mbed-os/targets/TARGET_STM/TARGET_STM32F0/device/stm32f0xx_hal_rcc.c

1335 lines
49 KiB
C
Raw Normal View History

/**
******************************************************************************
* @file stm32f0xx_hal_rcc.c
* @author MCD Application Team
* @version V1.4.0
* @date 27-May-2016
* @brief RCC HAL module driver.
2015-09-11 13:00:50 +00:00
* This file provides firmware functions to manage the following
* functionalities of the Reset and Clock Control (RCC) peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
2015-09-11 13:00:50 +00:00
*
@verbatim
==============================================================================
##### RCC specific features #####
==============================================================================
2015-09-11 13:00:50 +00:00
[..]
After reset the device is running from Internal High Speed oscillator
2015-09-11 13:00:50 +00:00
(HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
and all peripherals are off except internal SRAM, Flash and JTAG.
2016-05-30 15:31:18 +00:00
(+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
all peripherals mapped on these buses are running at HSI speed.
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
(+) All GPIOs are in input floating state, except the JTAG pins which
are assigned to be used for debug purpose.
[..] Once the device started from reset, the user application has to:
(+) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
2015-09-11 13:00:50 +00:00
(+) Configure the System clock frequency and Flash settings
2016-05-30 15:31:18 +00:00
(+) Configure the AHB and APB buses prescalers
(+) Enable the clock for the peripheral(s) to be used
2015-09-11 13:00:50 +00:00
(+) Configure the clock source(s) for peripherals whose clocks are not
derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..)
##### RCC Limitations #####
==============================================================================
[..]
A delay between an RCC peripheral clock enable and the effective peripheral
enabling should be taken into account in order to manage the peripheral read/write
2015-09-11 13:00:50 +00:00
from/to registers.
(+) This delay depends on the peripheral mapping.
2015-09-11 13:00:50 +00:00
(++) AHB & APB peripherals, 1 dummy read is necessary
[..]
2015-09-11 13:00:50 +00:00
Workarounds:
(#) For AHB & APB peripherals, a dummy read to the peripheral register has been
inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
@endverbatim
******************************************************************************
* @attention
*
2016-05-30 15:31:18 +00:00
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
2015-09-11 13:00:50 +00:00
******************************************************************************
*/
2016-05-30 15:31:18 +00:00
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
2015-09-11 13:00:50 +00:00
/** @defgroup RCC RCC
* @brief RCC HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
2015-09-11 13:00:50 +00:00
/** @defgroup RCC_Private_Constants RCC Private Constants
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
* @{
*/
2015-09-11 13:00:50 +00:00
#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO1_GPIO_PORT GPIOA
#define MCO1_PIN GPIO_PIN_8
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
2016-05-30 15:31:18 +00:00
/* Exported functions ---------------------------------------------------------*/
/** @defgroup RCC_Exported_Functions RCC Exported Functions
* @{
*/
2015-09-11 13:00:50 +00:00
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
2016-05-30 15:31:18 +00:00
##### Initialization and de-initialization functions #####
2015-09-11 13:00:50 +00:00
===============================================================================
[..]
2015-09-11 13:00:50 +00:00
This section provides functions allowing to configure the internal/external oscillators
2016-05-30 15:31:18 +00:00
(HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK,
AHB and APB1).
[..] Internal/external clock and PLL configuration
2015-09-11 13:00:50 +00:00
(#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
the PLL as System clock source.
2016-05-30 15:31:18 +00:00
The HSI clock can be used also to clock the USART and I2C peripherals.
2015-09-11 13:00:50 +00:00
(#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock
2016-05-30 15:31:18 +00:00
the ADC peripheral.
2015-09-11 13:00:50 +00:00
(#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
clock source.
(#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
through the PLL as System clock source. Can be used also as RTC clock source.
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
(#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks:
(++) The first output is used to generate the high speed system clock (up to 48 MHz)
(++) The second output is used to generate the clock for the USB FS (48 MHz)
(++) The third output may be used to generate the clock for the TIM, I2C and USART
peripherals (up to 48 MHz)
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
and if a HSE clock failure occurs(HSE used directly or through PLL as System
2016-05-30 15:31:18 +00:00
clock source), the System clocks automatically switched to HSI and an interrupt
2015-09-11 13:00:50 +00:00
is generated if enabled. The interrupt is linked to the Cortex-M0 NMI
(Non-Maskable Interrupt) exception vector.
(#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL
clock (divided by 2) output on pin (such as PA8 pin).
2016-05-30 15:31:18 +00:00
[..] System, AHB and APB buses clocks configuration
2015-09-11 13:00:50 +00:00
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
HSE and PLL.
2016-05-30 15:31:18 +00:00
The AHB clock (HCLK) is derived from System clock through configurable
prescaler and used to clock the CPU, memory and peripherals mapped
2015-09-11 13:00:50 +00:00
on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived
2016-05-30 15:31:18 +00:00
from AHB clock through configurable prescalers and used to clock
the peripherals mapped on these buses. You can use
"@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
2015-09-11 13:00:50 +00:00
(#) All the peripheral clocks are derived from the System clock (SYSCLK) except:
(++) The FLASH program/erase clock which is always HSI 8MHz clock.
(++) The USB 48 MHz clock which is derived from the PLL VCO clock.
(++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
(++) The I2C clock which can be derived as well from HSI 8MHz clock.
(++) The ADC clock which is derived from PLL output.
(++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
(HSE divided by a programmable prescaler). The System clock (SYSCLK)
frequency must be higher or equal to the RTC clock frequency.
(++) IWDG clock which is always the LSI clock.
(#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz,
Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
(#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and
prefetch is disabled.
@endverbatim
* @{
*/
/*
Additional consideration on the SYSCLK based on Latency settings:
2015-09-11 13:00:50 +00:00
+-----------------------------------------------+
| Latency | SYSCLK clock frequency (MHz) |
|---------------|-------------------------------|
|0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
|---------------|-------------------------------|
|1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
+-----------------------------------------------+
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - HSI ON and used as system clock source
* - HSE and PLL OFF
* - AHB, APB1 prescaler set to 1.
2015-09-11 13:00:50 +00:00
* - CSS and MCO1 OFF
* - All interrupts disabled
* @note This function does not modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval None
*/
void HAL_RCC_DeInit(void)
{
/* Set HSION bit, HSITRIM[4:0] bits to the reset value*/
SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
/* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO);
2016-05-30 15:31:18 +00:00
/* Reset HSEON, CSSON, PLLON bits */
CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON);
/* Reset HSEBYP bit */
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
/* Reset CFGR register */
CLEAR_REG(RCC->CFGR);
/* Reset CFGR2 register */
CLEAR_REG(RCC->CFGR2);
/* Reset CFGR3 register */
CLEAR_REG(RCC->CFGR3);
/* Disable all interrupts */
2015-09-11 13:00:50 +00:00
CLEAR_REG(RCC->CIR);
/* Update the SystemCoreClock global variable */
SystemCoreClock = HSI_VALUE;
}
/**
* @brief Initializes the RCC Oscillators according to the specified parameters in the
* RCC_OscInitTypeDef.
2016-05-30 15:31:18 +00:00
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @retval HAL status
*/
2015-09-11 13:00:50 +00:00
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
2015-09-11 13:00:50 +00:00
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(RCC_OscInitStruct != NULL);
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
2015-09-11 13:00:50 +00:00
/*------------------------------- HSE Configuration ------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
|| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
{
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
{
return HAL_ERROR;
}
}
else
{
/* Set the new HSE configuration ---------------------------------------*/
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
2016-05-30 15:31:18 +00:00
/* Check the HSE State */
2015-09-11 13:00:50 +00:00
if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
{
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
2016-05-30 15:31:18 +00:00
/* Wait till HSE is ready */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till HSE is disabled */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*----------------------------- HSI Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
{
/* Check the parameters */
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
|| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
{
/* When HSI is used as system clock it will not disabled */
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
{
return HAL_ERROR;
}
/* Otherwise, just the calibration is allowed */
else
{
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
}
else
{
/* Check the HSI State */
if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
{
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_ENABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
2016-05-30 15:31:18 +00:00
/* Wait till HSI is ready */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
2016-05-30 15:31:18 +00:00
/* Wait till HSI is disabled */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSI Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
{
/* Check the parameters */
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
/* Check the LSI State */
if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
{
/* Enable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_ENABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till LSI is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*------------------------------ LSE Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
{
FlagStatus pwrclkchanged = RESET;
2015-09-11 13:00:50 +00:00
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
/* Update LSE configuration in Backup Domain control register */
/* Requires to enable write access to Backup Domain of necessary */
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
2015-09-11 13:00:50 +00:00
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
2015-09-11 13:00:50 +00:00
}
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
2015-09-11 13:00:50 +00:00
{
/* Enable write access to Backup domain */
SET_BIT(PWR->CR, PWR_CR_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
2015-09-11 13:00:50 +00:00
{
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
2015-09-11 13:00:50 +00:00
}
}
2015-09-11 13:00:50 +00:00
/* Set the new LSE configuration -----------------------------------------*/
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
/* Check the LSE State */
if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
{
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till LSE is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Require to disable power clock if necessary */
if(pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
2015-09-11 13:00:50 +00:00
}
/*----------------------------- HSI14 Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14)
{
/* Check the parameters */
assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State));
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue));
/* Check the HSI14 State */
if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON)
{
/* Disable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_DISABLE();
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI14_ENABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
__HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
}
else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL)
{
/* Enable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_ENABLE();
/* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */
__HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue);
}
else
{
/* Disable ADC control of the Internal High Speed oscillator HSI14 */
__HAL_RCC_HSI14ADC_DISABLE();
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI14_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
#if defined(RCC_HSI48_SUPPORT)
2015-09-11 13:00:50 +00:00
/*----------------------------- HSI48 Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
{
/* Check the parameters */
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
/* When the HSI48 is used as system clock it is not allowed to be disabled */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) ||
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48)))
{
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON))
{
return HAL_ERROR;
}
}
else
{
/* Check the HSI48 State */
2015-09-11 13:00:50 +00:00
if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
{
/* Enable the Internal High Speed oscillator (HSI48). */
__HAL_RCC_HSI48_ENABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till HSI48 is ready */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
{
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal High Speed oscillator (HSI48). */
__HAL_RCC_HSI48_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till HSI48 is ready */
2015-09-11 13:00:50 +00:00
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
{
if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
#endif /* RCC_HSI48_SUPPORT */
2015-09-11 13:00:50 +00:00
/*-------------------------------- PLL Configuration -----------------------*/
/* Check the parameters */
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
{
/* Check if the PLL is used as system clock or not */
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
{
/* Check the parameters */
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV));
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till PLL is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
2016-05-30 15:31:18 +00:00
2015-09-11 13:00:50 +00:00
/* Configure the main PLL clock source, predivider and multiplication factor. */
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
RCC_OscInitStruct->PLL.PREDIV,
RCC_OscInitStruct->PLL.PLLMUL);
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
2016-05-30 15:31:18 +00:00
/* Get Start Tick */
2015-09-11 13:00:50 +00:00
tickstart = HAL_GetTick();
/* Wait till PLL is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
2016-05-30 15:31:18 +00:00
* @brief Initializes the CPU, AHB and APB buses clocks according to the specified
* parameters in the RCC_ClkInitStruct.
2016-05-30 15:31:18 +00:00
* @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC peripheral.
2016-05-30 15:31:18 +00:00
* @param FLatency FLASH Latency
* The value of this parameter depend on device used within the same series
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
2016-05-30 15:31:18 +00:00
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
*
* @note The HSI is used (enabled by hardware) as system clock source after
2016-05-30 15:31:18 +00:00
* start-up from Reset, wake-up from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
2015-09-11 13:00:50 +00:00
*
* @note A switch from one clock source to another occurs only if the target
2016-05-30 15:31:18 +00:00
* clock source is ready (clock stable after start-up delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
2015-09-11 13:00:50 +00:00
* occur when the clock source will be ready.
2016-05-30 15:31:18 +00:00
* You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
2015-09-11 13:00:50 +00:00
* currently used as system clock source.
* @retval HAL status
*/
2015-09-11 13:00:50 +00:00
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
{
2015-09-11 13:00:50 +00:00
uint32_t tickstart = 0;
2015-09-11 13:00:50 +00:00
/* Check the parameters */
assert_param(RCC_ClkInitStruct != NULL);
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
assert_param(IS_FLASH_LATENCY(FLatency));
2016-05-30 15:31:18 +00:00
2015-09-11 13:00:50 +00:00
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
must be correctly programmed according to the frequency of the CPU clock
(HCLK) of the device. */
2016-05-30 15:31:18 +00:00
/* Increasing the number of wait states because of higher CPU frequency */
2015-09-11 13:00:50 +00:00
if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
return HAL_ERROR;
}
2016-05-30 15:31:18 +00:00
}
/*-------------------------- HCLK Configuration --------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
{
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
}
/*------------------------- SYSCLK Configuration ---------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
{
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
2015-09-11 13:00:50 +00:00
2016-05-30 15:31:18 +00:00
/* HSE is selected as System Clock Source */
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
/* Check the HSE ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_ERROR;
2015-09-11 13:00:50 +00:00
}
2016-05-30 15:31:18 +00:00
}
/* PLL is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
/* Check the PLL ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_ERROR;
2015-09-11 13:00:50 +00:00
}
2016-05-30 15:31:18 +00:00
}
#if defined(RCC_CFGR_SWS_HSI48)
2016-05-30 15:31:18 +00:00
/* HSI48 is selected as System Clock Source */
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
/* Check the HSI48 ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_ERROR;
2015-09-11 13:00:50 +00:00
}
2016-05-30 15:31:18 +00:00
}
#endif /* RCC_CFGR_SWS_HSI48 */
2016-05-30 15:31:18 +00:00
/* HSI is selected as System Clock Source */
else
{
/* Check the HSI ready flag */
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_ERROR;
2015-09-11 13:00:50 +00:00
}
}
2016-05-30 15:31:18 +00:00
__HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
/* Get Start Tick */
tickstart = HAL_GetTick();
2015-09-11 13:00:50 +00:00
2016-05-30 15:31:18 +00:00
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_TIMEOUT;
2015-09-11 13:00:50 +00:00
}
}
2016-05-30 15:31:18 +00:00
}
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_TIMEOUT;
2015-09-11 13:00:50 +00:00
}
}
2016-05-30 15:31:18 +00:00
}
#if defined(RCC_CFGR_SWS_HSI48)
2016-05-30 15:31:18 +00:00
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48)
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI48)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_TIMEOUT;
2015-09-11 13:00:50 +00:00
}
}
2016-05-30 15:31:18 +00:00
}
#endif /* RCC_CFGR_SWS_HSI48 */
2016-05-30 15:31:18 +00:00
else
{
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
2015-09-11 13:00:50 +00:00
{
2016-05-30 15:31:18 +00:00
return HAL_TIMEOUT;
2015-09-11 13:00:50 +00:00
}
}
2016-05-30 15:31:18 +00:00
}
}
/* Decreasing the number of wait states because of lower CPU frequency */
if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
{
2015-09-11 13:00:50 +00:00
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
{
return HAL_ERROR;
}
2016-05-30 15:31:18 +00:00
}
2015-09-11 13:00:50 +00:00
/*-------------------------- PCLK1 Configuration ---------------------------*/
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
{
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider);
}
/* Update the SystemCoreClock global variable */
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
2015-09-11 13:00:50 +00:00
/* Configure the source of time base considering new system clocks settings*/
HAL_InitTick (TICK_INT_PRIORITY);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
* @brief RCC clocks control functions
2015-09-11 13:00:50 +00:00
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
2015-09-11 13:00:50 +00:00
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
2015-09-11 13:00:50 +00:00
@endverbatim
* @{
*/
2016-05-30 15:31:18 +00:00
#if defined(RCC_CFGR_MCOPRE)
/**
* @brief Selects the clock source to output on MCO pin.
* @note MCO pin should be configured in alternate function mode.
* @param RCC_MCOx specifies the output direction for the clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
2016-05-30 15:31:18 +00:00
* @param RCC_MCOSource specifies the clock source to output.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected
* @arg @ref RCC_MCO1SOURCE_SYSCLK System Clock selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock
@if STM32F042x6
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F048xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F071xB
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F072xB
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F078xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F091xC
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@elseif STM32F098xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F030x6
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F030xC
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F031x6
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F038xx
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F070x6
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
@elif STM32F070xB
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock
2016-05-30 15:31:18 +00:00
@endif
* @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
* @param RCC_MCODiv specifies the MCO DIV.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
* @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock
* @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock
* @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock
* @retval None
*/
#else
/**
2015-09-11 13:00:50 +00:00
* @brief Selects the clock source to output on MCO pin.
* @note MCO pin should be configured in alternate function mode.
2016-05-30 15:31:18 +00:00
* @param RCC_MCOx specifies the output direction for the clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
2016-05-30 15:31:18 +00:00
* @param RCC_MCOSource specifies the clock source to output.
* This parameter can be one of the following values:
2016-05-30 15:31:18 +00:00
* @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock
* @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock
* @param RCC_MCODiv specifies the MCO DIV.
* This parameter can be one of the following values:
2016-05-30 15:31:18 +00:00
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
* @retval None
*/
2016-05-30 15:31:18 +00:00
#endif
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
2016-05-30 15:31:18 +00:00
GPIO_InitTypeDef gpio = {0};
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCOx));
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
2015-09-11 13:00:50 +00:00
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
2016-05-30 15:31:18 +00:00
/* Configure the MCO1 pin in alternate function mode */
gpio.Mode = GPIO_MODE_AF_PP;
gpio.Speed = GPIO_SPEED_FREQ_HIGH;
gpio.Pull = GPIO_NOPULL;
gpio.Pin = MCO1_PIN;
gpio.Alternate = GPIO_AF0_MCO;
/* MCO1 Clock Enable */
MCO1_CLK_ENABLE();
2015-09-11 13:00:50 +00:00
HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
/* Configure the MCO clock source */
2016-05-30 15:31:18 +00:00
__HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
}
/**
* @brief Enables the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
2015-09-11 13:00:50 +00:00
* allowing the MCU to perform rescue operations. The CSSI is linked to
* the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
* @retval None
*/
void HAL_RCC_EnableCSS(void)
{
2015-09-11 13:00:50 +00:00
SET_BIT(RCC->CR, RCC_CR_CSSON) ;
}
/**
* @brief Disables the Clock Security System.
* @retval None
*/
void HAL_RCC_DisableCSS(void)
{
2015-09-11 13:00:50 +00:00
CLEAR_BIT(RCC->CR, RCC_CR_CSSON) ;
}
/**
2015-09-11 13:00:50 +00:00
* @brief Returns the SYSCLK frequency
* @note The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
2015-09-11 13:00:50 +00:00
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
* @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
* divided by PREDIV factor(**)
* @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
2016-05-30 15:31:18 +00:00
* divided by PREDIV factor(**) or depending on STM32F0xxxx devices either a value based
* on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the
2016-05-30 15:31:18 +00:00
* PLL factor.
2015-09-11 13:00:50 +00:00
* @note (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
2015-09-11 13:00:50 +00:00
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
2015-09-11 13:00:50 +00:00
*
* @note This function can be used by the user application to compute the
2016-05-30 15:31:18 +00:00
* baud-rate for the communication peripherals or configure other parameters.
2015-09-11 13:00:50 +00:00
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
2015-09-11 13:00:50 +00:00
*
* @retval SYSCLK frequency
*/
2015-09-11 13:00:50 +00:00
uint32_t HAL_RCC_GetSysClockFreq(void)
{
2015-09-11 13:00:50 +00:00
const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 16};
const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14, 15, 16};
uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0;
uint32_t sysclockfreq = 0;
2015-09-11 13:00:50 +00:00
tmpreg = RCC->CFGR;
/* Get SYSCLK source -------------------------------------------------------*/
switch (tmpreg & RCC_CFGR_SWS)
{
case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
{
sysclockfreq = HSE_VALUE;
break;
}
case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
{
pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER];
if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
{
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */
2016-05-30 15:31:18 +00:00
pllclk = (HSE_VALUE / prediv) * pllmul;
2015-09-11 13:00:50 +00:00
}
#if defined(RCC_CFGR_PLLSRC_HSI48_PREDIV)
2015-09-11 13:00:50 +00:00
else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48)
{
/* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */
2016-05-30 15:31:18 +00:00
pllclk = (HSI48_VALUE / prediv) * pllmul;
2015-09-11 13:00:50 +00:00
}
#endif /* RCC_CFGR_PLLSRC_HSI48_PREDIV */
2015-09-11 13:00:50 +00:00
else
{
#if (defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC))
/* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */
2016-05-30 15:31:18 +00:00
pllclk = (HSI_VALUE / prediv) * pllmul;
2015-09-11 13:00:50 +00:00
#else
/* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
#endif
}
sysclockfreq = pllclk;
break;
}
#if defined(RCC_CFGR_SWS_HSI48)
2015-09-11 13:00:50 +00:00
case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */
{
sysclockfreq = HSI48_VALUE;
break;
}
#endif /* RCC_CFGR_SWS_HSI48 */
2015-09-11 13:00:50 +00:00
case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
default: /* HSI used as system clock */
{
sysclockfreq = HSI_VALUE;
break;
}
}
return sysclockfreq;
}
/**
2015-09-11 13:00:50 +00:00
* @brief Returns the HCLK frequency
* @note Each time HCLK changes, this function must be called to update the
* right HCLK value. Otherwise, any configuration based on this function will be incorrect.
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated within this function
* @retval HCLK frequency
*/
uint32_t HAL_RCC_GetHCLKFreq(void)
{
return SystemCoreClock;
}
/**
2015-09-11 13:00:50 +00:00
* @brief Returns the PCLK1 frequency
* @note Each time PCLK1 changes, this function must be called to update the
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
* @retval PCLK1 frequency
*/
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_BITNUMBER]);
2015-09-11 13:00:50 +00:00
}
/**
2015-09-11 13:00:50 +00:00
* @brief Configures the RCC_OscInitStruct according to the internal
* RCC configuration registers.
2016-05-30 15:31:18 +00:00
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
2015-09-11 13:00:50 +00:00
/* Check the parameters */
assert_param(RCC_OscInitStruct != NULL);
2015-09-11 13:00:50 +00:00
/* Set all possible values for the Oscillator type parameter ---------------*/
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI14;
#if defined(RCC_HSI48_SUPPORT)
2015-09-11 13:00:50 +00:00
RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48;
#endif /* RCC_HSI48_SUPPORT */
2016-05-30 15:31:18 +00:00
/* Get the HSE configuration -----------------------------------------------*/
2015-09-11 13:00:50 +00:00
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
{
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
}
2015-09-11 13:00:50 +00:00
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
{
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
}
else
{
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
}
2016-05-30 15:31:18 +00:00
/* Get the HSI configuration -----------------------------------------------*/
2015-09-11 13:00:50 +00:00
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
{
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
2015-09-11 13:00:50 +00:00
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber);
2015-09-11 13:00:50 +00:00
/* Get the LSE configuration -----------------------------------------------*/
2015-09-11 13:00:50 +00:00
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
{
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
}
2015-09-11 13:00:50 +00:00
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
{
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
}
else
{
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
}
2015-09-11 13:00:50 +00:00
/* Get the LSI configuration -----------------------------------------------*/
2015-09-11 13:00:50 +00:00
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
{
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
}
else
{
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
}
2015-09-11 13:00:50 +00:00
/* Get the HSI14 configuration -----------------------------------------------*/
if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON)
{
RCC_OscInitStruct->HSI14State = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSI14State = RCC_HSI_OFF;
}
2016-05-30 15:31:18 +00:00
RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_HSI14TRIM_BIT_NUMBER);
2015-09-11 13:00:50 +00:00
#if defined(RCC_HSI48_SUPPORT)
/* Get the HSI48 configuration if any-----------------------------------------*/
RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
#endif /* RCC_HSI48_SUPPORT */
/* Get the PLL configuration -----------------------------------------------*/
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
}
else
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
}
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV);
}
/**
2015-09-11 13:00:50 +00:00
* @brief Get the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
2016-05-30 15:31:18 +00:00
* @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
* contains the current clock configuration.
2016-05-30 15:31:18 +00:00
* @param pFLatency Pointer on the Flash Latency.
* @retval None
*/
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
{
2015-09-11 13:00:50 +00:00
/* Check the parameters */
assert_param(RCC_ClkInitStruct != NULL);
assert_param(pFLatency != NULL);
/* Set all possible values for the Clock type parameter --------------------*/
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1;
2015-09-11 13:00:50 +00:00
/* Get the SYSCLK configuration --------------------------------------------*/
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
2015-09-11 13:00:50 +00:00
/* Get the HCLK configuration ----------------------------------------------*/
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
/* Get the APB1 configuration ----------------------------------------------*/
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE);
/* Get the Flash Wait State (Latency) configuration ------------------------*/
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
}
/**
* @brief This function handles the RCC CSS interrupt request.
* @note This API should be called under the NMI_Handler().
* @retval None
*/
void HAL_RCC_NMI_IRQHandler(void)
{
/* Check RCC CSSF flag */
if(__HAL_RCC_GET_IT(RCC_IT_CSS))
{
/* RCC Clock Security System interrupt user callback */
2015-09-11 13:00:50 +00:00
HAL_RCC_CSSCallback();
/* Clear RCC CSS pending bit */
__HAL_RCC_CLEAR_IT(RCC_IT_CSS);
}
}
/**
* @brief RCC Clock Security System interrupt callback
* @retval none
*/
2015-09-11 13:00:50 +00:00
__weak void HAL_RCC_CSSCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
2015-09-11 13:00:50 +00:00
the HAL_RCC_CSSCallback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/