obj->index = 0;
break;
case UART_1:
CMSDK_UART1->CTRL = uart_ctrl;
obj->index = 1;
break;
case UART_2:
CMSDK_UART2->CTRL = 0;
obj->index = 2;
pin_function(tx, ALTERNATE_FUNC);
pin_function(rx, ALTERNATE_FUNC);
CMSDK_UART2->CTRL = uart_ctrl;
break;
case UART_3:
CMSDK_UART3->CTRL = 0;
obj->index = 3;
pin_function(tx, ALTERNATE_FUNC);
pin_function(rx, ALTERNATE_FUNC);
CMSDK_UART3->CTRL = uart_ctrl;
break;
case UART_4:
CMSDK_UART4->CTRL = 0;
obj->index = 4;
pin_function(tx, ALTERNATE_FUNC);
pin_function(rx, ALTERNATE_FUNC);
CMSDK_UART4->CTRL = uart_ctrl;
break;
}
/* Set default baud rate and format */
serial_baud(obj, 9600);
/*
* The CMSDK APB UART doesn't have support for flow control.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
uart_data[obj->index].sw_rts.pin_number = NC;
uart_data[obj->index].sw_cts.pin_number = NC;
if (uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
/* Clear UART */
serial_clear(obj);
}
void serial_free(serial_t *obj)
{
uart_data[obj->index].serial_irq_id = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
/*
* The MPS2 has a simple divider to control the baud rate.
* The formula is:
* Baudrate = PCLK / BAUDDIV where PCLK = SystemCoreClock and
* BAUDDIV is the desire baudrate
*
* So, if the desired baud rate is 9600 the calculation will be:
* Baudrate = SystemCoreClock / 9600;
*/
/* Check to see if minimum baud value entered */
int baudrate_div = 0;
if (baudrate == 0) {
error("Invalid baudrate value");
return;
}
baudrate_div = SystemCoreClock / baudrate;
if (baudrate >= 16) {
switch ((int)obj->uart) {
case UART_0:
CMSDK_UART0->BAUDDIV = baudrate_div;
break;
case UART_1:
CMSDK_UART1->BAUDDIV = baudrate_div;
break;
case UART_2:
CMSDK_UART2->BAUDDIV = baudrate_div;
break;
case UART_3:
CMSDK_UART3->BAUDDIV = baudrate_div;
break;
case UART_4:
CMSDK_UART4->BAUDDIV = baudrate_div;
break;
default:
error("Invalid uart object");
break;
}
} else {
error("Invalid baudrate value");
}
}
void serial_format(serial_t *obj, int data_bits,
SerialParity parity, int stop_bits)
{
/*
* The CMSDK APB UART is a simple design that supports 8-bit communication
* without parity, and is fixed at one stop bit per configuration.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial format function not supported");
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t intstatus, uint32_t index,
CMSDK_UART_TypeDef *puart)
{
SerialIrq irq_type;
switch (intstatus) {
case 1:
irq_type = TxIrq;
break;
case 2:
irq_type = RxIrq;
break;
default:
return;
}
if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin_number)) {
gpio_write(&uart_data[index].sw_rts, 1);
/* Disable interrupt if it wasn't enabled by the application */
if (!uart_data[index].rx_irq_set_api) {
/* Disable Rx interrupt */
puart->CTRL &= ~(CMSDK_UART_CTRL_RXIRQEN_Msk);
}
}
if (uart_data[index].serial_irq_id != 0) {
if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) {
irq_handler(uart_data[index].serial_irq_id, irq_type);
}
}
if (irq_type == TxIrq) {
/* Clear the TX interrupt Flag */
puart->INTCLEAR |= 0x01;
} else {
/* Clear the Rx interupt Flag */
puart->INTCLEAR |= 0x02;
}
}
void uart0_irq()
{
uart_irq(CMSDK_UART0->INTSTATUS & 0x3, 0, (CMSDK_UART_TypeDef*)CMSDK_UART0);
}
void uart1_irq()
{
uart_irq(CMSDK_UART1->INTSTATUS & 0x3, 1, (CMSDK_UART_TypeDef*)CMSDK_UART1);
}
void uart2_irq()
{
uart_irq(CMSDK_UART2->INTSTATUS & 0x3, 2, (CMSDK_UART_TypeDef*)CMSDK_UART2);
}
void uart3_irq() {
uart_irq(CMSDK_UART3->INTSTATUS & 0x3, 3, (CMSDK_UART_TypeDef*)CMSDK_UART3);
}
void uart4_irq() {
uart_irq(CMSDK_UART4->INTSTATUS & 0x3, 4, (CMSDK_UART_TypeDef*)CMSDK_UART4);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
uart_data[obj->index].serial_irq_id = id;
}
static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable)
{
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch ((int)obj->uart) {
case UART_0:
irq_n = UART0_IRQn;
vector = (uint32_t)&uart0_irq;
break;
case UART_1:
irq_n = UART1_IRQn;
vector = (uint32_t)&uart1_irq;
break;
case UART_2:
irq_n = UART2_IRQn;
vector = (uint32_t)&uart2_irq;
break;
case UART_3:
irq_n = UART3_IRQn;
vector = (uint32_t)&uart3_irq;
break;
case UART_4:
irq_n = UART4_IRQn;
vector = (uint32_t)&uart4_irq;
break;
}
if (enable) {
if (irq == TxIrq) {
/* Set TX interrupt enable in CTRL REG */
obj->uart->CTRL |= CMSDK_UART_CTRL_TXIRQEN_Msk;
} else {
/* Set Rx interrupt on in CTRL REG */
obj->uart->CTRL |= CMSDK_UART_CTRL_RXIRQEN_Msk;
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else if ((irq == TxIrq) ||
(uart_data[obj->index].rx_irq_set_api
+ uart_data[obj->index].rx_irq_set_flow == 0)) {
/* Disable IRQ */
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
obj->uart->CTRL &= ~(1 << (irq + 2));
all_disabled = (obj->uart->CTRL & (1 << (other_irq + 2))) == 0;
if (all_disabled) {
NVIC_DisableIRQ(irq_n);
}
}
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (RxIrq == irq) {
uart_data[obj->index].rx_irq_set_api = enable;
}
serial_irq_set_internal(obj, irq, enable);
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
while (serial_readable(obj) == 0) {
/* NOP */
}
return obj->uart->DATA;
}
void serial_putc(serial_t *obj, int c)
{
while (serial_writable(obj)) {
/* NOP */
}
obj->uart->DATA = c;
}
int serial_readable(serial_t *obj)
{
return obj->uart->STATE & 0x2;
}
int serial_writable(serial_t *obj)
{
return obj->uart->STATE & 0x1;
}
void serial_clear(serial_t *obj)
{
obj->uart->DATA = 0x00;
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
/*
* The CMSDK APB UART doesn't support serial break.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_break_set function not supported");
}
void serial_break_clear(serial_t *obj)
{
/*
* The CMSDK APB UART doesn't support serial break.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_break_clear function not supported");
}
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
/*
* The CMSDK APB UART doesn't have support for flow control.
* Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf
*/
error("serial_set_flow_control function not supported");
}